
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Efficient Cache-Coherent Migration for Heterogeneous Coprocessors in
Dark Silicon Limited Technology

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Scott Ricketts

Committee in charge:

Professor Michael Bedford Taylor, Co-Chair
Professor Steven Swanson, Co-Chair
Professor Chung-Kuan Cheng

2011

Copyright

Scott Ricketts, 2011

All rights reserved.

The Thesis of Scott Ricketts is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2011

iii

DEDICATION

To my mom and dad.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

List of Acronyms and Abbreviations . ix

Acknowledgements . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1

Chapter 2 Migrating Contexts to Coprocessors 5
2.1 System Overview . 5
2.2 Migration Dispatch and Migrating the Register File State 8
2.3 Migrating Data . 11
2.4 Migration Runtime Primitives 11

Chapter 3 The Cache Coherence System 13
3.1 The Submarine Coherence Protocol 14

3.1.1 Protocol Overview 14
3.1.2 Coherent Instruction Semantics and Protocol De-

tails . 15
3.2 The Directory . 20
3.3 Deadlock Avoidance . 21

3.3.1 Buffering at the directory 22
3.3.2 Buffering at the caches 26

3.4 Evaluation of the Coherence System for Parallel Workloads 27
3.4.1 Single-Tile Performance Overhead 27
3.4.2 Parallel Performance 29

Chapter 4 Memory System Napping . 31
4.1 The Cache Nap Policies 31
4.2 The Nap Decision . 32
4.3 Nap Overhead . 32

v

Chapter 5 Migration Results . 35
5.1 Methodology . 35
5.2 The Workloads . 36
5.3 Energy . 37

5.3.1 Overhead Analysis 39
5.3.2 Implications of Increasing the C-Core Efficiency . 44
5.3.3 Justification for a Hardware Flush/Flush-invalidate 46

5.4 Delay . 48

Chapter 6 Related Work . 50
6.1 Migration . 50
6.2 Memory System Napping 53
6.3 Cache Coherence for Tiled Processors 54

Chapter 7 Conclusion . 56

Appendix A Implementation Details . 58
A.1 Redesigning the Raw Memory Subsystem for Cache Co-

herence . 59
A.1.1 The L1 Caches 59
A.1.2 The Directory Model 63
A.1.3 The DRAM Controller 65

A.2 The Cache-Coherent Raw Instruction Set Architecture . 65
A.2.1 Load-linked and Store-Conditional 65
A.2.2 Invalidate, Flush, and Flush-Invalidate 67

A.3 Library Design for Cache Coherence and
Shared Memory Multi-threading 68
A.3.1 Synchronization 69
A.3.2 The C Standard Library 70
A.3.3 Multi-Threading and PARMACS Support 70
A.3.4 HWIC Trampoline 71

A.4 Migration . 71
A.5 Napping . 71

Bibliography . 74

vi

LIST OF FIGURES

Figure 2.1: A Floorplan for GreenDroid with Directory Coherence 6

Figure 3.1: Coherent Load Protocol Diagram 17
Figure 3.2: Coherent Store/LoadEx Protocol Diagram 19
Figure 3.3: Coherent Invalidate/Flush/Flush-Invalidate Protocol Diagram . 20
Figure 3.4: A Directory for a k-Tile Migration Group 22
Figure 3.5: Scaling SPLASH2 Benchmarks on btl-cc 30

Figure 4.1: The Idleness Predictor . 33

Figure 5.1: Energy Savings from Migration 38
Figure 5.2: Migration System Energy . 41
Figure 5.3: Migration System Energy Overhead Breakdown 43
Figure 5.4: Migration System Energy Breakdown vs C-Core Efficiency . . . 45
Figure 5.5: Delay Impact of Migration . 49

Figure A.1: Arbitration of Outgoing MDN Packets 61
Figure A.2: The Coherent Data Cache State Machine 62

vii

LIST OF TABLES

Table 2.1: The Migration Packet . 9

Table 3.1: The Cacheline Coherence States 15
Table 3.2: Coherence Packet Formats . 24
Table 3.3: Max Words in Flight Per Outstanding Cache Request 25
Table 3.4: Single-Tile Runtime Overhead of Cache Coherence 28

Table 4.1: Cache Napping Policies . 32

Table 5.1: The Tile Power Model . 36
Table 5.2: The Migration Workloads . 37
Table 5.3: Measured Energy Savings for Migrating Irregular Workloads . . 39
Table 5.4: Component Legend for Energy Measurement Results 40
Table 5.5: The Napping Break Even Table 47

viii

LIST OF ACRONYMS AND ABBREVIATIONS

btl beetle

btl-cc beetle with cache coherence

c-core conservation core

CMNI Communications Memory Network Incoming

CMNO Communications Memory Network Outgoing

CPU Central Processing Unit

d-cache data cache

DMA Direct Memory Access

DMNI D-cache Memory Network Incoming

DRAM Dynamic Random-Access Memory

GDN General-purpose Dynamic Network

i-cache instruction cache

IMNI I-cache Memory Network Incoming

ISA Instruction Set Architecture

LLSC Load-Linked Store-Conditional

MDN Memory Dynamic Network

MESI Modified/Exclusive/Shared/Invalid

MLI Multi-Level Inclusion

MPSoC Multiprocessor System-on-Chip

MRU Most Recently Used

ix

NUCA Non-uniform Cache Access

PC Program Counter

PRF Pending Request File

RTL Register Transfer Level

UMNI User Memory Network Incoming

x

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my endlessly supportive mother

and father, to whom this thesis is dedicated.

And of course, I thank Michael Taylor, my adviser, who taught me the

science of hacking, among many other things, both technical and non-technical.

I think it would be impossible to enumerate in paragraph form all of the ways

he has impacted me since I moved to San Diego, so instead, I hope to repay him

with a role in a future rap video. I would also like to thank my other committee

members, Steve Swanson and CK Cheng.

Jack Sampson provided a great deal of feedback about the migration sys-

tem, the results, and the writeup and was my liason to the GreenDroid toolchain.

Thanks to Jack for counseling me through the final stages of this project with

clarity and enthusiasm.

Ikkjin Ahn was hugely helpful during the early stages of this project as I

acclimated to the Raw infrastructure. Thank you to Anshuman Gupta for discus-

sions about the directory hardware design.

I also thank Houman Ghajari, my friend and manager at Maxentric. His

flexibility and support throughout this project showed me that his first priority is

the growth and well-being of the people in his team. Brandon Beresini, another

colleague at Maxentric, has been my hacking partner-in-crime on a number of

projects and is always eager to discuss an interesting technical problem, help debug

a difficult software issue, or provide an excuse to go to Don Carlos and indulge.

Finally, I thank my brother, Daniel Ricketts, now a UCSD graduate student

himself and truly my longest and most loyal friend.

xi

ABSTRACT OF THE THESIS

Efficient Cache-Coherent Migration for Heterogeneous Coprocessors in
Dark Silicon Limited Technology

by

Scott Ricketts

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Michael Bedford Taylor, Co-Chair
Professor Steven Swanson, Co-Chair

Current trends in processor manufacturing indicate that in order to meet

power budgets, chips will have to power-gate an increasing fraction of transis-

tors. This so called dark silicon will play an important role in motivating future

architectures. Recent research proposes to allocate these large dark regions to

power-efficient specialized coprocessors. GreenDroid is a tiled architecture where

each tile includes a set of coprocessors, generated at design time, that target the

anticipated workload. A central challenge to retaining the efficiency of this system

is providing low overhead migration mechanisms so that tasks can move around the

chip to exploit different coprocessors. This thesis presents a prototype migration

xii

system for GreenDroid and other tiled coprocessor-based architectures. The re-

sults show that for single-threaded irregular workloads, migration between c-cores

spread across a four-tile configuration can provide power savings from 4.8× to 6.2×
compared to an all software approach on a single tile. When compared against an

ideal case where all c-cores fit on a single tile, the energy overhead of migrating

amongst tiles ranges from 2.6% to 24.1%.

xiii

Chapter 1

Introduction

Current mobile application processors resemble their desktop and main-

frame counterparts from past generations, thanks to sustained advancement in fab-

rication technologies. In the past decade, multicore has emerged as the paradigm

for scaling energy efficiency and performance with process technologies. Current

multicore designs add processing elements in the hope of scaling performance.

However, as the number of cores increase, so does the footprint of the architectural

supporting cast – for example, the on-chip caches, directories for cache coherence,

and on-chip networks. These elements are designed to manage a challenging point

of tension in the design of general purpose processors: retaining programmabil-

ity while improving performance. For instance, modern operating systems require

cache-coherent shared memory, but directories are typically power hungry, area

hungry, or both, and coherence protocols apply pressure on the on-chip networks

and caches, again increasing the demand for silicon and energy.

While increasing transistor counts makes chip area increasingly cheap, the

chip power budget remains constant. In the past, processors have been able to con-

tinue to scale at full utilization while remaining at the same power level. However,

we are entering a new regime of scaling where leakage limits our ability to reduce

operating voltage and thus hinders our ability to reign in power consumption. In

fact, recent research indicates that in order to remain within power budgets, future

systems will have to effectively turn off an increasing portion of the chip. This is

the utilization wall , and the portion of the chip that is not switching is often called

1

2

dark silicon.

Consequently, chip designers will have to re-examine the multicore paradigm

for the next generation of low power processors under this new set of constraints.

Our research group at UCSD has approached this problem inspired by two insights.

First, the consequence of future feature shrinking is that area will be cheap, while

energy will be expensive. Second, custom logic is known to be significantly more

energy efficient than general purpose processors. Thus, a proposed approach is to

allocate the dark silicon for specialized logic. When the workload can leverage the

specialized logic, it does so and leaves the general purpose logic dark, and when it

cannot, it power-gates the specialized logic and uses the general purpose resources.

For broad applicability, such systems must employ a diverse toolset of such

specialized, power efficient coprocessors. A given application is likely to require

a subset of coprocessors that is spread across the chip. Thus, execution contexts

must migrate throughout the chip, seeking out appropriate coprocessors. As the

number of coprocessors on chip increases, the overhead of migration will become

an increasing energy and delay burden and may negate the gains expected from

using specialized logic in the first place. My research focuses on addressing this

challenge.

Our group is designing and implementing a coprocessor-based research pro-

totype, GreenDroid [1]. GreenDroid is a tiled multicore processor where each tile

includes a general purpose processing core, L1 caches, and a set of coprocessors

called conservation cores , or c-cores [2]. The GreenDroid toolchain can automat-

ically generate c-cores based on the anticipated workload. The current prototype

targets mobile phone applications, using the Android codebase as the source for

c-core generation.

This thesis presents several contributions to the GreenDroid design. First,

it details Submarine, a system for migrating execution between tiles to exploit

arbitrary sets of c-cores with low overhead. Migration includes two key pieces:

(1) the dispatch, where the current tile sends its program counter and register file

state to a remote tile and (2) data transfer, where the state of data in the task’s

address space becomes visible to the remote tile. Submarine handles the first piece

3

using message passing over GreenDroid’s on-chip network. The second piece, data

transfer, occures implicitly through a cache-coherent shared memory system that

I designed for GreenDroid.

Next, the thesis evaluates a set of optimizations for mitigating Submarine’s

migration overhead. The optimizations center around power-gating memory sub-

system components as execution migrates. These optimizations are only effective

if the frequency of migration is sufficiently low. However, my analysis of migration

overhead indicates that using specialized hardware for key migration mechanisms

can further reduce overhead and increase the threshold of migration frequency for

which power gating optimizations can provide net savings. The results show that

for single-threaded irregular workloads, migration between c-cores spread across a

four-tile configuration can provide power savings from 4.8× to 6.2× compared to

an all software approach on a single tile. When compared against an ideal case

where all c-cores fit on a single tile, the energy overhead of migrating amongst tiles

ranges from 2.6% to 24.1%.

To support this study, I made significant modifications to the cycle accu-

rate Raw simulator, beetle (btl) [3]. Raw is a tiled multicore processor that is

the basis for the general purpose elements of GreenDroid. However, Raw does not

provide cache coherence, which is a central mechanism for migrating data along

with execution contexts. The new cache-coherent simulator is called btl-cc. I

also implemented a body of new software infrastructure for evaluating migration

and shared memory systems on btl-cc, including migration and synchronization

primitives, thread-safe standard libraries, and a set of coherence-friendly memory

instructions. Moreover, while the focus of this research was for migration of ir-

regular applications on GreenDroid and similar architectures, I also evaluated the

coherence system for data parallel shared memory applications using the SPLASH2

benchmark suite [4].

The remainder of this document is organized as follows. Chapter 2 estab-

lishes the architectural model under study and describes the migration system.

Chapter 3 details the cache coherence system and evaluates the protocol on the

SPLASH2 workload. Chapter 4, specifies the power-gating policies in the memory

4

subsystem during migration. Chapter 5 reports and analyzes migration results.

Chapter 6 gives an overview of related work, and Chapter 7 concludes. Finally, for

those interested in implementation details, Appendix A discusses btl-cc and other

toolchain upgrades that support cache-coherent shared memory in the evolved Raw

system.

Chapter 2

Migrating Contexts to

Coprocessors

The efficacy of specialized logic for increasingly diverse workloads depends

on the ability to migrate processes efficiently across tiles to exploit various sets

of coprocessors. The problem is fundamentally one of a cross-tile context switch.

Logically, there are two parts to this context switch: (1) the transfer of register

state and program counter, or the dispatch and (2) the transfer of data. In this

chapter I present this migration system. First, I overview the migration system

and the chip architecture, GreenDroid, that I used as a case study for my research.

Then I discuss the two parts of context migration and their implementation details

for GreenDroid. Finally, I specify the prototype Submarine primitives for providing

task migration for GreenDroid.

2.1 System Overview

Each GreenDroid tile includes a host processor, L1 data and instruction

caches, c-cores, and an interface to the on chip networks. Figure 2.1 shows how

GreenDroid replicates these tiles in a grid. The architectural resources on the

grid communicate over a set of dynamic on chip networks: the General-purpose

Dynamic Network (GDN) and the Memory Dynamic Network (MDN). These net-

works are fast – words hop between neighboring tiles in one cycle. They are also

5

6

latency insensitive – that is, tiles “fire and forget” packets onto the network, and

dynamic routers use packet header bits to get the payload to the correct desti-

nation. Both user- and system-level entities have access to these networks. The

memory system, for example, sends cache miss requests over the MDN. Mean-

while, user-level programs are free to send DMA or I/O messages over the MDN

as well. On the edge of the chip, directories sit between the MDN and the DRAMs,

serializing all shared memory requests that map to their respective DRAMs.

Dir
DRAM

Dir
DRAM

Dir
DRAM

Dir
DRAM

C-Cores

Figure 2.1: A Floorplan for GreenDroid with Directory Coherence In

the cache-coherent GreenDroid prototype, directories sit between the MDN and

DRAMs. Each tile includes a host CPU, L1 data and instruction caches, and a

set of c-cores. The set of c-cores on each tile may be different, necessitating a

mechanism for migrating execution between tiles.

