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This project explores memory prefetching in the context of UCSD’s GreenDroid

tiled microprocessor. It details the process by which a simple, removable stride-based

prefetcher was developed and simulated on GreenDroid’s cycle accurate simulator, and

it discusses the implementability of such a prefetcher on an actual version of the Green-

Droid chip. The simulation results illustrate that this prefetcher can achieve buffer hit

ratios of nearly 100% during the execution of certain commonly used algorithms, and

that it can be minimally intrusive when its hit ratios are low.
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Chapter 1

Introduction

This project sets out to develop and simulate a simple stride-based prefetcher

for the GreenDroid microprocessor. This prefetcher is designed to be low in complex-

ity, have a low footprint, and be easily added to the GreenDroid system without major

overhauls of its other systems.

Moore’s Law illustrates a now well-understood trend in computing: the density

with which transistors can be put onto a piece of silicon has been doubling roughly every

year and a half for the last fifty years [33]. For some time, as the physical footprint of

the transistor had grown exponentially smaller, we had seen an exponential increase in

the speed at which microprocessors could be clocked. This trend lasted until about 2005

when the microprocessor industry hit the infamous power wall [7, 15, 21, 22, 43]. With

the transistor’s minimal surface area decreasing exponentially quickly and its power re-

quirements decreasing only quadratically, its power dissipation per surface area require-

ments had grown exponentially. The microprocessor industry hit the power wall when

microprocessors became more limited by their power dissipation requirements than by

the speed of their individual transistors.

1
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The power wall gave rise to an age of increasingly power efficient hardware

[22,28], parallel processors [6,13,18,19,22,26,32,35,36,41,42,44,45], and increasing

amounts of dark silicon [12, 19, 20]. There are reasonable limits to the rate at which

a given area on a chip can be cooled; a chip’s power budget is determined largely by

its overall surface area. Dark silicon comprises the parts of a microprocessor which

rarely perform power-consuming operations. If parts of a chip are "darkened" (covered

with useful low-power hardware or hardware that is rarely used), performance can be

increased without imposing a heavy burden on the chip’s power budget. Furthermore,

areas of dark silicon can be used to dissipate heat generated by their more active neigh-

boring regions. Most dark silicon comes in the form of large on-chip caches [32, 41].

However, the effect of a cache size increase on overall processor performance tends to

diminish as the cache grows in size; thus, as the amount of dark silicon required to keep

a chip running within its power budget has increased (as an effect of Moore’s Law),

novel devices such as conservation cores or c-cores [46] (see Section 2.1.1 on c-cores)

and unconventional cores or U-cores [9] have begun to spring up as potential utiliz-

ers of this expanding dark silicon real estate. These sorts of technologies incorporate

specialized processing cores alongside the general-purpose processor which are capable

of performing common computational tasks more energy-efficiently than the general-

purpose processor. Since these specialized processors are only used during particular

parts of a computation, they do not often contribute to the overall power budget of the

chip.

Another effect of Moore’s Law has been a gap in performance which has sprung

up between mathematical processing speed and large memory access speed. As proces-

sors have gotten faster and memories (as well as applications’ memory requirements)

have gotten larger, reducing the effects of memory latency has become an issue of

paramount importance in increasing overall processing performance for common com-
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putational tasks. In 2005, when the power wall began to slow the rate of serial processing

speed increases, parallel execution secured a place at the forefront of microprocessor

research. With increasing levels of parallelism in execution, memory contention has

continued to push forth the margin between processor and memory performance [38].

Memory latency is one of the most significant contributers to computation time in to-

day’s computing systems. While many mathematical and control operations can be

performed by a processor within a few cycles, the time required to access the data being

processed can be on the order of 100 cycles or more.

Reducing the effects of memory latency on computation time is and has been a

very active area of research. For niche computational tasks, a myriad of techniques have

emerged; these include streaming memory systems with streaming processors [13, 35,

36,42] and barrel systems [5]. These systems can be very effective within their problem

domains, but are often lacking in general-purpose computation. For general-purpose

computing, the primary solution is a combination of caching and prefetching. A passive

caching system keeps data close the processor once it has been requested, expecting that

it will be requested again shortly. A prefetcher, by contrast, works to request data that

the processor will need before the processor itself ever calls for it.