The set of c-cores on each tile is not identical. GreenDroid targets mobile

7

application workloads – that is, it is meant to be the central processor for smart

phones. The toolchain takes the Android codebase and automatically designs a

set of c-cores that can cover 95% of execution of an example workload with about

7 mm2 of chip area [1]. The motivation for c-cores is energy savings: a typical

mobile application processor in a 45 nm process running at 1.5 GHz consumes

91 pJ/instr, while a GreenDroid c-core would consume just 8 pJ/instr. Accounting for

code not covered by any c-core in the system, this would translate to about 12 pJ/s

– about a 7.5× improvement.

The c-cores and host processor share the L1 caches on the tile. At most

one processor per tile is active: when execution reaches a c-core covered region, a

c-core becomes active, and when execution returns to a software-covered region,

the general purpose host processor takes over. It is the job of the toolchain to

make c-cores out of the hot code, or code that consumes a large portion of the

workload’s executed instructions.

A task running on a GreenDroid tile may reach a region of code that maps

well to a c-core on some remote tile. In this case, the task can migrate to the

remote tile to exploit the c-core. The task need not migrate, however. Instead,

it could execute locally in software on the host processor. Therefore, the system

should be able to weigh the cost of migration against the potential gains from c-core

execution. The cost of migration is largely dependent on the dispatch latency and

the data transfer overhead. These factors affect energy and delay on the critical

path of execution, but also affect energy consumption on the on-chip networks and

in the memory system. Moreover, during migration, it may be desirable to power-

gate subsystems on-chip for additional energy savings. These policies introduce

additional overhead costs. The following sections describe the dispatch and data

transfer pieces in greater detail.

8

2.2 Migration Dispatch and Migrating the Reg-

ister File State

The toolchain annotates program code with region-to-tile mapping infor-

mation. When execution encounters a new region that requires a migration, the

host processor begins migrating the context. The first part of the context is the

register file state and PC, which in this system is called the dispatch address.

Thus, the host processor sends a 27-word migration packet to the destination tile

that includes the dispatch address and register file state, omitting some unneces-

sary registers. Migration packets travel over the GDN. On the receive side, the

destination tile copies in the register state and jumps to the dispatch address.

Table 2.1 provides the details of the migration packet. The migration packet

does not include the tile-specific network registers, so migration calls should make

sure to synchronize with respect to incoming or outgoing packets; that is, a mi-

gration should not occur when an incoming packet is on its way to the current

tile or an outgoing packet is not completely sent from the current tile. Because

memory instructions block on misses, the hardware already takes care of synchro-

nization around memory-system packets. However, the user is responsible for such

synchronization around user-generated packets. Also, the packet does not include

the global pointer because in the prototype we only test one process at a time. In

future systems, however, the packet may include the global pointer.

The link register is an interesting case. Because of the design of the mi-

gration dispatch, the packet does not include the link register. Consider the code

snippet in Listing 2.1, which shows the send of the migration packet to the new

tile. After sending the migration packet, the sender will jump into the runtime,

to migrate log exit and wait for dispatch. Notice that the last word of the

migration packet is the address at label 0, which the receiving tile will interpret

as the dispatch address, jumping to label 0. The code at label 0 is actually the

return code from the migration runtime function. Therefore, the new tile will put

the correct return address from the call stack into the link register ($31) and then

jump to this address. Therefore, there is no need to transfer the link register value

9

Table 2.1: The Migration Packet The migration packet includes a subset

of the register file. Word 0 is the packet header. The Raw specification [5] has

a full register file specification for the Raw system, which closely resembles the

specification for the register file of the GreenDroid prototype.

Location in Packet Registers Use

0 – GDN Header
1 $1 Reserved for assembler ($at)
2..3 $2..$3 Expression evaluation and return values
4..7 $4..$7 Procedure arguments
8..15 $8..$15 Temporaries
16..23 $16..$23 Callee saved registers
24 $29 The stack pointer
25 $30 A callee saved register
26 – Dispatch address

to the new tile.

Note that there is still some unnecessary state included in the migration

packet – e.g. the callee saved registers. These remain in the packet conservatively

to be robust against changes to the ways that the toolchain inserts migration

primitive calls.

By default, the c-core holds its state after a migration. This is important

for nested c-core calls. When execution returns to a c-core, it can begin executing

without any need to restore state. However, if a separate call requires the c-core,

the state will be overwritten. Therefore, on migration, if the c-core state is still

live, the runtime sets a full-bit . When another call needs the c-core, if the full-bit is

set, it saves the state through a call into the runtime. In this sense, c-core state is

considered callee-saved – but conditionally based on the full-bit. When execution

returns to a c-core, it can restore state through the runtime. The toolchain c-core

compiler limits the amount of state that can be claimed callee-saved. In this thesis,

I assume that this limit is less than the size of a migration packet. This allows me

to model c-core state migration in the same way as a register-file state migration.

Another interesting case is the setjmp/longjmp functionality in the POSIX

10

Listing 2.1: Migrate Push Example A snippet from the migration runtime

system. In this case, $3 happens to hold the packet header. The tile sends the

migration packet over the GDN. The $cgno register is the output port to the GDN.

As noted, the listing omits a chunk of code that moves registers 1-23 to $cgno.

m i g r a t e t o t i l e :

move $cgno , $3

code ommitted (move $1 . . $23 to $cgno)

move $cgno , $sp

move $cgno , $30

move $4 , $16

move $5 , $17

j a l i n i t f o r n e w t i l e

la $8 , 0 f

move $cgno , $8

move $4 , $18

j mig r a t e l o g e x i t a nd wa i t f o r d i s p a t c h

0 :

lw $31 , 3 6 ($sp)

lw $18 , 3 2 ($sp)

lw $17 , 2 8 ($sp)

lw $16 , 2 4 ($sp)

#nop

addu $sp , $sp ,40

j $31

standard. On a call to setjmp, the C library saves program state, including the

position in the call stack. On a subsequent longjmp call, execution returns to

the state saved by setjmp. This is problematic for migration, because longjmp

may cause the execution to leave the current region before reaching a migration

primitive call into the runtime. Submarine solves this as follows. On a setjmp

call, the runtime system saves the tile stack state in the same way that it saves the

call stack state. On a longjmp call, the runtime restores the tile stack state and

execution migrates to the tile where the setjmp call occurred. This functionality

is useful for POSIX programming.

11

2.3 Migrating Data

The data transfer piece is more challenging. When execution leaves a tile,

data in the L1 cache may be dirty. For regularly-structured applications, like

streaming signal processing, it may be possible to use compiler analysis to insert

data transfer functions that explicitly move data between tiles upon encountering

a migration. However, for irregular applications, this is not practical. A naive

solution would explicitly send all dirty data from the current tile to the next tile

just before migration. However, this could negate any potential cache expansion

benefits from migration, because the next tile is unlikely to need all of the dirty

data in the current tile’s cache. Instead, I designed a cache coherence system

for GreenDroid so that data can move on demand through the shared memory

hierarchy. Level 1 directories sit at the DRAM ports and implement a MESI

protocol [6]. Chapter 3 discusses the cache coherence system in greater detail.

2.4 Migration Runtime Primitives

Currently, Submarine is designed for single-program execution, where a

single task migrates throughout the chip. This allows me to isolate the overhead

factors of migration for a single workload. A task can access the system through

a set of primitives, which I overview in this section.

Regions can map to software execution on the host or to specialized exe-

cution on a particular c-core. At run time, when encountering the beginning of

a new region, the system checks first to see if the region requires a c-core, and if

so, whether it is available on the local tile. If the c-core is not available locally,

the system migrates execution to the appropriate tile. At the end of a region, the

system migrates execution back to the return tile. To track the migration direc-

tions, Submarine stores a migration stack of return tiles, in a similar manner to

the way that the call stack tracks return addresses. Thus, the migration primitive

at the beginning of a region is migrate push(tile) and the primitive at the end is

migrate pop().

On a migrate push, the current tile pushes its coordinates onto the tile

12

stack, sends a migration packet to the next tile, and then calls into the runtime.

The runtime logs the exit and jumps to wait code that waits for the next dispatch

from the GDN. In the prototype system, the runtime may power-gate certain

subsystems on exit, depending on what policies are enabled – this is discussed in

greater detail in Chapter 4. On a migrate pop, the current tile pops the next

tile’s coordinates from the migration stack and sends over a migration packet in

the same way as in migrate push.

Future work could extend the Submarine design to support multiprogram-

ming. The major necessary modifications would be the following. Firstly, the tile

stack would be program-specific; therefore, Submarine would store a tile stack for

each program. Also, there could be multiple incoming dispatch packets at a tile.

To prevent GDN deadlock, dispatch packets would need to cause interrupts, and

the associated interrupt handlers would enqueue the dispatch requests in some

Submarine-managed work queue that the tile would service in order. Finally, the

current program launch system assumes a k-tile configuration rooted at tile 0,

with the other available tiles arranged contiguously from tile 1 to tile k − 1 in the

mesh. However, programs in multiprogrammed workloads would require arbitrary

launch locations, which would require some minor modifications to the Submarine

initialization code.

Chapter 3

The Cache Coherence System

As processes migrate across the chip, the cache coherence system migrates

data on demand through the shared memory hierarchy. There are a number of

elements at play in a coherence system. The protocol defines the allowed cacheline

states and the message transactions that can change the state of a cacheline and

move data through the hierarchy.

The architectural implementation is quasi-independent from the protocol.

Typically, for small numbers of caches, implementations are bus based – the caches

snoop the bus to avoid illegal states. This approach does not scale well, however,

because as the number of caches increases, it becomes impractical to broadcast

every transaction over a single bus. Instead, scalable manycore architectures typ-

ically employ point-to-point interconnects for memory traffic. Indeed, Raw and

GreenDroid use their MDN for this purpose. Still, the system needs to serialize

the MDN transactions to maintain coherence. A common architectural approach

is the directory . Directories track the states of memory blocks across the chip,

receive requests from caches, and implement the protocol accordingly.

Moreover, implementing coherence protocols over an on chip network cre-

ates the challenge of deadlock avoidance. There are a number of common ap-

proaches to this problem, all of which have tradeoffs in delay and on chip area and

energy consumption. Typically, if there are seperate physical or virtual networks

for requests and replies, deadlock avoidance becomes an easier problem. However,

this option is costly from an energy perspective, and thus it is undesirable un-

13

14

der the constraints for GreenDroid. Instead, I choose to use a single network for

all coherence traffic and ensure deadlock avoidance by guaranteeing that for any

message sent, there will be sufficient buffering space on the receiver to sink the

message, freeing the network.

In this chapter I discuss the design decisions for the prototype cache co-

herence system for GreenDroid. First, I detail the coherence protocol. Next, I

describe the directory design. Finally, I explain the deadlock avoidance approach.

3.1 The Submarine Coherence Protocol

This section details the Submarine cache coherence protocol for the Green-

Droid prototype. The target workload for this research is irregular applications.

The approach was to reduce single-threaded coherence overhead while retaining

correctness and reasonable performance scalability for multi-threaded workloads.

As a result, the chosen protocol is based on the conventional MESI protocol. In

some cases there are opportunities for optimization of the implementation when

many caches share the same block of data – however, the design decision was to

avoid these in favor of simplicity.

3.1.1 Protocol Overview

At the cache, each line includes the normal dirty and valid bits along with

a new bit for coherence: the readonly bit. These bits encode the coherence state of

the cacheline – one of the MESI states (Modified, Exclusive, Shared, or Invalid) –

as enumerated in Table 3.1. The valid and readonly bits are part of the tag array.

Therefore, during the tag stage of the pipeline, a memory instruction operating

on a particular block can determine whether the block is valid in the cache and

if so, whether the tile has write access to the appropriate line. If the instruction

misses or if there is insufficient write permission for a store instruction, the cache

controller starts the cache state machine, which sends a coherence request onto the

MDN.

Directories at the DRAM ports receive the coherence requests. Each direc-

15

Table 3.1: The Cacheline Coherence States Submarine implements a MESI

protocol using valid and readonly bits in the tag arrays and dirty bits in the status

arrays. Note that a line cannot be valid, dirty, and readonly, because rendering a

line dirty requires write access.

Valid Dirty Readonly Coherence State

0 * * Invalid
1 0 1 Shared
1 0 0 Exclusive
1 1 0 Modified
1 1 1 Not allowed

tory entry stores the state of a memory block. The state can be Owned, Shared,

Unowned, or Pending. The Pending state indicates that an incomplete request on

the block is still pending and that additional state regarding the block is located

in the Pending Request File (PRF). There is no Modified state in the directory,

because the directory does not know when an L1 cache modifies a line. Thus, it

assumes conservatively that any block marked as Owned in the directory entry

could be a Modified line in the owner cache.

3.1.2 Coherent Instruction Semantics and Protocol Details

The Raw ISA is MIPS-like. The GreenDroid prototype will have a similar

ISA. For this study, I modified the Raw ISA to have coherent semantics. The

coherence system supports the previous Raw instructions, with the exception of

tagsw, which causes issues because it allows the user to modify the tags – and

therefore the coherence state – arbitrarily. I added load-linked (ll) and store-

conditional (sc) for synchronization, similar to the primitives of the same names

in the MIPS R4000 architecture [7]. The coherence system considers the Raw

cache administrative instructions – i.e. instructions for flushing and invalidating

cachelines – to have global semantics by default; that is, the coherence system

applies them to all caches. I provide more details about these ISA changes in

Appendix A.

16

For reasoning about coherence, it is helpful to group the memory instruc-

tions into three families:

1. Sh - instructions which require the shared state

2. Ex - instructions which require the exclusive state

3. Flinv - global and non-global invalidations, flushes, and flush-invalidations

With the exception of load-linked, all loads require the shared state. Load-

linked goes straight to an exclusive state, because it is assumed that a store-

conditional to the same address will follow shortly. Load-linked and all stores

require the exclusive state.

Figure 3.1 is the protocol diagram for Sh instructions, that is, instructions

which require the shared state. Coherent loads require that no cache client in the

system has write access to the block. The directory ensures this property. It then

either passes data along to the requesting client or sends a cacheline read request to

the DRAM on behalf of the requesting client. If the incoming request is on a block

that is unowned, the directory will grant exclusive access to the requester, based

on the heuristic that loads are typically followed by stores to the same address,

and forward the request to the DRAM on behalf of the requester. If the block is

owned, the directory sends a remote flush request to the owner, who downgrades

to shared access and responds with an acknowledgment with or without data. An

acknowledgment without data simply means that the data is already clean in the

owner’s cache. If the incoming request is on a block that already has a pending

state, the directory will NACK the request. Notice that if the block is in a shared

state, the directory unnecessarily sends a read to the DRAM instead of getting

the data from an on-chip sharer. The challenge of asking a sharer for the data

is that the line may be evicted before the remote request for data arrives. This

adds complexity to the protocol, but is not a major obstacle. Other protocols, like

MOESI, explicitly choose an owner of every block that is responsible for keeping

valid data on chip, even when it is clean.

17

check tag
and valid

load-sh

Local Client

hit
miss

done

send
SH_REQ
include
evict data
if needed

Directory

- handle evict
write back
- check state of
requested line
- set local client as
requester

unowned

shared

owned

send
ReadExReq or
ReadShReq if
shared to
dram

set state to
kDirPendingD
ataAck

send
RemoteFlushReq
to owner

set state to
kDirPendingSh,
add Local Client
to sharer vector

set state to
shared, add
requester as
sharer

DRAM Remote Client

send data to
Local Client

check tag
and valid

valid &
tag_match
& dirty

!valid or
!tag_match
or !dirty

send resp
no data

wait for
data

send ACK

send resp
with data

write back to
dram and
send to local
tile

done done

send
ReadExReq to
dram

set state to
kDirPendingD
ataAck

write data to
dram

Figure 3.1: Coherent Load Protocol Diagram The diagram shows the

protocol activity in response to a request for shared access. The directory ensures

that before granting this access, no other cache in the system has write access. If

the directory entry state is owned, the directory communicates with the remote

owner client to downgrade the write access to shared access.

Figure 3.2 is the protocol diagram for Ex instructions, or instructions which

require exclusive access. Stores and exclusive loads (e.g. load-linked) require that

no other cache client has a valid copy of the block. If the requesting client already

has shared access, it will send an upgrade request to the directory. If it does not

have a valid copy of the line, it will send an exclusive request. The directory

handles both of these requests similarly. If the block is not owned anywhere in the

system, the directory forwards the request to the DRAM. If the block is owned, the

18

directory sends a remote flush-invalidate request to the owner. This transaction

is similar to the remote flush, except that the remote client must invalidate the

line. If the incoming request is on a block that already has a pending state, the

directory will NACK the request. Notice that if the block is in a shared state, the

directory invalidates all of the sharers, losing the ability to get the data from on

chip and requiring a costly DRAM request. This is a similar issue to that of the

unnecessary DRAM read for shared requests on blocks already in the shared state.

Similarly, a potential solution would be a MOESI-based protocol.

Finally, Figure 3.3 is the protocol diagram for the Flinv family of memory

instructions. As previously mentioned, Flinv instructions have global semantics

by default. That is, when a single tile issues the instruction, the coherence system

applies the request to all caches. Therefore, even if the block is invalid in the local

client cache, the request must go to the directory in order to determine if any

other caches have the block. Submarine also supports local versions of the Flinv

instructions, which are not shown in this diagram. There is no local invalidate

currently, but the protocol could support it if necessary. Also, Figure 3.3 does

not show the protocol for handling these requests when there is already a pending

request on the line. The race conditions of pending requests relative to Flinv

instructions present some complexity to the system. As it is currently designed,

the directory cannot NACK requests with data. Removing this requirement could

simplify these issues at the directory, but might also add complexity at the cache.

19

check tag,
valid, access

store, loadex

Local Client

valid &
tag match &
access

valid &
tag match
& !access

done

Directory DRAM Remote Client(s)

!valid or
no tag
match

send
UP_REQ

send
EX_REQ,
include
evict data if
needed

- handle evict write back
- check state of
requested line
- set local client as
requester

unowned
shared

owned

- send ReadExReq to
dram
- set dir state to
kDirPendingDataAck

send Remote
INV_REQ to all
sharers

set dir state to
kDirPendingEx

send data
to local
client

- send Remote
FLINV_REQ to
owner
- set dir state to
kDirPendingEx

check tag
and valid

send resp
no data

send resp
with data collect response(s)

no data data
received

write back to
dram and send to
local client

send ReadExReq to
dram on behalf of
local client wait for

data

send ACK

done
set state to owned,
set client as owner

done

write
data to
dram

!valid or
!tag_match
or !dirty

valid &
tag_match
& dirty

Figure 3.2: Coherent Store/LoadEx Protocol Diagram The diagram

shows the protocol activity in response to a request for exclusive access, either

through an upgrade request or exclusive request. Before granting exclusive access,

the directory ensures that no other valid copies of the block are in any cache in

the system. It establishes this state by sending remote requests to remote clients

as pictured.

20

check valid
and status

ainv, afl, or aflinv

Local Client Directory DRAM Remote Client(s)

!valid or
!dirty

send request
with data

send request
without data

valid &
dirty

with
data?

write to dram
and send ack
to local client

write
data
to
dram

wait for
ack

1 check
directory
state of line

0

unowned shared

send ack to
local client

inv?
0

send remote
INV_REQ to
sharers

1

send remote
request to
owner

owned

(OWNER)
send data if it’s valid
and dirty. otherwise,
send resp without
data.

- wait for data or ack
from owner. if data
comes, write back to
dram and mark
state as shared.
- send ack to local
tile.

(SHARER)
invalidate line if
in cache
send inv_resp collect ACKs from

sharers and
decrement sharer
counter

when done, mark
as unowned and
send ack to local
tile.

done

Figure 3.3: Coherent Invalidate/Flush/Flush-Invalidate Protocol Dia-

gram The diagram shows the protocol activity in response to an invalidation,

flush, or flush-invalidation. The local client blocks waiting for acknowledgment

that the transaction is complete. The directory sends the acknowledgment once it

has applied the request globally across the chip. For example, to service a flush

request, if some remote client has a dirty copy of the line, the directory sends a

remote request to the remote client to flush the line. Once the remote flush is

complete, the directory acknowledges the requester.

3.2 The Directory

The directories manage coherence for a given migration group of tiles. Di-

rectories are challenging to design scalably in both area and energy. Duplicate-tags

21

directories have associativity that scales linearly in the number of tiles, while com-

mon alternatives like vector- or pointer-based sparse directories require large area

to prevent directory entry evictions. While there have been a number of pro-

posed novel approaches to directory design for scalable manycore architectures [8],

I choose to mitigate scalability problems by assuming that in the common case,

an application will use a small set of k tiles. The toolchain determines this set

of tiles at design time. The directory then allocates k directory entry ways to

support coherence across k tiles. For each tile, the directory duplicates its tags in

a directory way. Alongside each tag is the directory entry, which records the state.

At run time, if more tiles are needed, a second level of directories or a multiplexed

alternative general-purpose directory can provide correctness. This falls in line

with the c-core paradigm: an energy-efficient design for the common case and a

less efficient but general design as a catch-all.

Figure 3.4 shows the directory design for a k-tile migration group. During

a pending request, the directory needs to hold extra state information while mes-

sages are in flight across the chip. Thus, each directory module includes a small

PRF, indexed by client ID and also content addressable by memory address. The

directory also includes an MDN Arbitrator that arbitrates between the directory

and DRAM for memory access. Not pictured are the FIFOs between modules.

Some of the FIFOs are employed for performance reasons, while others are used

as sinks to prevent deadlock. The next section discusses the FIFO requirements

in greater detail.

3.3 Deadlock Avoidance

Consider a network model where we reason about clients as having two

autonomous modules: the network interface, which sends and receives words onto

and from the network, and the controller, which processes those words. The key

component to deadlock avoidance on the MDN is the guarantee that the receive-

side network interface can always sink messages, even if the receive-side controller is

stalled. For arbitrary network protocols, of course, this would be quite challenging,

22

Duplicate Tags

Way 0
tag

index

0
..
.

511
0
..
.

511

d-cache

i-cache

set 0 set 1

Way k-1
set 0 set 1

. . .

Controller

Pending
Request File

MDN
Arb

MDN

DRAM

Figure 3.4: A Directory for a k-Tile Migration Group The directory

manages coherence for a fixed number of tiles. The design partitions the storage

into per-tile ways.

but the memory system model adds sufficient structure to the messaging traffic

over the MDN such that proving upper bounds for buffering is possible. This

section establishes these bounds for the three types of MDN client: the directory,

the data cache (d-cache), and the instruction cache (i-cache).

3.3.1 Buffering at the directory

The directory will never block an incoming network word as long as there

is always enough buffering space to sink it. Thus, it is necessary to calculate the

minimal storage size Sdir, measured in words, that will satisfy the property that at

any time there will be no more than Sdir words destined for the directory on the

network.

To calculate this upper bound, we make the requirement that before initi-

ating a request on the MDN, a cache must guarantee that enough buffering exists

23

at the directory to sink all traffic related to the request. Because of the structure

of the coherence protocol, we can pre-allocate this buffering. Let BD and BI be

the necessary buffering allocation for outstanding d-cache and i-cache requests,

respectively.

Moreover, each cache has a fixed upper bound on the number of outstanding

memory requests that it can make. Let this bound be R. For example, Raw does

not allow the cache to have more than one memory request in flight, and thus for

Raw, R = 1.

If there are d d-caches and i i-caches in the system, we can then bound S

as follows:

Sdir ≤ dRBD + iRBI (3.1)

There are three phases in the fulfillment of a memory request from a re-

questing cache, referred to as the local cache:

1. Request Phase - The cache sends the request to the directory. At this point

the directory may NACK the request, which would logically end the request.

2. Remote Phase - If necessary, the directory uses messaging with other clients

in the system to establish a state that meets the coherence requirements for

granting the request. These messages will lead to responses from remote

clients back to the directory. For example, the directory may need to need

to multicast an invalidation to a number of clients, and those clients would

then send responses to indicate that the invalidation has taken place.

3. Ack Phase - The directory sends a response to the local cache, which may

require that the local cache send an acknowledgment back to the directory.

Let b(d)
p and b(i)

p be the storage required at the directory for phase p of d-

cache and i-cache requests, respectively. Since a request is always in exactly one

of those three phases, we then have the following:

BD =
3

max
p=1

b(d)
p (3.2)

BI =
3

max
p=1

b(i)
p (3.3)

24

Table 3.2: Coherence Packet Formats The largest in flight messages are the

packet pairs that result from data cache misses with evicts: the cache piggy backs

an eviction packet behind the miss request packet, which can be either a shared

or exclusive request. Note that the table omits flush and flush-invalidate formats

when they do not include data – these are the same formats as their “with data”

counterparts, less the 8 data words.

Phase Operation Packet Format Size

Request Sh Hdr, Addr 2
Up Hdr, SubHdr, Addr 3
Ex Hdr, Addr 2
Sh+Evict Sh packet; Hdr, Addr, Data 12
Ex+Evict Ex packet; Hdr, Addr, Data 12
Inv Hdr, SubHdr, Addr 3
Fl, FlInv Hdr, SubHdr, Addr, Data 11

Remote FlResp, FlinvResp Hdr, SubHdr, Data 10
InvResp Hdr, SubHdr 2

Ack DataAck Hdr, SubHdr 2

Table 3.2 lists the packet formats in each of the phases. For d-caches, the

largest sized request is one that includes a miss and an eviction – for example, a

shared request with eviction or an exclusive request with eviction. Such as message

includes a header and address for the miss request, another header and address for

the eviction, and then a cacheline of data. Thus, b
(d)
1 = 12. Since i-caches do not

evict data, their max request size is smaller. An invalidation note is the largest

such message, including a header, subheader, and address, and so b
(i)
1 = 3.

In the Remote Phase, an exclusive request can cause the directory to invali-

date some number of lines at remote sharer clients. In the current implementation,

the directory multicasts to all sharers. Since invalidation responses have length 2,

if there are k sharers, the directory would need to allocate 2k words of buffering.

We can reduce this requirement by sending smaller groups of multicasts. In prac-

tice, the number of sharers on a given memory block is typically small. The focus

of this study is small migration groups of four tiles or less, and so for the purposes

25

Table 3.3: Max Words in Flight Per Outstanding Cache Request At any

time, the fulfillment of a cache request is in one of three phases. This table lists

the max words in flight destined for the directory for each phase and then shows

the max over all phases. The numbers are different between d-cache and i-cache

requests because i-caches never evict.

Phase D-Cache I-Cache

Request 12 3
Remote 10 10
Ack 2 2

Max 12 10

of this analysis we assume that the remote phase will be limited by FlResp and

FlinvResp packets, not InvResp packets. Therefore, b
(d)
2 = 10. In any case, a

general-purpose implementation of this system would likely limit multicast groups

to a small number of tiles.

Since i-caches never require exclusive access, their requests never require

that a remote cache invalidate a line. The only type of remote response possible as

part of satisfying an i-cache request is a flush response, which includes a header,

subheader, and cacheline. Therefore, b
(i)
2 = 10, whether or not the directory sup-

ports smaller invalidation multicasts.

Finally, in the Ack Phase, the only type of message that is sent to the

directory is an acknowledgment, which includes a header and subheader. Thus,

b
(d)
3 = 2 and b

(i)
3 = 2.

Table 3.3 summarizes these calculations. From Equations 3.2 and 3.3, we

have

BD = 12 (3.4)

and

BI = 10 (3.5)

Finally, this allows us to calculate the upper bound S from Equation 3.1.

An n-tile GreenDroid or Raw system has one d-cache and one i-cache per tile. For

26

this study we assume that the GreenDroid design will limit tiles to one outstanding

request per cache – i.e. R = 1, as is the case with Raw. Therefore we have:

Sdir ≤ 22n (3.6)

To see that this is a tight bound, consider the following example. Assume

each d-cache request is in the Request Phase, and is a miss with an eviction. This

creates 12n words in flight destined for the directory. Meanwhile, each i-cache

request is a miss on a block that is exclusive in another cache. In the Remote

Phase of these requests, the directory will be waiting on flush responses, creating

10n words in flight. This gives us 22n words in flight. For a directory supporting

a 4-tile migration group, this translates to 88 words or 352 bytes of buffering. A

general purpose directory supporting a full 4-by-4 mesh of GreenDroid tiles would

require 352 words or 1408 bytes of buffering. For reference, a tag RAM for a

GreenDroid data cache is 2560 bytes.

This sink buffering at the directory is implemented with the CMNI FIFO.

The CMNx terminology is a relic of the Raw network interface register naming

conventions. Thus, the outgoing FIFO is called the CMNO FIFO.

The directory also requires a CMNO FIFO for outgoing packets onto the

MDN. The CMNO FIFO must have enough storage to hold the maximum size

packet, because the MDN will not begin sending a CMNO packet until it is com-

pletely ready. This is to prevent deadlock between the directory, DRAM, and

MDN.

3.3.2 Buffering at the caches

The tile multiplexes MDN input to three different buffers: the UMNI FIFO,

the DMNI FIFO, and the IMNI FIFO. The UMNI buffering requirements are

defined by the legacy user-level use of the MDN, which is not relevant to this study.

The DMNI and IMNI buffering requirements are upper bounded by the maximum

size of a response and the maximal allocation of in flight remote requests.

A response to a cache is either an acknowledgment – 2 or 3 words – or a

cacheline response with a header and 8 words of data. At the same time, the cache

27

must be able to sink any incoming remote request. There can be at most one

incoming remote request for each outstanding request on chip. Since we assume

R = 1, there can be at most 2n incoming remote requests: n on behalf of data

caches and n on behalf of instruction caches. Each remote request is a header,

subheader, and address. Therefore, the necessary buffering at the caches is given

by:

SDMNI = SIMNI = 9 + 6n (3.7)

The buffering requirements at the caches and directory grow with the num-

ber of tiles in the system. However, the directory storage will dominate, assuming

the duplicate-tags model. As the number of tiles grows large, we will have to design

more clever protocol and storage methods for reducing RAM requirements for the

general-purpose directories.