This project discusses memory prefetchers and their applicability to UCSD’s

GreenDroid [19, 44] tiled microprocessor [45]; it details the conception of a prefetcher

for the memory system of GreenDroid. The project begins with some background on

prefetchers and the GreenDroid processor. It then goes on to discuss the problem of

designing a prefetcher for GreenDroid, the goals of such a design, and how such goals

relate to the general field of prefetcher design. Next, it discusses the design process

of ModeFetch itself, illustrating the design trade-offs by taking the reader through the

evolution of the design. Finally, it outlines the simulation of a prefetcher prototype

on GreenDroid’s cycle-accurate simulator. In simulation, use of the prefetcher lead to
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significant improvements in the simulated c-core calculation time as well as the overall

calculation time of the simulation. The project concludes by discussing the results of

the simulation, and making suggestions for future work.

1.1 GreenDroid
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Figure 1.1: An illustration of the layout of the tiles in the GreenDroid microprocessor.

[46]

GreenDroid is a high-performance, low-power tiled multiprocessor (see Figure

1.1). Its design is based on the idea that certain computational tasks are performed

in many situations. GreenDroid leverages this notion by incorporating a series of c-

cores into each of its tiles. Whenever an application seeks to perform a popular task for

which there exists a c-core, control is transferred from the general-purpose processor

over to that c-core; a special compiler automatically adds the control transfer instructions

into the code of GreenDroid’s applications at compile-time. Each of GreenDroid’s tiles

comprises a processing core which has its own cache as well as its own processing
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Figure 1.2: An illustration of the layout of an individual tile in the GreenDroid micro-

processor. (CPU := general-purpose processor, C := c-core, D$ := d-cache, I$ := i-cache,

OCN := on chip network) [46]

elements. Tiles house three primary elements: a general-purpose processor with its own

L1 i-cache, a set of c-cores, and an L1 d-cache, which is shared by the general-purpose

processor and the c-cores on that tile (see Figure 1.2). C-cores are specialized processing

elements which are designed to perform one job very efficiently. Because each c-core is

designed to perform just one particular computational task, it can perform that task more

efficiently than a general-purpose processor: it does not incur overhead from a register

file, an i-cache, or much of the other hardware necessary to a general-purpose processor.

GreenDroid saves energy by using c-cores to perform popular computations.

GreenDroid represents a dynamic class of processor designs in the sense that

its instances are built around the applications they are expected to run. GreenDroid

utilizes a special compiler to generate programs that can take advantage of c-cores; that

same compiler system is responsible for generating the c-cores that will be included

in a particular GreenDroid release. This means that a set of GreenDroid releases, while

working within the same framework, may have significant variation with regards to their



6

c-cores, based on each release’s intended use.

GreenDroid’s tiles communicate through a set of mesh networks. These net-

works are decentralized in an effort to support scalability with regards to tile numbers

on the chip; while resource contention does not scale well (including contention for

memory resources), direct communication between nearby tiles does benefit from the

decentralization of the on-chip networks. Each tile is connected directly to its neighbors

through three networks: the Static Network, the General Dynamic Network, or GDN,

and the Memory Dynamic Network, or MDN. The first two of these networks are used for

tile-tile and tile-device communication, and the third is used only for processor-memory

communication. The MDN is required to ensure provably deadlock-free access to the

DRAM, which can be used as an overflow buffer for the other networks, alleviating any

deadlock that may occur in them. The GDN provides general routed communication

between any two processors on the chip. The static network provides efficient direct

communication between neighboring tiles. The dynamic networks allow for the routing

of packets between non-neighboring tiles and between tiles and the sides of the chip.

The memory controller(s) lie on the sides of the chip. Memory communication is bot-

tlenecked, since the area of the processor (and associated number of tiles) grows more

quickly than the perimeter (O(<side length>2) vs. O(<side length>)). This means that

packets sent by multiple tiles over the dynamic on-chip networks will begin to pile up

as they make their way toward the limited number of processor-side DRAM ports. This

effect worsens as the number of tiles on the chip is increased.

1.2 Memory System Scaling

As computers have grown faster and more capable, they have required larger

memories. Most computing systems incorporate a memory hierarchy stretching from
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small, fast, expensive memory through several levels to large, slow, cheap memory.