3.4 Evaluation of the Coherence System for Par-

allel Workloads

While the focus of this thesis is on migration of irregular, sequential pro-

grams, cache coherence designs typically optimize for parallel performance. My

intention is for this protocol to be lightweight for sequential execution and pro-

vide reasonably efficient and correct execution of parallel workloads. This section

presents an evaluation of the cache coherence system that btl-cc models in order

to show that the system has low overhead for sequential programs and scales well

for parallel programs.

3.4.1 Single-Tile Performance Overhead

Table 3.4 lists the overheads measured for two workloads: data parallel

SPLASH2 benchmarks [4] and irregular benchmarks from SPEC2000 [9], EEMBC [10],

and libjpeg [11]. The results indicate that on average, the coherence system adds

low overhead: 1.4% for the SPLASH2 benchmarks and 3.3% for the irregular

benchmarks. The highest observed overhead is 8.2%.

28

Table 3.4: Single-Tile Runtime Overhead of Cache Coherence The

results below show the performance overhead of running a single-tile with cache

coherence on btl-cc (With CC) vs without cache coherence on btl (No CC). The

overhead for these single-tile runs is at most 8.2% and on average is low – 1.4%

for the SPLASH2 workload and 3.3% for the irregular workload.

Category Benchmark No CC With CC Overhead
(cycles) (cycles) (%)

SPLASH2

radix 25.1M 26.0M 3.3
cholesky 1.33B 1.36B 1.8
barnes 291M 295M 1.6
fft 74.9M 76.3M 1.8
water-spatial 2.50B 2.51B 0.0
water-nsquared 1.30B 1.30B 0.1
Mean 921M 927M 1.4

Irregular

bzip2 1.75B 1.89B 8.2
cjpeg 1.98B 2.00B 1.0
gzip 2.36B 2.43B 2.8
mcf 586M 621M 6.0
djpeg 701M 714M 1.9
viterbi 818M 818M 0.0
Mean 1.37B 1.41B 3.3

29

The outliers on the high end are bzip2 and mcf, which also have much higher

data cache stalls as a proportion of run time on the non-coherent system than do

the other irregular benchmarks. Chapter 5 takes a closer look at the irregular

benchmarks.

3.4.2 Parallel Performance

Figure 3.5 presents scalability results for the SPLASH2 benchmarks running

on btl-cc. As a point of comparison, I also examined the MIT Alewife Machine [12]

and the Stanford DASH [13]. These architectures were early prototype distributed

shared memory multi-processors with directory-based coherence systems.

The published evaluations of these processors provide scaling results for

the original SPLASH benchmarks, allowing for some points of comparison with

my SPLASH2 results. The SPLASH2 water-nsquared benchmark is similar to the

original SPLASH water benchmark. Therefore, it is possible to plot the Alewife and

DASH scalability numbers for the water benchmark alongside the water-nsquared

scaling on btl-cc. The Alewife results included an fft kernel, and though not the

SPLASH2 fft, I use it as an approximation of expected scaling as well.

The water-nsquared results are quite similar for all three architectures,

showing speedups around 7× for 8 processors. The remaining three benchmarks ex-

hibit reasonable scaling, although there are some concerns about the performance

beyond four processors. The general indication, though, is that the btl-cc coher-

ence system meets the requirement of reasonable efficiency for parallel workloads,

given that the current focus is irregular sequential applications.

30

(a) water−nsquared

Processors
1 2 4 8

S
pe

ed
up

1

2

3

4

5

6

7

8

Alewife DASH btl−cc

(b) water−spatial

Processors
1 2 4 8

S
pe

ed
up

1

2

3

4

5

6

7

8

(c) fft

Processors
1 2 4 8

S
pe

ed
up

1

2

3

4

5

6

7

8

(d) radix

Processors
1 2 4 8

S
pe

ed
up

1

2

3

4

5

6

7

8

Figure 3.5: Scaling SPLASH2 Benchmarks on btl-cc The plots show

scaling of parallel benchmarks on btl-cc. For water-nsquared, the plot includes data

points for Alewife and DASH from published results. The fft plot also includes

published results for Alewife.

Chapter 4

Memory System Napping

When a process leaves a tile, the host and coprocessors can move to a power-

gated state. However, the data cache will likely contain dirty data, thus preventing

the immediate power gating of the data, tag, and status RAMs. I consider three

policies for optimizing the data cache energy consumption, shown in Table 4.1

and called cache nap policies . In this chapter I describe the policies, specify the

algorithm that decides whether or not to nap after execution leaves the tile, and

discuss the overhead elements of napping.

4.1 The Cache Nap Policies

In awake caches , all cache components remain active. In drowsy caches , the

tile flushes the cache before napping so that it can put the data into a low leakage

mode [14], while the tags remain active so that the tile can service coherence

requests. Note that since all lines are clean, the tile can power-gate the status

array, as long as we can tolerate losing the Most Recently Used (MRU) bits. In

sleepy caches , the tile flush-invalidates the cache so that it can power-gate all cache

components. Moreover, since all cachelines are invalid, the directory no longer

needs to track this cache and can therefore power-gate the corresponding way in

its duplicate tag memory. In the other policies, this way must remain active.

31

32

Table 4.1: Cache Napping Policies In an awake cache, the cache is fully

active. In a drowsy cache, we flush all dirty lines, power-gate the status array,

and put the data array into a low leakage state, leaving the tag array active for

servicing coherence requests. In sleepy caches, we flush-invalidate, then power-gate

the data, tags, and status, and moreover, since the cache no longer has valid data,

we gate the directory way corresponding to the tile. In the table, P-Gated means

power-gated.

Policy Before Napping Data Tags Status Directory Way

Awake No nap Active Active Active Active
Drowsy Flush Low-leakage Active P-Gated Active
Sleepy Flush-Invalidate P-Gated P-Gated P-Gated P-Gated

4.2 The Nap Decision

Both migrate pop and migrate push have the same nap-related behavior

and more generally, are exit points . When a tile exits, the nap controller decides

whether or not to nap. If the subsequent idle time will be long enough to justify

the napping overhead, the nap controller should decide in the affirmative. Thus,

at an exit point the nap controller must make a prediction about idle time. To

this end, the nap controller stores a history of idle times at each exit point in the

program, indexed by a hash of the instruction address. If the history indicates

that the next idle time will surpass a given threshold, the nap controller sets a nap

signal. The current prototype models the nap controller as a hardware module on

each tile. Figure 4.1 provides a schematic of the idleness predictor , a component

of the nap controller that predicts the next amount of idle time.

4.3 Nap Overhead

In the critical path of a migrating execution, the process must dispatch to

the new tile and the new tile must wakeup and begin executing. These are the

dispatch and wakeup latencies, respectively. Once application instructions start

33

Exit Points Average
Time

0

31

.

.

.

Last ExitPC

Last ExitTime

Train

EnterTime

ExitTime

ExitPC
Predict Nap Decision

Figure 4.1: The Idleness Predictor When a tile exits – i.e. execution

migrates to another tile – the local nap controller predicts whether the tile will be

idle for long enough to merit napping.

executing on the new tile, the process is in the compute phase.

The compute latency for a migrating application may differ from that of

the same application executing on a single tile because of cache effects. On the one

hand, well designed migration can create cache expansion: if the migration points

correspond to changes in the working set, each subset of the overall working set

gets its own cache. On the other hand, if there are too many data conflicts between

the different migration phases, coherence latencies may create undesirable delay

overhead as the process migrates. For this reason, the reader will notice that in

Chapter 5, when analyzing migration results I distinguish between compute cycles

and cycles where the data cache is stalling the pipeline.

The dispatch latency is fairly fixed. Assuming that the GDN is free, the

message passing latency will be on the order of 30 cycles for the dispatch packet.

34

Sometimes the instruction cache will miss when calling the dispatch routine, but

this at worst pushes the dispatch latency to about 100 cycles.

Similarly, the wakeup latency is not dependent on application behavior.

Instead, wakeup depends on the nap policies for the processors and cache. Awake

caches do not require wakeup. For sleepy and drowsy caches, I assume a fixed 300

cycle wakeup time.

Of course, napping also creates more work outside of the critical path. This

does not contribute to overhead in delay, but instead to overhead in energy. After

dispatch, a tile must flush or flush-invalidate the cache before entering a drowsy- or

sleepy-cache state, respectively. This is the flinv phase, and it encapsulates either

of the two cache management routines.

In the next chapter, I evaluate the impact of these overhead components,

looking at both energy and delay.

Chapter 5

Migration Results

The value of exploiting c-cores for increasingly diverse workloads depends

on the ability to migrate processes efficiently across tiles to exploit various sets of

coprocessors. I have presented a system for migrating execution using the GDN for

copying the register file state and sending the dispatch and the coherence system

for transferring data. I have also detailed three cache nap policies for additional

energy saving during migration. In this chapter I evaluate these approaches and

provide insight about effective optimizations for future migration systems.

5.1 Methodology

I model GreenDroid using a modified version of btl, the Raw cycle-accurate

simulator. Raw [15] is a tiled processor from which GreenDroid derives a number of

its features, including the general purpose processing core and on chip networks.

While Raw does not have c-cores, c-core execution closely follows the original

control- and data-flow of the program, so c-core execution time and memory access

patterns are similar to running all in software on a Raw processor. We can adjust

btl results to resemble GreenDroid results with c-cores by applying an energy model

that distinguishes between execution on the host processor and on c-cores.

Table 5.1 details the power model parameters for a tile. I assume a 45

nm technology node and derive processor power model parameters from previous

research [1]. In simulation results assume a 1500 MHz processor clock and 667

35

36

Table 5.1: The Tile Power Model The tile power model comes from previ-

ous research [1] and queries to CACTI [16]. The table gives dynamic energy for

processors in pJ per cycle and for RAMs in pJ per access.

Structure Leakage Dynamic Energy
(mW) (pJ per unit)

Host Processor 1.25 91
C-Core Processor 1.25 8
D-Cache Data 0.221 6.85
D-Cache Tags 0.017 1.63
D-Cache Status 0.002 0.30
Directory Way 0.017 1.63

MHz DRAM clock. Power models for data caches and directory ways come from

CACTI [16], following the Raw data cache parameters (32 kB, 2-way, 1024-line)

along with the added readonly bit in the tag for coherence support. I assume that

each directory way will have the same properties as a data cache tag RAM.

In a drowsy cache, I assume a low leakage state that is 25% of normal leak-

age, based on previous research on drowsy caches [14]. For power-gated compo-

nents, I assume no leakage and ignore the leakage of the power-gate itself, because

I assume it will be small relative to other energy components.

Since Raw does not support cache coherence, I made some fundamental

changes to the Raw toolchain and simulator to run experiments for this thesis. The

modified simulator is called btl-cc (beetle with cache coherence). In Appendix A,

I detail the modifications to the Raw toolchain as a case study for evolving a

non-cache-coherent system into a cache-coherent system.

5.2 The Workloads

To isolate the energy and delay impacts of this migration system, I con-

sider a set of single-process workloads, listed in Table 5.2, that migrate within a

migration group of at most four tiles. The workloads come from SPEC 2000 [9],

EEMBC [10], bzip2, and libjpeg [11]. The libjpeg benchmarks – cjpeg and djpeg

37

Table 5.2: The Migration Workloads The GreenDroid toolchain annotates

each program with migration calls that predetermine the number of tiles in its

migration group. This table lists the number of migration tiles and the execution

time in the profiled phase of the workload running on a single tile configuration

with migration disabled. It also shows the average migration interval – the number

of cycles between exit points.

Workload Suite Migration Single-Tile Exec Avg Migration
Name Tiles Time (cycles) Interval (cycles)

bzip2 bzip2 4 1.9B 1.1M
cjpeg libjpeg 4 2.0B 290K
djpeg libjpeg 3 710M 112K
gzip SPEC 2000 3 2.4B 121M
mcf SPEC 2000 3 640M 78M
viterbi EEMBC 2 820M 136K

– are similar to the corresponding jpeg benchmarks in EEMBC. The bzip2 bench-

mark is actually not the SPEC 2000 version but is the real bzip2 code. Note that

since each benchmark requires at most 4 tiles, GreenDroid can fit each benchmark

within a single row of a 4-by-4 configuration with a directory and DRAM on the

east port of the row.

5.3 Energy

The motivation for GreenDroid is energy reduction. In this section I present

energy measurements for the migration workloads running on btl-cc. The energy

model accounts for both leakage and dynamic costs at the host processors, c-cores,

L1 caches, and directory.

Figure 5.1 paints a promising picture for GreenDroid energy efficiency. The

plot shows overall energy efficiency relative to an all-software solution running on a

single tile host processor. Energy measurements are based on the model specified

in Section 5.1, except that the plot varies the c-core efficiency – relative to the

host processor – along the x-axis. Benchmark runs have migration enabled and

38

explore the space of all three cache nap policies – the plot only shows the nap

policy with the best savings in each case, because the difference between best and

worse was generally too small to display clearly. I assume that for the sleepy

and drowsy policies, the flush and flush-invalidate routines will be implemented

in hardware with the same energy model as a c-core. Results from the Android

codebase indicate that c-core efficiency will be just over 11× for GreenDroid. At

this level, we see energy savings between about 4× and 6×. Table 5.3 provides the

energy savings figures at the expected GreenDroid c-core efficiency.

C−core Energy Efficiency
1x 6x 11x 16x 21x 26x 31x

O
ve

ra
ll

E
ne

rg
y

E
ffi

ci
en

cy

0x

2x

4x

6x

8x

10x

Expected efficiency
for GreenDroid c−cores

bzip2

cjpeg

djpeg

gzip

mcf

viterbi

Figure 5.1: Energy Savings from Migration The plot shows, for each

benchmark, the energy savings across the three cache nap policies relative to run-

ning on a single-tile host processor in software. Each data point gives the best

energy savings across the nap policies. The plot varies the c-core efficiency relative

to the host processor – otherwise the energy model is as specified in Section 5.1.

The expected c-core efficiency for GreenDroid is just over 11×.

39

Table 5.3: Measured Energy Savings for Migrating Irregular Workloads

The savings listed here are from the GreenDroid c-core efficiency point as marked

in Figure 5.1. For the sleepy policy, savings range from 4.8× to 6.2×, and there is

little variance across policies.

bench awake drowsy sleepy

bzip2 4.7× 4.7× 4.8×
cjpeg 6.1× 6.1× 6.2×
djpeg 5.6× 5.3× 5.1×
gzip 5.9× 6.0× 6.0×
mcf 4.8× 4.8× 4.9×
viterbi 6.0× 5.9× 5.9×

The thin bar ranges are small, indicating that the cache nap policy choice

has little impact. Also, we see similar savings across all six of the benchmarks.

The benchmarks with the poorest energy savings are bzip2, mcf, and djpeg. As it

turns out, these benchmarks demonstrate three different pathologies that increase

migration overhead in this system.

In the following analysis, I will break down the contributing factors to

migration overhead. Table 5.4 shows the complete list of energy components in

the analysis. I consider the static and dynamic components of memory system

energy separately for the directories and the L1 data caches. I also delineate

the energy in the flush/flush-invalidate hardware, combining static and dynamic

components. I then break down the host processor and c-core energy components

by phase: energy consumed during wakeup, data cache stall, and other compute

cycles. Each of these host/c-core components include both static and dynamic

energy.

5.3.1 Overhead Analysis

Figure 5.2 shows the energy breakdowns for the expected GreenDroid c-core

efficiency point. For each benchmark, the baseline case is the idealistic single-tile

with all necessary c-cores, so that there is no migration overhead, pictured as the

40

Table 5.4: Component Legend for Energy Measurement Results Energy

results in this chapter contain the the components listed here. Relevant plots use

the abbreviated component names in their legends.

Component Description

dirLeak directory leakage
L1Leak L1 data cache leakage
dirAccess dynamic energy from reads and writes to the directory
L1Access dynamic energy from reads and writes to the L1 cache
flinv energy in the flush/flush-invalidate controller
hostDcacheStall host proc leakage and dynamic energy during dcache stalls
ccoreDcacheStall ccore leakage and dynamic energy during dcache stalls
wakeup host proc energy during wakeup
hostCompute all other host leakage and dynamic energy
ccoreCompute all other ccore leakage and dynamic energy

left-most bar in each cluster. The other bars in the cluster represent configurations

that spread the c-cores across the migration group and employ one of the three

cache nap policies. The bar annotations show the overhead as a percentage of

the baseline energy. Again, in this plot I assume that the flush/flush-invalidate

routines run on hardware.

Notice first that in all cases, the compute components on the host and

ccore have constant contribution across all four bars in each cluster. This is an

intuitive invariance: the system is performing the same computation whether it

allows migration or not.

There are no clear conclusions from this plot about cache nap policy choice.

We would expect that the sleepy or drowsy policies would reduce overhead, and

they do for five of the size benchmarks. However, the reductions are small and for

djpeg, the drowsy and sleepy policies increase the overhead significantly.

41

E
ne

rg
y

(N
or

m
al

iz
ed

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

bz
ip

2−
m

on
ot

ile

bz
ip

2−
aw

ak
e

bz
ip

2−
dr

ow
sy

bz
ip

2−
sl

ee
py

cj
pe

g−
m

on
ot

ile

cj
pe

g−
aw

ak
e

cj
pe

g−
dr

ow
sy

cj
pe

g−
sl

ee
py

dj
pe

g−
m

on
ot

ile

dj
pe

g−
aw

ak
e

dj
pe

g−
dr

ow
sy

dj
pe

g−
sl

ee
py

gz
ip

−
m

on
ot

ile

gz
ip

−
aw

ak
e

gz
ip

−
dr

ow
sy

gz
ip

−
sl

ee
py

m
cf

−
m

on
ot

ile

m
cf

−
aw

ak
e

m
cf

−
dr

ow
sy

m
cf

−
sl

ee
py

vi
te

rb
i−

m
on

ot
ile

vi
te

rb
i−

aw
ak

e

vi
te

rb
i−

dr
ow

sy

vi
te

rb
i−

sl
ee

py

 10% 9.7%
 7.5%

 4.6% 4.7% 3.9%

 6.9%

 13%

 18%

 5.2% 3.9% 2.7%

 27% 25% 24%

 1.6% 3.0% 2.6%

hostCompute

ccoreCompute

hostDcacheStall

ccoreDcacheStall

L1Access

dirAccess

flinv

wakeup

L1Leak

dirLeak

Figure 5.2: Migration System Energy This plot shows the energy in

the migration system for each benchmark across the three cache policies. The

baseline is a single-tile system where all c-cores are available so that migration is

not necessary – the left-most bar in each cluster shows these data points. The

annotations at the top of the other bars gives the overhead percentage relative to

the baseline.

The previously mentioned poorly performing benchmarks – bzip2, djpeg,

and mcf – have the highest overheads for any cache nap policy. Notice, interest-

ingly, that while bzip and mcf have similar energy savings overall, the mcf overhead

for the GreenDroid c-core efficiency point is more than double the bzip overhead

for any of the cache nap policies. The reason for this is that on a single tile, mcf

spends a larger proportion of its energy in the host processors and c-cores than

bzip2. In other words, the compute cycles to L1 access ratio is higher for mcf, so

it stands to benefit more from the energy savings provided by c-cores, mitigating

42

its high overhead relative to bzip2. The same is true for djpeg – despite having

overheads between 6.9% and 18.2%, compared to 7.5% to 10.3% for bzip2, djpeg

achieves greater energy savings because it has a higher ratio of processor energy to

memory system energy. The other three “well behaved” benchmarks – cjpeg, gzip,

and viterbi, exhibit the same behavior, but the effect is less pronounced because

their overheads are relatively smaller.

That said, we would like to understand what some of the major contributing

factors are to migration overhead. To look more closely at the overhead break-

down, I subtract the baseline from each component, leaving just the overhead

residual. Figure 5.3 plots these residuals as a percentage of overhead for each

(benchmark, policy) pair.

For mcf, the energy consumed in the host processors and c-cores during

data cache stalls dominates the overhead. This is a result of a high cache miss rate

that has a magnified energy penalty during migration, because misses have to go

through costly coherence transactions. We know from Figure 5.2 that the sleepy

and drowsy nap policies mitigate the overhead for mcf by reducing L1 leakage

energy. Figure 5.3 shows that as this component decreases, the overhead from

waiting for data cache stalls becomes increasingly important.

The bzip2 benchmark exhibits somewhat different energy behavior. Like in

mcf, the sleepy and drowsy policies reduce the L1 leakage energy, but additionally,

the bzip2 run demonstrates energy savings in the directory under the sleepy policy.

The bzip2 benchmark migrates over four tiles, so under the other policies, the

directory must access all four directory ways when looking for an entry. However,

the sleepy policy is able to shut down up to three of the four ways. Again, as the

sleepy and drowsy policies mitigate overhead, the data cache stalls in the processors

become increasingly dominant in the overhead.

The djpeg benchmark is a largely different case. The overhead under the

awake policy is actually not that bad relative to the other benchmarks, just 6.9%.

Also, the sleepy and drowsy policies reduce the L1 leakage energy as expected.

However, the wakeup and flush/flush-invalidate routine wipes out the savings from

napping, and we see high overhead: 13.3% for the drowsy policy, which requires

43

flushing the cache, and 18.2% for the sleepy policy, which requires flush-invalidating

the cache.

Percent of Energy Overhead
0 20 40 60 80 100

bzip2−awake
bzip2−drowsy
bzip2−sleepy

cjpeg−awake
cjpeg−drowsy
cjpeg−sleepy

djpeg−awake
djpeg−drowsy
djpeg−sleepy

gzip−awake
gzip−drowsy
gzip−sleepy

mcf−awake
mcf−drowsy
mcf−sleepy

viterbi−awake
viterbi−drowsy
viterbi−sleepy

hostCompute

ccoreCompute

hostDcacheStall

ccoreDcacheStall

L1Access

dirAccess

flinv

wakeup

L1Leak

dirLeak

Figure 5.3: Migration System Energy Overhead Breakdown This plot

breaks down the migration energy overhead components to picture the key factors.

For each component data point, I subtract the baseline and plot the residuals as a

percentage of the total overhead.

The gzip results show a reduction from the cache nap policies, going from

5.2% overhead with the awake policy, to 3.9% with drowsy, and then 2.7% with

sleepy. Figure 5.3 shows that this reduction is largely a result of reductions in

L1 leakage energy, with the sleepy policy providing additional savings in directory

access energy.

While viterbi overall has low overhead – between 1.6% and 3.0% – it does

not demonstrate improvement from the nap policies. Again, the wakeup and

flush/flush-invalidate routines eliminate the savings. The sleepy policy actually

offers a small improvement for cjpeg – from 4.6% down to 3.9%, but in general

cjpeg suffers from the same issue.

Notice that the wakeup and flush/flush-invalidate penalty prevented nap

44

savings for cjpeg, viterbi, and djpeg. These benchmarks also have the shortest

migration interval, migrating on average every 290K, 136K, and 112K cycles, re-

spectively. Compare this to the other three benchmarks, which on average have

between 1.1M and 121M cycles between exit points (see Table 5.2).

The analysis presented in this subsection leads to two insights. Firstly,

poor coherence behavior can be problematic for migration if the host and/or c-

core processors have to burn energy during misses. Secondly, cache nap policies

can be effictive, but for high migration frequencies, even when there is an average

migration interval of as much as 290K cycles, we should carefully consider the

wakeup and flush/flush-invalidate penalties.

5.3.2 Implications of Increasing the C-Core Efficiency

In the previous subsection, the energy model assumed a c-core efficiency

from estimations for the Android codebase. Moving forward, however, we would

like to know what might be the implications of improved c-core efficiency in the

context of the migration system. Figure 5.1 shows diminishing returns, as expected.

Figure 5.4 shows these savings broken down by energy component for the sleepy

policy.

We see that as the c-core efficiency increases, the L1 access energy behavior

becomes increasingly important. At the same time, because the c-cores are more

efficient, energy consumed during data cache stalls is less penalizing. Still, it

remains a major energy factor for bzip2 and mcf, even out to a c-core efficiency

of 20×. Thus, reducing data cache stalls through coherence optimizations has the

potential to provide savings even as c-core efficiency increases. Also, notice that

as expected, as the c-core efficiency increases, the host energy increases relative

to the total energy. The plots show more interestingly, though, that for all of the

benchmarks, the host energy approaches almost half of the total energy shortly

after passing the GreenDroid c-core efficiency point. The results then indicate that

moving forward, improving c-core coverage will provide larger energy reductions

than improving c-core efficiency.

45

bzip2

dirLeak

L1Leak

wakeup

flinv

dirAccess

L1Access

ccoreDcacheStall

ccoreCompute

hostDcacheStall

hostCompute

C−core Energy Efficiency
5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4

cjpeg

5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4

djpeg

5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4

gzip

5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4

mcf

5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4

viterbi

5x 7x 9x 11x 13x 15x 17x 19x

E
ne

rg
y

(N
or

m
.)

0

0.1

0.2

0.3

0.4 Expected efficiency
for GreenDroid c−cores

Figure 5.4: Migration System Energy Breakdown vs C-Core Efficiency

For each benchmark, the plot shows the energy in the migration system relative

to a single-tile system with no c-cores, broken down into components. The results

here are for the sleepy nap policy, which tends to be the most efficient.

46

5.3.3 Justification for a Hardware Flush/Flush-invalidate

In the previous analyses, I assumed that the flush/flush-invalidate routines

would run on specialized hardware. In this subsection I compare this configu-

ration to the alternative software approach and quantify the degree to which the

hardware-based approach improves the effectiveness of the cache nap policies. More

specifically, for each approach I calculate the break-even points for idle time where

napping becomes beneficial.

In the nap controller, the tile keeps a “last latency” for each exit point

address. When an exit point is reached, if one of the napping policies is enabled

and if the last latency is greater than a threshold, the tile moves to a nap state. The

current threshold is 20K cycles, based on the typical delay overheads of migration.

However, to optimize for energy, the tile should consider a model of the energy

overhead of napping relative to staying awake. First, consider the cost of staying

awake, Ea. Let cache and dir be the cache and directory structures, respectively.

Let Ds(a) be the dynamic energy of structure s for a accesses, and let Ls(t) be the

leakage of structure s over time interval t. Then we have:

Ea(t, acache, adir) = Dcache(acache) + Lcache(t) + Ddir(adir) + Ldir(t) (5.1)

In sleepy napping, the energy Es is the cost of the flinv and wakeup com-

ponents:

Es = Eflinv + Ewakeup (5.2)

In drowsy napping, the energy Ed are these components plus the leakage of

the data RAM in the cache in a low-leakage state, plus the dynamic energy and

leakage of the tag RAM and directory RAM:

Ed(t, atag, adir) = Eflinv+Ewakeup+kLdata(t)+Dtag(atag)+Ltag(t)+Ddir(adir)+Ldir(t)

(5.3)

where k is the low-leakage constant, which we conservatively assume to be about

0.25 based on published research on drowsy caches [14].

We would like to know the break-even point, defined by the idle time t,

given some assumptions about the number of accesses over that time interval.

47

Table 5.5: The Napping Break Even Table This table shows break-even

points for napping based on an analytical model for energy, specified in Equa-

tions 5.1, 5.2, and 5.3. Since this model includes parameters that depend on

application characteristics, the table displays results for each benchmark based

on experimental results. It shows two approaches: one in which the flinv com-

ponent is implemented in software, and the other in which it is implemented in

hardware. There are two insights here: (1) that a hardware flinv mechanism can

greatly reduce the threshold of useful napping and (2) that sleepy caches reduce

this threshold further compared to drowsy caches.

Threshold Cycles
bench policy w/ sw flinv w/ hw flinv hw threshold reduction

bzip2 drowsy 856440 22221 39×
bzip2 sleepy 767581 16988 45×
cjpeg drowsy 2298006 68113 34×
cjpeg sleepy 2225532 51533 43×
djpeg drowsy 1425745 35350 40×
djpeg sleepy 1432017 27411 52×
gzip drowsy 4684531 42385 111×
gzip sleepy 4060557 32711 124×
mcf drowsy 918713 37215 25×
mcf sleepy 2721416 28304 96×

viterbi drowsy 598025 26003 23×
viterbi sleepy 477635 20630 23×

Accesses depend on the characteristics of the application; however, we can get a

good indication of these characterisitcs from automatic profiling in our toolchain.

Using the data from the benchmark runs, then, I derive the implied break even

points for the two flush/flush-invalidate approaches: software- and hardware-based.

Table 5.5 presents these results.

Notice that firstly, under our energy model, a hardware flinv implementation

reduces the breakeven point for napping from 23× - 124×. This expands the set

of workloads for which napping can be applied. Moreover, regardless of the flavor

of flinv implementation, the sleepy policy generally provides a lower break even

48

point than the drowsy policy, although by less than an order of magnitude. This is

of course expected, given that the sleepy policy power-gates more structures than

the drowsy policy.

5.4 Delay

Thus far I have focused my analysis on energy. However, migration ob-

viously presents a delay overhead as well. Figure 5.5 plots the delay impact of

migration across the different cache nap policies. The plot breaks down delay into

similar components as we saw for energy. I do not include the flush/flush-invalidate

routine because it is not part of the critical path. What is clear is that data cache

stalls distinguish the delays across the nap policies. The dispatch and wakeup

latencies have negligible effect in the current model.

As I discussed in the previous section, the benchmarks which have the high-

est migration overheads – bzip2, djpeg, and mcf – also have the largest relative

increase in data cache stalls when we enable migration. This increase is for the

most part invariant across cache nap policies. The djpeg results provide an excep-

tion. Recall that the flush/flush-invalidate routines were problematic for energy

for djpeg, reducing the savings from the cache nap policies. These routines are

similarly troublesome for delay because they can interfere with coherence traffic.

When they constitute a larger relative portion of memory traffic, their delay im-

pact increases. Thus, in the djpeg results we see higher delay contribution from

data cache stalls under the drowsy and sleepy policies than for the awake policy.