Modern memory systems often use caching to store local copies of data for which there

is believed to be an eminent need closer to the processor; this allows that data to be ac-

cessed more quickly when needed. Generally the processor must request a piece of data

a first time before it is cached for subsequent accesses. Prefetching is a process which

involves the anticipation of the processor’s needs. By properly modeling the processor’s

memory request patterns, a prefetcher may use observed or otherwise understood trends

to speculate about future memory requests that the processor will make. It may then

prefetch the expected data before it is ever explicitly requested by the processor. The

data that is prefetched may be stored in the prefetcher’s own limited size buffer near the

processor, or it may be sent directly to some level of the processor’s cache.

Other systems for dealing with the high data fetching latencies associated with

large memories include streaming processors with streaming memories [35], which are

used for computational work that can be performed on vector data, and barrel proces-

sors [5], which mask memory latency by interlacing the execution of many threads to-

gether, efficiently rotating between them so that each thread is only active in the pro-

cessor while its data are available. Both of these latency minimizing/masking methods

impose requirements on the particular type of processing being performed: although

barrel processors can be well leveraged to effect efficient throughput computing [30]

on applications with many independent threads of execution, they are not designed to

reduce latency in computing systems which require real-time operation of each thread.

Streaming and vector systems are similarly limited to applications involving the stan-

dardized processing of series of related data such as SIMD (single-instruction-multiple-

data) tasks [14]; although streaming systems can be highly efficient when executing

programs from within their domain, they lose their ability to hide large memory latency

in applications with irregular memory access patterns.
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Caching and prefetching together comprise an often imperfect, but particularly

versatile system; this system can be used to reduce latency on some level in nearly any

computing task. Caching alone can be very effective at retaining small sets of often-

used data in fast memory. As a particular application begins to request data from larger

sets, each piece with less frequency, it becomes more difficult for a small cache to keep

an effective subset of that data near the processor, and the benefits of having much of

that rarely accessed data near the processor diminish. In these scenarios, the prefetcher

becomes a more and more important part of the memory system.

Prefetching for complex memory accesses patterns is an open area of research

[24]. Most prefetchers base their predictions on observations of the processor’s request

stream. As the ordering of addresses in this stream becomes more complex, their ability

to make predictions tends to wane. This project focuses on a low-overhead, general-

purpose prefetcher, intending to make improvements in compulsory cache miss times

for the general case without imposing a significant burden on the processor’s real estate

or power budgets.

1.3 Prefetching for GreenDroid

Unlike other tiled processors such as RAW [45] or Tilera’s Tile64 [6], Green-

Droid utilizes much of its tile space to house c-cores. It keeps only a small L1 cache

on each tile, rather than using its dark silicon to accommodate an extra L2 cache. This

allows each c-core to share some L1 cache with the general-purpose processor on its

tile.

GreenDroid’s 16 tiles are heterogeneous, each housing a different selection of

c-cores. This heterogeneity is necessary to keep each c-core close to a general-purpose

processor and an L1 cache which is itself close to the same general-purpose processor.
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So although GreenDroid has 16 tiles, all of those tiles are generally not expected to be

used at the same time; rather, each is expected to be used primarily when the current code

being executed can make use of the c-cores on that tile. Thus, while the tiled layout of

GreenDroid is based off of the same ideas as some other massively parallel architectures

(such as RAW), GreenDroid itself is more of a serial or slightly parallel processor which

can execute transport its code execution over a series of physical regions.

GreenDroid is not designed specifically for the processing of streaming data;

however, depending on the intended use and selection of c-cores for a specific chip

design, GreenDroid may find the ability to stream data from DRAM useful. Streaming

can be accomplished by using a set of several memory controllers at the side of the

chip and requesting data from them in series. This sort of layout could complicate the

design of a prefetcher for GreenDroid. Thus, while this prefetcher is designed primarily

for a non-streaming chip, care has been taken to ensure that it could be capable of

accommodating a streaming setup as well.

1.4 Project Organization

In Chapter 1, the project exposes the reader to the primary problem being ad-

dressed and outlines the solution developed. The GreenDroid processor is discussed

in detail in Chapter 2; its strengths and limitations are detailed along with the effects

they have on the design of a prefetcher for its memory system. The specific problem

of designing a prefetcher for GreenDroid is refined in Chapter 3 with a detailing of the

prefetcher’s goals and constraints. The project illustrates, in Chapter 4, the design pro-

cess for the prefetcher, outlining decision points, discussing the options available at each

point, and arguing for the selections made. Related work is discussed in Chapter 5 with

a primary focus on other prefetcher designs which are based on related concepts. The
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simulation environment, decisions made regarding simulation, process of simulator de-

velopment, and simulation results are then discussed in Chapter 6. Chapter 7 concludes

the project, evaluating the simulation results and making suggestions for future work.