49

D
el

ay
 (

N
or

m
al

iz
ed

)

0.2

0.4

0.6

0.8

1

1.2

bz
ip

2−
m

on
ot

ile

bz
ip

2−
aw

ak
e

bz
ip

2−
dr

ow
sy

bz
ip

2−
sl

ee
py

cj
pe

g−
m

on
ot

ile

cj
pe

g−
aw

ak
e

cj
pe

g−
dr

ow
sy

cj
pe

g−
sl

ee
py

dj
pe

g−
m

on
ot

ile

dj
pe

g−
aw

ak
e

dj
pe

g−
dr

ow
sy

dj
pe

g−
sl

ee
py

gz
ip

−
m

on
ot

ile

gz
ip

−
aw

ak
e

gz
ip

−
dr

ow
sy

gz
ip

−
sl

ee
py

m
cf

−
m

on
ot

ile

m
cf

−
aw

ak
e

m
cf

−
dr

ow
sy

m
cf

−
sl

ee
py

vi
te

rb
i−

m
on

ot
ile

vi
te

rb
i−

aw
ak

e

vi
te

rb
i−

dr
ow

sy

vi
te

rb
i−

sl
ee

py

 7.8% 7.9% 7.8%

 1.0% 1.2% 1.1%

 5.1% 5.4%

 9.4%

 2.7% 2.7% 2.7%

 24% 24% 24%

 0.4% 0.5% 0.5%

compute dcache dispatch wakeup

Figure 5.5: Delay Impact of Migration This plot has the same configuration

as Figure 5.2 – its energy counterpart – except that the vertical axis represents

delay. Again, the baseline is the ideal, single-tile case with all c-cores so that

there is no need to migrate. The delay break-down includes time during wakeup,

dispatch, data cache stalls, and all other computation.

Chapter 6

Related Work

This thesis draws on a body of architecture research across a number of top-

ics. Submarine’s design is based on a number of well-studied architectural mech-

anisms, including task migration, memory system napping, and directory cache

coherence. The design targets a new problem, however: migration for exploiting

c-cores. In this chapter, I organize related work into three categories: migration,

memory system napping, and cache coherence, and explain how previous research

both influenced the current Submarine design and may help to implrove it in a

future prototype.

6.1 Migration

In this thesis, I studied migration as required for exploiting special-purpose

c-cores. A large body of previous work has explored migration for a number of

purposes.

Heo et al studied the use of activity migration for reducing peak junction

temperature [17]. Their system duplicates architectural components and migrates

execution between them. However, their study was limited to two units. The

system uses a shared L2 cache to move lines between cores with a constant 2-cycle

latency. They propose that a cache-coherence protocol could move lines on demand

to the active cache and note that the inactive cache would need to participate in

the coherence protocol. The pre-nap flush and flush-invalidate routines in the

50

51

Submarine system mitigate and remove this requirement, respectively.

Chakraborty et al proposed computation spreading [18] to partition dissimi-

lar program phases across multiple physical hardware resources. In particular, they

studied the separation of a program into its user-level and system-level pieces, so

that architectural resources such as caches and branch predictors can target more

uniform workloads, improving performance.

Similarly, Kamruzzaman et al recently proposed the use of migration for

software data spreading [19]. In this technique, threads migrate to utilize cache ca-

pacity across cores and consequently improve single-threaded performance. In the

GreenDroid toolchain, the aim is to exploit the power efficiency of migrating to re-

mote c-cores, but we also expect to see the cache expansion effects provided by data

spreading. As in the GreenDroid system, in software data spreading, migration

is compiler-directed. The software data spreading results target a set of modern

cache-coherent multiprocessor systems and thus use the coherence subsystem for

on demand data transfer. They evaluate both OS-based and user-level-based con-

text switch mechanisms and find that overheads range from 9-14 µs through the OS

and 1-3 µs through the user-level. Since the btl-cc prototype system does not run

an OS, my context switching system is significantly more lightweight – typically

less than 0.1 µs to transfer state over the GDN. However, the future prototype

will run an operating system. Kamruzzaman’s work thus sheds some interesting

light on a possible future challenge, and it remains an open question whether the

lightweight GDN-based context migration will be as efficient with an operating

system running.

Brown et al propose hardware-based optimizations for thread migration

in their Shared-Thread Multiprocessor (STMP) [20]. In STMP, groups of four

cores share storage for inactive thread state and a control unit for scheduling and

migrating threads. The intended benefits are to increase the amount of thread

storage available to each core, to reduce the overhead of migrating or switching

between threads, and to allow for thread redistribution through the shared thread

controller for higher frequency load balancing and maximizing symbiotic behavior.

In this thesis, I considered single-threaded workloads, and therefore the STMP

52

architecture would not provide direct benefit. However, on a future GreenDroid

prototype that requires multi-programming, we might observe prohibitive migra-

tion overheads. In this case, it would be interesting to explore a STMP-inspired

hardware approach for reducing these overheads.

More broadly, a large body of research investigates the use of inactive com-

pute resources for speculatively improving single-threaded performance. For exam-

ple, speculative multi-threading [21, 22, 23] divides a running thread into multiple

threads in a speculative manner, determining later whether the parallel execu-

tion was correct. Similarly, research has shown that helper threads [24, 25] can

improve single-threaded performance by speculatively prefetching data in an exe-

cution stream outside of the critical path. While these techniques are performance

positive, they can be power inefficient because of their speculative approaches.

That is, speculation, when wrong, does not hurt performance but consumes un-

necessary energy. Still, it would be interesting to see if a similar concept could

apply to migration for c-cores.

In this thesis I found that a significant contributor to migration overhead

can be the coherence traffic supporting data transfer. Prefetching, either in hard-

ware or via a helper thread, could potentially mitigate this penalty. In fact, Brown

et al have studied prefetching for migration performance in detail [26]. Their

method predicts a thread’s working set and prefetches it into the new cache. Inter-

estingly, they find that prefetching the instruction working set is more important

than the data working set. They look at both single-threaded and speculative

multithreading workloads. Their single-threaded migration is meant to cover a

general class of migrating workloads, migrating at intervals of 1, 10, 100, ..., 106

instructions. This is in contrast to the study in this thesis, where the toolchain

inserts migration points based on anticipated program behavior. Also, their pri-

mary metric is performance in terms of execution time, while this thesis focuses

on energy. Still, their results are useful for motivating future optmizations to the

GreenDroid migration system.

Kumar et al introduced using single-ISA heterogeneous processors as a

power optimization [27]. Their study modelled migration overhead, but did not

53

directly explore the underlying migration mechanisms. Shen and Petro proposed a

task migration framework for heterogeneous Multiprocessor System-on-Chip (MPSoC)

architectures [28]. Their problem is different, however, because they must address

the challenge of differing ISAs across processing units. GreenDroid could be con-

sidered a heterogeneous MPSoC, given that each tile has a different set of c-cores.

However, the ISA is the same on every tile, and the toolchain handles execution

on the c-cores. Moreover, the focus of my work is not the programming model or

the compiler, but rather the migration mechanisms, especially in the context of

data movement. The work of Shen and Petro, on the other hand, focuses on novel

ISA extensions and task scheduling.

6.2 Memory System Napping

Concerns about the growing impact of leakage energy has driven research

that focuses on leakage savings in the memory hierarchy. Kaxiras et al proposed

policies for turning off cache lines that the processor is unlikely to use, a technique

called cache decay [29]. Their results show that because L1 cachelines often sit

unused for some time before being evicted, cache decay can provide significant

leakage reduction. While they do explain how cache decay would integrate with a

coherence system, they do not study these implications directly.

The drowsy cache policy in this thesis is inspired by the work of Flautner

et al [14]. Their work focused on reducing cache leakage from so called cold lines,

or lines with relatively low access rates. Their system puts these lines in a drowsy

state, accepting a performance penalty but saving energy.

Ghosh et al proposed virtual exclusion [30]. Their observation was that

while the trend toward CMP systems with shared memories has made Multi-Level

Inclusion (MLI) a common feature in memory hierarchies, MLI is power inefficient

because the same memory block is leaking in multiple levels. Cache decay does not

work well at higher memory levels like L2 because such systems would not have

the MLI property. Drowsy caches allow the system to retain the MLI property but

do not achieve the same level of savings as cache decay systems. Virtual exclusion

54

seeks to get close to the leakage savings of cache decay without losing the MLI

property. They use gating to save leakage at L2 and a MOESI coherence protocol

to keep track of the location of the valid copies of a block on chip, retaining MLI.

In this study, while I implemented coherent instruction caches, I focused

primarily on the energy and performance impact of the data caches. Yang et al

presented methods for gating in the instruction cache [31] that are integrated with

architectural techniques for adapting to the required instruction cache size.

6.3 Cache Coherence for Tiled Processors

A number of researchers have proposed novel designs of shared memory

systems for tiled processors. The canonical problem is the management of Non-

uniform Cache Access (NUCA) systems. Typically, each tile is assumed to have a

private L1 cache and some portion of a distributed L2 cache. The L2 cache may

be private, shared, or some hybrid approach. A common observation is that while

private L2 policies offer good hit latency, they fall short of optimal capacity miss

rates for the L2, because a tile cannot access unused, remote cachelines. On the

other hand, shared L2 policies mitigate the capacity problem, but increase the hit

latency when the cacheline resides in a remote portion of the L2.

A number of clever schemes have been proposed to address this tradeoff [32,

33, 34, 35, 36, 37, 38, 39, 40]. The standard approach is to use the coherence system,

usually managed by directories for scalability, to allow tiles to share the distributed

L2 cache. Moreover, the schemes provide a set of techniques for keeping data in

the L2 without sacrificing hit latency for unshared data. Examples include block

migration, victim replication, capacity stealing, cache-to-cache transfers, global

replacement strategies, and repartitioning. Some systems require OS support to

provide hints about the sharing patterns of each page of memory.

Directory storage is an important design point for cache-coherent multicore

processors. If two directory entries conflict in some given storage structure, then

tiles that have cached lines must invalidate them and write back any dirty data.

This can lead to unpredictable performance issues if the directory entry conflicts

55

happen to occur for heavily used data. To guarantee that this never happens,

the directories must have enough storage to track every cacheline in the system.

The class of directory storage schemes that take this approach [41] is often called

duplicate-tags . Usually, the tag indices are divided amongst the directories, and

each directory is responsible for tracking the state of the cachelines at those indices.

To avoid conflicts, space is allocated for a directory entry for each cache at each tag

index. This structure must have an associativity equal to the number of caches. For

this reason, energy scalability is a concern. An alternative approach, sometimes

called sparse directories , uses a sharer vector for each directory entry. However, to

avoid conflicts, this structure must have a high storage allocation. Ferdman et al

proposed Cuckoo directories [42] to reduce associativity while minimizing directory

entry conflicts with multi-stage hashing. Moreover, a number of approaches have

been proposed for reducing the storage impact of sharer vectors. It has been

observed that in the common case, only some small constant number of caches are

actually sharing a particular block and therefore, a more space-efficient solution is

possible [43, 44].

Chapter 7

Conclusion

As feature sizes shrink, processor designers will face new challenges to im-

prove performance while meeting fixed power budgets. New solutions will have to

emerge to meet these challenges. Innovations could come at the materials, circuit,

or architecture levels – or more likely, all of the above. In this thesis I studied a

promising architectural approach: migrating tasks to specialized coprocessors to

reduce power consumption. I focused on the design of this migration system, with

the goal of keeping its energy footprint low. The first-order takeaway from my

research is that efficient migration is feasible and practical for tiled coprocessor-

based architectures like GreenDroid. My cycle-accurate simulation results show

low overheads and large savings as c-core efficiencies increase.

I also found that the key element in such a migration system is the shared

memory hierarchy; however, it is not the power of the memory subsystem itself

that is most important. My results indicate that in fact, a key factor is the per-

formance of the coherence system during migration. Slow data transfer forces the

processors and c-cores to stall and waste power. Still, the memory system con-

tributes to the power consumption as well, and because of this I have introduced

and analyzed techniques for reducing this consumption under a migrating work-

load by power-gating memory system components. Results indicate that drowsy

and sleepy cache nap policies may be able to mitigate migration overhead to the

extent that the energy footprint of the pre-nap flush and flush-invalidate routines

can be minimized.

56

57

Moving forward with the development of the GreenDroid prototype, we will

need to consider the components of migration overhead. Given that in the era of

dark silicon area is cheap but power is expensive, it is likely that hardware-based

solutions for efficient migration will be attractive. My proposed hardware-based

flush-invalidate state machine is one example. As we move to support multi-

programmed workloads, there will be additional challenges. A more sophisticated

migration system will need to handle sharing of c-cores between tasks, which will

increase the resources needed to save and migrate task state. Again, it is likely

that a future prototype would use specialized hardware to meet these requirements

with acceptable power efficiency. Moreover, in the current prototype I study the

common case where the set of migration group tiles is fixed at compile time. For

general purpose execution, I assume that the coherence system will switch to a

less efficient but more general directory controller, following the c-core/software

paradigm for exploiting dark silicon. A future prototype will need to explore this

idea further.

Finally, the work presented in this thesis will help our group design and im-

plement the GreenDroid prototype memory and migration subsystems. My cycle-

accurate simulation infrastructure specifies the redesigned L1 data- and instruction-

cache controllers. We can use these designs in the next FPGA-emulated prototype.

Moreover, my bC directory model can run alongside the emulation system. I have

designed it to be general purpose in order to consider various directory storage

schemes. Also, my migration system, Submarine, can contribute to the future

GreenDroid runtime. It is my hope that my work will both motivate and con-

tribute to the fabrication of a future GreenDroid chip.

Appendix A

Implementation Details

The implementation of cache coherence systems is a challenging engineering

problem. In this research, I model GreenDroid and similar tiled architectures using

the Raw cycle-accurate simulator, btl. However, the Raw system does not support

cache coherence. Moreover, the programming model is very much “bare metal”

– the intention is to expose the underlying architectural resources of the chip to

the programmer. Therefore, as a research prototype, system support for shared

memory programming constructs is not a priority. As a result, as part of this

research I evolved the Raw toolchain at several levels, which can serve as a case

study for upgrading systems for shared memory multi-threading.

In this appendix chapter, I detail the engineering problems that I encoun-

tered during the course of my research. Firstly, I discuss the redesign of the memory

subsystem, including new data- and instruction-cache controllers, directories, and

some minor changes to the DRAM controller. I then specify additions and revi-

sions to the Raw ISA for the purpose of providing cache coherence. I also describe

the new library support for synchronization and threading mechanisms, as well

modifications to the C Standard Libraries for thread-safety. Finally, I note the

implementation details for the migration and napping systems that I modelled in

btl-cc for this research.

58

59

A.1 Redesigning the Raw Memory Subsystem

for Cache Coherence

Raw [15] is a tiled processor developed at MIT that was fabricated into a

16-tile chip in 2002. The Raw simulator, btl, is the basis for btl-cc, the simulator

used in this research. The btl simulator was validated against the Raw RTL. The

chip model is written in C++. Btl also provides a user interface for prototyping

new devices using a multithreaded, bytecode compiled extension language called

bC .

Implementation of architectural designs in a simulation environment pro-

vides an infrastructure for both specifying and evaluating designs. In this section

I discuss the major components of the memory subsystem: the L1 caches, the

directories, and the DRAMs, and explain how I designed and implemented each

piece for btl-cc.

A.1.1 The L1 Caches

An early challenge introduced in the new system is that caches receive and

must service unsolicited requests, even while in the middle of a cache miss. This

requirement is rooted in protocol deadlock avoidance. In the coherence system,

forward progress of a transaction may depend on forward progress of remote re-

quests. The protocol could deadlock if misses can block incoming remote requests.

Consider an example: suppose a miss in cache x depends on a remote request at

cache y, while a miss at cache y depends on a remote request at cache x. In this

case, if the misses block the remote requests, the protocol will deadlock.

To allow the caches to service remote requests, I made two major changes

to the tile design. First, I implemented a more flexible scheme for arbitrating the

MDN between the data cache, instruction cache, and user program. Second, I

redesigned the cache state machines. I will now take a moment to detail these

changes.

In the previous Raw system, caches only receive solicited requests, making

arbitration for the MDN somewhat straight forward. A cache can lock the MDN

60

while waiting for a miss. Similarly, the user can lock the MDN using the mlk

instruction, which also pulls in some number of instruction cache lines to make

sure that the instruction cache will not miss while the MDN is locked. There will

be no need to use the MDN in the mean time, and the miss will not block any other

local request, because the MDN is locked. For the new system, I implemented a

more sophisticated arbitration scheme, shown in Figure A.1. The caches can only

hold the lock when forward progress in the state machine is guaranteed. The mlk

and munlk instructions have no effect. Instead, the tile buffers user packets in the

UMNO. When a complete packet is ready, the tile locks the MDN and sends the

packet. This design allows me to run legacy code that uses the MDN at the user

level.

Similarly, I modified the tile to arbitrate incoming messages from the MDN.

This does not require any locking; instead, a simple module inspects the opcodes

of incoming headers and routes the packets to the correct input buffers: either the

DMNI, IMNI, or UMNI, for the data cache, instruction cache and user, respectively.

Figure A.2 shows the data cache state machine. The major modification

necessary was the ability to service remote requests. Therefore, I added a FreeWait

state for waiting during misses. The state machine is design so that each state has

exactly one of two properties:

1. Active - guaranteed to make progress to the next state in some finite period

of time

2. Free - available to accept remote requests

The START and FREE WAIT states have the Free property, while all others

have the Active property. While Active, the state machine may be waiting on one

of two things:

1. the MDN output port

2. the MDN arb to grant the lock to write to the MDN output port

The MDN output port becomes free when there is space in the input buffer

to the local MDN router. As long as the network is not deadlocked, the router is

61

guaranteed to make progress, and therefore the MDN output port will eventually

become free.

CMNO

UMNO

CGNO

CSTO

CSTO2

Arb

Pipeline

Port Shephard

I-Cache

D-Cache

Network Switch

Figure A.1: Arbitration of Outgoing MDN Packets The MDN is shared

by three clients on the tile: the d-cache, i-cache, and user system. The user

system packets are buffered for store-and-forward atomicity. All three MDN clients

contend for an MDN lock through the arb. The Port Shephard manages flow

control between the user system (i.e. the pipeline) and the user-level network

ports. The UMNO port is actually invisible to the user. The user sees the $cmno

register as specified by the Raw ISA. The figure shows the static network ports,

CSTO and CSTO2, but experiments in this study do not use the static networks.

The clients that compete for the lock to write to the MDN output port are

the data cache, the instruction cache, and the user program. If a client holds the

lock, the only condition where it will be blocked is if the MDN port is not free.

Again, assuming no deadlock, this port will eventually become free and thus the

62

client will eventually give up the lock.

FILL_REQUEST
send header
set, state <=

START
Setup repl read

miss_v &
load_op or
st_op

FILL_REQUEST
send address
evict addr <=

EVICT_REQUEST
send header

need
to evict

EVICT_REQUEST
send address

EVICT_LINE
send data

modified

FILL_LINE
recv data or nack

shared or
exclusive

RECOVER
send ack

FLUSH_INV
send header
set, state <=

fl, flinv, or
inv

FLUSH_INV
send address
evict addr <=

modified & (fl or flinv)

!modified
or inv

Local
Request

GET ACK
recv ack

GET_ADDR
check tag
write tag and status mem

SEND_HDR
send header

SEND_SUB_HDR
send sub hdr

SEND_DATA
send data

Remote
Request

remote_req

FINISH

FREE_WAIT

DATA_ACK
send hdr

nack backoff
complete

response
has data

response
has no
data

no need
to evict

wait state?

remote_req

!waitStateValid

waitStateValid

Figure A.2: The Coherent Data Cache State Machine The data cache is

able to accept both local and remote requests. When in the START and FREE WAIT

states the state machine is able to begin servicing a remote request. At the end of

the remote request, the state machine returns to one of those two states. In this

state diagram, if there are multiple outgoing edges from a state, edge annotations

describe the conditions for the respective state transition. The FINISH state in the

Remote Request partition is actually absorbed into both the SEND SUB HDR and

SEND DATA states, and does not consume an extra cycle. In general, however, all

state transitions consume at least one cycle.

Therefore, we see that assuming no deadlock on the MDN, the Active states

will always make forward progress. The FreeWait states, on the other hand, stall

63

until the cache receives either a local request or a remote request. This means

that as long as there is no deadlock on the MDN, the cache will always be able

to service requests in some finite amount of time. In Chapter 3 I showed how

buffering at the MDN clients prevents MDN deadlock by allowing the clients to

sink any possible incoming messages, regardless of the state of their controllers.

Therefore, the MDN is guaranteed to become clear in a finite amount of time, and

allow Active states to make forward progress. Also recall that a requirement for

holding the MDN lock is that the client is guaranteed to make forward progress.

Clearly, then, the caches can only hold the lock when in Active states and must

release the lock before moving to Free states.

The instruction caches are also coherent. This, in theory, allows the system

to support writing over instruction memory or even self-modifying code, although

neither of these use cases were focuses of my research. I implemented coherent

instruction caches because a future GreenDroid prototype will need this feature to

support a modern operating system, and I wanted to model the delay impact of

coherent instruction cache missing and to verify that my protocol and directory

scheme were amenable to instruction cache coherence. The instruction cache state

machine is similar to the data cache state machine, except the instruction cache

does not need to flush or service remote flush requests.

I modelled all L1 designs with a hardware implementation in mind and

followed btl conventions for timing. For example, I used btl FIFO models when

necessary and used the existing infrastructure for the state machines, tags, data,

etc.

A.1.2 The Directory Model

The directory is modelled in bC. For purposes of simulation, it sits off chip

and interfaces with the chip I/O ports. In a real implementation, the directories

would be on chip. Implementing the directory in bC has two primary advantages.

First, it allows for rapid prototyping. Second, the GreenDroid group is currently

building an emulation infrastructure that allows for bC devices to run concurrently

with either FPGA emulation or a hardware implementation of the chip. A bC

64

model thus allows us to continue research on the directory design, even if the chip

design is in a later stage of development.

In my implementation, I logically divide the directory model into a number

of components:

• Storage model

• Controller

• CMNI FIFO

• CMNO FIFO

• Pending request file

• MDN arbiter

The storage model is generalized. Currently it assumes that there are never

conflicts, which is the case for the current duplicate-tags directory design. Instead

of directly modeling the one-way-per-tile system, however, the simulator code uses

sharer vectors for ease of implementation. This still simulates the intended behav-

ior of the system.

The directory controller is implemented as a state machine in a similar

structure to the cache state machines. It consumes incoming words from the CMNI

FIFO no faster than one word per cycle and places outgoing words on the CMNO

as long as there is space. Otherwise, the controller stalls.

The CMNI FIFO is not flow controlled because it has the provably necessary

allocation as described in Section 3.3. The CMNO FIFO is flow controlled and

exists to decouple the controller and MDN arbiter.

The MDN arbiter is implemented as a simple two-state state machine that

can consume one word per cycle. There are two producer clients that interface

with the MDN arbiter: the CMNO FIFO and the DRAM Virtual Port. In the

first state, kMDNArbGetHeader, the MDN arbiter peeks the two producer clients,

picks the next input based on a round-robin policy, pulls the length from the

header, and places the header on the MDN port if there is room. If the candidate

65

producer is the CMNO FIFO, it makes sure that the complete packet is ready.

The next state is kMDNArbGetData. In this state the payload of the packet moves

through the MDN arbiter to the MDN port at a rate of one word per cycle. When

the MDN arbiter has finished moving the packet, it returns to kMDNArbGetHeader.

A.1.3 The DRAM Controller

The DRAM controller was largely unmodified, with two exceptions. First,

in the Raw system the DRAM interfaces with an I/O port of the chip. In my model,

the directory interfaces with a physical I/O port and then provides a virtual port

to the DRAM. Second, the DRAM must recognize an extended set of opcodes.

In the Raw system, there is a single cacheline read opcode, but in btl-cc, there

are three: cacheline read from an i-cache, cacheline read for shared access from a

d-cache, and cacheline read for exclusive access from a d-cache. The DRAM treats

all of these opcodes in the same way, but copies them to the header of the response

so that the tile can interpret the packet correctly.

A.2 The Cache-Coherent Raw Instruction Set

Architecture

From an engineering perspective, one of the biggest challenges of support-

ing multi-threading is providing locking mechanisms and cache-coherent I/O. The

former requires atomic memory access. The latter, cache-coherent I/O, requires

well-defined flushing and invalidation mechanisms. For efficiency, both of these

upgrades are best addressed at the ISA-level. In this section I discuss these design

decisions and implementation details.

A.2.1 Load-linked and Store-Conditional

Locking is a key requirement to support standard shared memory program-

ming models. For efficiency, shared memory architectures typically provide some

atomic memory primitives from which the system can provide locking mechanisms.

66

To this end, I added load-linked (ll) and store-conditional (sc) instructions to the

ISA. My implementation is based on the design specified for the MIPS R4000 archi-

tecture [7]. The semantics of these instructions are as follows. A store-conditional

is a special store instruction that only commits its store if no tile in the system has

modified the block at the store address since the most recent call to load-linked

on the local tile. The store conditional places its success code (1 on success, 0

on failure), in the destination register. A load-linked operates like a normal load,

with two exceptions: (1) the pipeline stores its cacheline-aligned address in a spe-

cial register for comparing against remote modifications to the block and (2) on

a miss, a load-linked requests exclusive access instead of just shared access. A

load-linked call, in practice, is followed in some short period of time by a store-

conditional call on the same tile to the same address. Requesting exclusive access

is an optimization based on this common case.

To support the load-linked and store-conditional instructions, I designed a

Load-Linked Store-Conditional (LLSC) Unit for the tile. The LLSC Unit includes

the special register for the last load-linked address and a register for flagging that

some tile has modified the block. After a load-linked instruction, the local cache

will have exclusive access to the line and therefore will receive an invalidation

message from the directory if any other cache attempts to modify the block. The

cache signals the LLSC Unit upon receiving invalidation messages for comparison

against the current load-linked address. On a match, the modified flag is set. When

a store-conditional instruction is in the memory stage of the pipeline, it checks the

modified flag – if the block is unmodified and the store is a hit in the local cache, the

store-conditional succeeds. If the line is modified, it fails. If the line is unmodified

but the store misses in the cache, the cache will issue a normal exclusive request,

continuing to watch for invalidations. This is an atypical case though, because it

means that the some time between the load-linked and the store-conditional the

local tile issued a memory instruction that caused the eviction of the load-linked

line – placing memory instructions between ll and sc is discouraged.

67

A.2.2 Invalidate, Flush, and Flush-Invalidate

Standard I/O libraries typically make extensive use of flushing and invalida-

tion, sometimes categorized as cache administrative instructions . While the focus

of this research was not the I/O system, there are two important reasons to provide

real support for I/O in the cache coherence system. Firstly, most standard bench-

marks use standard I/O functions. Removing I/O from these benchmarks is not

just laborious and impractical, it also detracts from the comparability of my results

to other experiments using standard benchmark suites. Secondly, cache-coherent

invalidations, flushes, and flush-invalidates introduce a number of complications to

the coherence system, that, if overlooked, could lead to an over-simplified design

and inaccurate modeling of a future, “real” system.

The Raw system supports a significant subset of the C standard library

through a port of newlib [45]. The newlib port makes calls to both address-based

and tag-based cache administrative instructions. These calls introduce a number of

engineering issues. In the Raw system, the address-based instructions ainv, afl,

and aflinv, invalidate, flush, and flush-invalidate a cacheline based on the given

address. Since Raw is not cache-coherent, these instructions only deal with the

local cache – on a miss, no further action is necessary. However in a cache coherence

system, the semantics become more challenging. First of all, the directory needs

to track the location of memory blocks throughout the system, so a tile must

notify the directory whenever it invalidates a line. Moreover, to support execution

migration, all cache administration needs to be global by default, because the

migration is hidden from the programmer. For example, consider a program that

writes to a buffer and then flushes that buffer to some output device. If execution

migrates between the buffer write and flush, the dirty data will likely sit in a remote

cache at the time of the flush. Therefore, the flush needs to be global for correct

execution. For this reason, in btl-cc, the ainv, afl, and aflinv instructions are

global by default.

Still, I quickly found use for local cache administration for cache-napping

purposes. Before sleeping a cache, a tile must flush-invalidate all lines, but would

not want the request to apply to all caches. For this reason, I added afll and

68

aflinvl to the ISA. There is currently no support for a local invalidation instruc-

tion, because it was not necessary for this research; however, it would fit naturally

into the existing support infrastructure for afll and aflinvl and is scheduled for

future work.

The tag-based cache administrative instruction tagsw in the Raw system

allows the user to modify the tags arbitrarily, including the dirty and valid bits.

This has an undefined impact on the coherence state of the system; therefore, btl-

cc does not support tagsw. In order to support legacy code, I replaced any use of

tagsw in the Raw libraries with an alternate implementation. Typically, programs

use tagsw to invalidate cachelines after flushing. The instruction does not need the

full memory address – only the tag index – and thus it is efficient when invalidating

large cache ranges. In most cases I was able to replace the call with either ainv

or aflinv. However, since these instructions require the full memory address, I

had to insert a call to tagla, which loads the cacheline memory address based on

the index into the tag array. This call to tagla sacrifices a cycle of performance

in the best case. A future system would likely include coherent tag-based cache

administrative instructions to mitigate this unnecessary latency.

Additionally, as described in Section A.1.1, the mlk and mulk instructions

have no effect and are essentially nops in btl-cc.

A.3 Library Design for Cache Coherence and

Shared Memory Multi-threading

For the purposes of this research, I encountered some of the major issues

at the OS/library level for shared memory systems. I present my solutions in this

section. These design decisions were motivated by the focus of the research project,

and thus do not provide the full set of services that would be necessary for a com-

plete system. However, my sense is that these approaches address, conceptually,

the main challenges.