Chapter 2

GreenDroid

In this section, we discuss GreenDroid in detail, illustrating the features from

which the prefetcher benefits most as well as the constraints that GreenDroid places on

the prefetcher.

2.1 Architecture Overview

GreenDroid is a tiled microprocessor in development at UCSD. It is designed

to run applications built for Google’s Android platform. Using c-cores, GreenDroid

reduces power requirements for popular computations made by its applications. This

method is particularly effective in reducing the power required to run the Android oper-

ating system code and common library code since Android applications make extensive

use of such code. Android is a good target for GreenDroid in part because it makes ex-

tensive use of virtual machines (VMs) and interpreters. This means that by optimizing

the execution of segments of the VM and interpreter code using c-cores, GreenDroid

can optimize the execution of a myriad of popular Android programs. Moreover, since

11
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for each Android device, there exists a particular set of pre-installed and otherwise pop-

ular applications, c-cores can be used to optimize for the needs of the particular popular

application set of each device; the GreenDroid manufacturing system can generate a

different set of c-cores for each potential application set. Finally, Android makes a good

target for the low-power GreenDroid processor because it tends to be used in portable

devices with limited battery capacity.

Although GreenDroid is equipped with 16 processing tiles, it is designed largely

as a serial processor. GreenDroid’s tiled architecture allows it to keep a general-purpose

processor and an L1 d-cache near each of its c-cores. Without the tiled nature of the

chip, either not all c-cores would be able to be afforded the same level of proximity to

an L1 d-cache or a general-purpose processor. By migrating around the processor from

tile to tile, a process can have access to any c-core it requires, and can jump between

that c-core and a general-purpose processor as needed, using the shared L1 cache to

communicate between the c-cores and the general-purpose processor on the tile.

2.1.1 Dark Silicon and C-Cores

GreenDroid’s c-cores are a direct response to the power wall that the processor

design industry has been facing since 2005. In order to cool down a chip, the chip

must either run slowly or part of it must not run at all. As processing techniques have

improved, it has been possible to put more logic in the same physical area of a chip.

This logic heats the chip up when used. As logic has gotten exponentially smaller,

power output per unit area has gotten exponentially larger. The traditional response

to this issue has been to replace parts of chips that could hold processing cores with

caches of increasing size, because caches can increase the speed of many tasks without

expelling very much heat; caches are a form of dark silicon (an area of a processor
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which is not generally active). GreenDroid takes a different approach: c-cores. C-cores

are inherently dark during much of the active life of a chip, since they can only be used

when their particular task is being performed. At any given moment during a particular

thread’s execution, a majority of the processing elements on GreenDroid are not using

any of the chip’s power budget, as control for the thread lies in only one general-purpose

processing core or c-core. Because much of GreenDroid’s area is covered with c-cores

or routinely dormant general-purpose processors, GreenDroid is capable of being run at

high speed without overheating.

GreenDroid is concerned with energy consumption rates not only because of heat

issues, but also because of its goal of working as a mobile processor. In mobile applica-

tions, battery life and device heat dissipation require more strict power limitations than

those imposed upon 125+ Watt desktop and server CPUs. By using c-cores, GreenDroid

is able to adhere to these extra-restrictive needs without sacrificing speed. Aside from

helping with heat dissipation by lying dormant at most times, c-cores can also help to re-

duce the total amount of energy required to perform a particular computation. A c-core

can execute its particular task more power-efficiently than a general-purpose processor.

This efficiency comes from the reduced overhead that c-cores have compared to general-

purpose processors for performing the same tasks: C-cores do not require elements such

as register files, instructions, and i-caches because their functionality is hardwired into

their structure. The lower energy requirements of c-cores can help GreenDroid to be not

only power-efficient, but also battery-friendly.

GreenDroid is a flexible architecture, which may incorporate c-cores for a vari-

ety of different applications. C-cores are generated dynamically for each GreenDroid

release. Predicting the layout of a particular GreenDroid release is difficult, since the

c-cores are developed on a per application basis. GreenDroid’s c-cores are generated

by a specialized compiler system, which is also used to generate programs that take ad-
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vantage of the included c-cores. This compiler inspects programs being compiled for

GreenDroid to find areas of their computation that could benefit from the use of some

c-core. When an appropriate area or set of areas is found, the compiler generates an

applicable c-core, and then replaces the appropriate code sections of the application

with calls to transfer control to that c-core. During runtime, the execution of a program

moves around the processor between general-purpose cores and c-cores, attempting to

utilize as much specialized hardware as possible in order to save on energy expenditures.