69

A.3.1 Synchronization

Most shared memory multi-threaded programs make use of synchronization

mechanisms, the most common of which are locking and barriers. I implemented

lock and unlock in assembly using load-linked and store-conditional. Listing A.1

shows the lock routine. The use of these instructions ensures that the increment of

the lock variable is atomic. If another tile modifies the lock between the load-linked

and store-conditional, the store-conditional will fail. The routine is surrounded

conservatively by memory barriers to protect against compiler optimizations that

might violate assumptions about synchronization. The unlock function sets the

lock value to zero, again surrounded by memory barriers.

Listing A.1: Acquire Lock The lock routine load-linkeds the lock until it is

non-zero. Then it tries to store a one in the lock using store-conditional. If the

sc fails, it iterates; otherwise, the lock is acquired. Note that the current Raw

assembler does not support ll and sc. Instead, I use macros that explicitly place

the machine code for the instructions as data words in the assembly. In this listing

I changed the macros to assembler instructions for readability.

a cqu i r e l o c k :

la $8 , lockaddr

loop :

l l $9 , $8

bne $9 , $0 , loop

addiu $9 , $9 , 1

sc $10 , $9 , $8

beq $10 , $0 , loop

From the locking routines, then, I implemented a simple shared memory

barrier routine, provided in Listing A.2. The barrier data structure includes a lock

and a counter. When a tile encounters the barrier, it acquires the lock and incre-

ments the counter. When the counter value indicates that all tiles have reached

the barrier, the tile multicasts a wakeup message on the GDN to all waiting tiles.

70

A.3.2 The C Standard Library

The Raw toolchain uses a port of newlib [45] for C standard library func-

tions. While this port is not thread safe, newlib provides a nice mechanism for

adding locking and for building a thread safe version of the library. I defined the

newlib locking macros with calls to the new locking routines. I also modified some

of the global data structures to allow each tile to have an individual errno value.

A limitation of the current malloc implementation is that all threads that

share the same malloc code pull from the same pool of available memory without

any attention to smart mappings based on the relative DRAM location. Since

much of my results are based on 4- and 8-tile configurations, this was not an issue.

However, for scalable implementations, one would likely want to map malloc pools

to optimal physical DRAM locations. This would require modification of the sbrk

and malloc modules in newlib.

A.3.3 Multi-Threading and PARMACS Support

The SPLASH2 benchmark suite uses PARMACS [46] as a portable ab-

straction layer for multi-threading. For example, a linux system can define the

PARMACS macros in terms of pthreads calls. However, the Raw system does not

have a standard set of multi-threading functions. To get SPLASH2 running, then,

I built a simple thread dispatching library.

The thread dispatching for PARMACS works as follows. At initialization

time, the root tile broadcasts its global pointer over the GDN to all worker tiles.

The worker tiles then overwrite their global pointers with this new address. Thus,

all tiles in this multi-threading group share the same address space, and can be

thought of as a group of tiles running the same process. The worker tiles then

block waiting for a thread dispatch on the GDN. On thread creation, the root tile

sends a function pointer, also known as a dispatch address, to the worker tile. The

worker tile receives this packet and jumps to the dispatch address. The workers

send acknowledgments to the root tile when they are done, emulating a “join”

functionality as may be familiar to pthreads programmers.

71

A.3.4 HWIC Trampoline

The Raw chip has hardware instruction caching for both the host proces-

sor and the static switch processor. However, in my research I did not consider

the static networks, as it is anticipated that GreenDroid will not have static on-

chip networks. However, the existing codebase for activating hardware instruction

caching, the HWIC Trampoline, also activates the switch instruction cache. I made

some minor modifications to this code so that there would be no unsupported cache

miss messages from the static switch instruction caches.

A.4 Migration

Chapter 2 gives an overview of the migration primitives. I implemented the

migrate push and migrate pop routines using a mix of C and assembly. I also

wrote a simple preprocessor that takes code that the toolchain has annotated with

region mappings and inserts migration calls. I also provide an assembly routine

for inactive tiles that are waiting for dispatch packets on the GDN.

Moreover, the previous newlib port does not support process migration. To

date I have discovered and fixed one issue. Because the implementation assumes

that processes will not migrate, the library precomputes network headers destined

for the host interface (in this case host refers to the platform host, not the tile host

processor). After a migration, the source coordinates in these network headers will

be wrong. To solve this, I added a routine init for new tile that updates the

hosthdr global variable with the new source coordinates after every migration.

In fact, you can see the jump to this routine in the migrate example code in

Listing 2.1.

A.5 Napping

As described in Chapter 4, caches can nap to save power. The tile does

two things before napping the cache. First, it notifies the nap controller. In my

implementation, the host processor interfaces with the nap controller through a

72

set of magic instructions. The instructions, listed below, allow the nap controller

to train its predictor and update event counters for analysis.

• kMagicMigrateLogExit - notifies the nap controller of an exit

• kMagicMigrateNapAsleep - notifies the nap controller of a sleepy nap

• kMagicMigrateNapDrowsy - notifies the nap controller of a drowsy nap

• kMagicMigrateWakeup - notifies the nap controller of a wakeup

• kMagicMigrateRecvDispatch - notifies the nap controller of a new dispatch

The btl simulator supports the addition of magic instructions which can

hook to bC code for flexible functionality without fundamentally altering the in-

struction pipeline or tile architecture. For a description of the functionality of Raw

magic instructions, see the Raw specification [5].

Second, the tile must flush or flush-invalidate the entire cache before putting

it in a drowsy or sleepy state, respectively. These routines make use of the local

flush (afll) and flush-invalidate (aflinvl) instructions.

For the same reasons as the directory, I implemented the Nap controller

in bC. Also, it is conceivable that the nap controller could run as a software

library, and I wanted to retain the flexibility to model either a software or hardware

implementation. I described the functionality of the nap controller in Chapter 4.

73

Listing A.2: Shared Memory Barrier Tiles in the barrier group increment

a shared counter. A lock protects against race conditions during the increment.

After incrementing the counter, the thread waits for a wakeup message on the

GDN. The last thread to hit the barrier broadcasts the wakeup message.

void

ba r r i e r (b a r r i e r t ∗ b , unsigned int threads)

{
int i , myID ;

int count ;

l o c k t ∗ l o c k p t r = &(b−>l o ck) ;

a c qu i r e l o c k (l o c k p t r) ;

count = ++(b−>counter) ;

i f (count < threads) {
r e l e a s e l o c k (l o c k p t r) ;

// wait f o r b a r r i e r wakeup s i g n a l

wait gdn msg (BARRIER WAKEUP) ;

} else {
b−>counter = 0 ;

r e l e a s e l o c k (l o c k p t r) ;

// wake everyone up

myID = raw get t i l e num () ;

for (i = 0 ; i < threads ; i++) {
i f (i != myID) {

gdn send 1w (BARRIER WAKEUP, i) ;

}
}

}
}

Bibliography

[1] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor,
“The greendroid mobile application processor: An architecture for silicon’s
dark future,” Micro, IEEE, vol. 31, pp. 86 –95, march-april 2011.

[2] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing the
energy of mature computations,” in Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming languages and operating
systems, ASPLOS ’10, (New York, NY, USA), pp. 205–218, ACM, 2010.

[3] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoff-
mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation of the Raw Micropro-
cessor: An Exposed-Wire-Delay Architecture for ILP and Streams,” in ISCA
’04: Proceedings of the 31st annual International Symposium on Computer
Architecture, p. 2, IEEE Computer Society, 2004.

[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2
programs: characterization and methodological considerations,” in Proceed-
ings of the 22nd annual international symposium on Computer architecture,
ISCA ’95, (New York, NY, USA), pp. 24–36, ACM, 1995.

[5] M. B. Taylor, “The raw processor specification,” 2003. http://groups.

csail.mit.edu/cag/raw/documents/.

[6] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” in Proceedings of the 11th
annual international symposium on Computer architecture, ISCA ’84, (New
York, NY, USA), pp. 348–354, ACM, 1984.

[7] J. Heinrich, MIPS R4000 Microprocessor User’s Manual. MIPS Technologies,
1994.

74

75

[8] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo directory:
A scalable directory for many-core systems,” in High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, pp. 169
–180, feb. 2011.

[9] SPEC, “SPEC CPU 2000 benchmark specifications,” 2000. SPEC2000 Bench-
mark Release.

[10] Embedded Microprocessor Benchmark Consortium, “Eembc benchmark
suite.” http://www.eembc.org.

[11] Independent JPEG Group, “Library for jpeg image compression.”
http://www.ijg.org/.

[12] A. Agarwal, R. Bianchini, D. Chaiken, F. Chong, K. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The mit alewife
machine,” Proceedings of the IEEE, vol. 87, pp. 430 –444, mar 1999.

[13] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hen-
nessy, “The dash prototype: Logic overhead and performance,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 4, pp. 41–61, 1993.

[14] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” in In Proceedings of
the 29th Annual International Symposium on Computer Architecture, pp. 148–
157, 2002.

[15] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: A computational fabric for software circuits and
general-purpose programs,” IEEE Micro, vol. 22, pp. 25–35, March 2002.

[16] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1,”
Tech. Rep. HPL-2008-20, HP Labs, Palo Alto, 2008.

[17] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through activity
migration,” in In Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 217–222, 2003.

[18] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation spreading: em-
ploying hardware migration to specialize cmp cores on-the-fly,” in Proceedings
of the 12th international conference on Architectural support for program-
ming languages and operating systems, ASPLOS-XII, (New York, NY, USA),
pp. 283–292, ACM, 2006.

76

[19] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Software data spreading:
leveraging distributed caches to improve single thread performance,” in Pro-
ceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, (New York, NY, USA), pp. 460–470,
ACM, 2010.

[20] J. A. Brown and D. M. Tullsen, “The shared-thread multiprocessor,” in Pro-
ceedings of the 22nd annual international conference on Supercomputing, ICS
’08, (New York, NY, USA), pp. 73–82, ACM, 2008.

[21] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,” in
Proceedings of the 22nd annual international symposium on Computer archi-
tecture, ISCA ’95, (New York, NY, USA), pp. 414–425, ACM, 1995.

[22] P. Marcuello, A. González, and J. Tubella, “Speculative multithreaded proces-
sors,” in Proceedings of the 12th international conference on Supercomputing,
ICS ’98, (New York, NY, USA), pp. 77–84, ACM, 1998.

[23] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture with spec-
ulative multithreading,” Computers, IEEE Transactions on, vol. 48, pp. 866
–880, sep 1999.

[24] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt, “Simulta-
neous subordinate microthreading (ssmt),” in Proceedings of the 26th annual
international symposium on Computer architecture, ISCA ’99, (Washington,
DC, USA), pp. 186–195, IEEE Computer Society, 1999.

[25] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen, “Speculative precomputation: long-range prefetching of delin-
quent loads,” in Proceedings of the 28th annual international symposium on
Computer architecture, ISCA ’01, (New York, NY, USA), pp. 14–25, ACM,
2001.

[26] J. Brown, L. Porter, and D. Tullsen, “Fast thread migration via cache working
set prediction,” in High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pp. 193 –204, feb. 2011.

[27] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single-
isa heterogeneous multi-core architectures: The potential for processor power
reduction,” 2003.

[28] H. Shen and F. Petrot, “Novel task migration framework on configurable
heterogeneous mpsoc platforms,” in Design Automation Conference, 2009.
ASP-DAC 2009. Asia and South Pacific, pp. 733 –738, jan. 2009.

77

[29] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting generational
behavior to reduce cache leakage power,” in Proceedings of the 28th annual
international symposium on Computer architecture, ISCA ’01, (New York,
NY, USA), pp. 240–251, ACM, 2001.

[30] M. Ghosh and H.-H. Lee, “Virtual exclusion: An architectural approach to
reducing leakage energy in caches for multiprocessor systems,” in Parallel and
Distributed Systems, 2007 International Conference on, vol. 2, pp. 1 –8, dec.
2007.

[31] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, “An in-
tegrated circuit/architecture approach to reducing leakage in deep-submicron
high-performance i-caches,” pp. 147–157, 2001.

[32] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proceedings of the 37th annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 37, (Washington, DC,
USA), pp. 319–330, IEEE Computer Society, 2004.

[33] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors,” in In Proceedings of the
32nd Annual International Symposium on Computer Architecture, pp. 336–
345, 2005.

[34] J. Chang and G. S. Sohi, “Cooperative caching for chip multiprocessors,” in
Proceedings of the 33rd annual international symposium on Computer Archi-
tecture, ISCA ’06, (Washington, DC, USA), pp. 264–276, IEEE Computer
Society, 2006.

[35] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive nuca:
near-optimal block placement and replication in distributed caches,” in ISCA
’09: Proceedings of the 36th annual international symposium on Computer
architecture, (New York, NY, USA), pp. 184–195, ACM, 2009.

[36] J. Lira, C. Molina, and A. González, “The auction: optimizing banks us-
age in non-uniform cache architectures,” in Proceedings of the 24th ACM In-
ternational Conference on Supercomputing, ICS ’10, (New York, NY, USA),
pp. 37–47, ACM, 2010.

[37] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian, “Swel:
hardware cache coherence protocols to map shared data onto shared caches,”
in Proceedings of the 19th international conference on Parallel architectures
and compilation techniques, PACT ’10, (New York, NY, USA), pp. 465–476,
ACM, 2010.

78

[38] E. Herrero, J. González, and R. Canal, “Elastic cooperative caching: an au-
tonomous dynamically adaptive memory hierarchy for chip multiprocessors,”
in Proceedings of the 37th annual international symposium on Computer ar-
chitecture, ISCA ’10, (New York, NY, USA), pp. 419–428, ACM, 2010.

[39] M. Hammoud, S. Cho, and R. G. Melhem, “Cache equalizer: a placement
mechanism for chip multiprocessor distributed shared caches,” in Proceedings
of the 6th International Conference on High Performance and Embedded Ar-
chitectures and Compilers, HiPEAC ’11, (New York, NY, USA), pp. 177–186,
ACM, 2011.

[40] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing replication,
communication, and capacity allocation in cmps,” in Proceedings of the 32nd
annual international symposium on Computer Architecture, ISCA ’05, (Wash-
ington, DC, USA), pp. 357–368, IEEE Computer Society, 2005.

[41] B. W. O’Krafka and A. R. Newton, “An empirical evaluation of two memory-
efficient directory methods,” in Proceedings of the 17th annual international
symposium on Computer Architecture, ISCA ’90, (New York, NY, USA),
pp. 138–147, ACM, 1990.

[42] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo directory:
A scalable directory for many-core systems,” in High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, pp. 169
–180, feb. 2011.

[43] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tag-
less coherence directory,” in MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, (New York, NY,
USA), pp. 423–434, ACM, 2009.

[44] H. Zhao, A. Shriraman, and S. Dwarkadas, “Space: sharing pattern-based
directory coherence for multicore scalability,” in Proceedings of the 19th in-
ternational conference on Parallel architectures and compilation techniques,
PACT ’10, (New York, NY, USA), pp. 135–146, ACM, 2010.

[45] J. Johnston, “Newlib.” http://sourceware.org/newlib/.

[46] E. Lusk, J. Boyle, R. Butler, T. Disz, B. Glickfeld, R. Overbeek, J. Patterson,
and R. Stevens, Portable programs for parallel processors. Austin, TX, USA:
Holt, Rinehart & Winston, 1988.