GreenDroid’s compiler is well aware of the "types" of computations that each release

is expected to perform, and sets up the hardware/software system to make the expected

computations occur as power-efficiently and energy-efficiently as it can.

2.1.2 Communication

Communication on GreenDroid is accomplished by using a set of mesh net-

works: the static network, the GDN, and the MDN. These networks comprise a set

of decentralized communication mechanisms for tile-to-tile message passing, as well

as tile-to-main-memory communication. The static network is used for extra efficient

communication between neighboring tiles, requiring no dynamic packet routing infor-

mation. In order to communicate between tiles which are not adjacent, the GDN is

used. The GDN, while effectively more capable, is slightly less efficient than the static

network in that values transported over it are wrapped within packets complete with

headers describing their source and destination addresses.

All external devices communicate with GreenDroid via interfaces at the chip’s

side. Interfaces to main memory work in this way. Memory request messages are passed

along the MDN, relayed from tile to tile, beginning at tiles which need to access mem-

ory until they reach the side of the processor, at which point they are taken off of the
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chip by the appropriate DRAM interface. The response data is delivered via the same

mechanism, from the side of the processor, by relay, back to the original requesting tile.

While each tile has an independent (but still coherent) caching system, main memory is

shard between the tiles of the processor. There may be multiple memory controllers at

the side of the processor, but for any particular physical memory address, all of the tiles

must use the same memory controller.

2.2 Memory Hierarchy

GreenDroid utilizes a relatively standard memory hierarchy for a multiproces-

sor. At the top level, each tile’s general-purpose processor has its own register file, the

contents of which are governed by the program being executed on that processor. Next,

each tile has an L1 cache; only data from those addresses fetched by the tile in question

is stored in this cache. GreenDroid employs a cache coherence system for its network

of 16 L1 caches. Behind these caches is the DRAM which may be controlled by one or

more off-chip DRAM controllers. [39]

2.2.1 Caching System

GreenDroid performs memory caching on a per-tile basis. Each tile has an L1

i-cache and an L1 d-cache. The d-cache is shared by the general-purpose processor

and the c-cores of the each tile. The i-cache is only accessible to the general-purpose

processor. C-cores have no need for an i-cache since their instructions are encoded

directly into their hardware and need not be fetched from main memory. This system

expedites transfer of control between the c-cores and the general-purpose processor by

allowing them to access overlapping data quickly.
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2.2.2 Main Memory Access System

When a GreenDroid tile wishes to make a request to main memory, it does so

through the on-chip memory dynamic network, or MDN. First, a memory request packet

is generated, and then that packet is routed over the mesh network from tile to tile until it

arrives at the side of the chip. The packet is then offloaded from the chip and received by

a memory controller appropriate to the address being fetched. The memory controller

responds to the request with another packet, this one addressed to the requesting tile.

That packet is routed from the DRAM controller, back over the chip to the original

requesting tile.

While memory controllers are attached to GreenDroid in a similar location and

manner as other I/O devices which use the GDN for communication with on-chip tiles,

they do require use of the MDN. Unlike the GDN, the MDN is restricted only to memory

request traffic; it exists in order to provide provably deadlock-free access to the DRAM;

this allows the DRAM to be used as an overflow buffer for the GDN so that it can be

rescued from any deadlock conditions which could arise.

Since the number of tiles on the chip is quadratically related to the number of

tiles on the perimeter of the chip, off-chip I/O including memory access is the most

bottlenecked function of GreenDroid. The maximum number of memory controllers is

limited by chip perimeter. Many controllers may be put on the side of the chip with

parallel access available due to the nature of the mesh network. However, in a typical

case, no more than a few memory controllers on one chip are expected.

2.2.3 Known Potential Modifications

Unused spaces in each tile’s L1 cache may be used by adjacent tiles as victim

buffers or extended L2 caches. This is a modification that has been considered by other
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teams during the time of this project writing, and it will affect the future work section of

this project. [39] This modification may be efficiently implemented due to GreenDroid’s

efficient neighboring tile communication mechanism (namely, the static network).



Chapter 3

Problem Description

This chapter discusses the problem of designing a prefetcher for GreenDroid in

detail. It describes the challenges a prefetcher faces and the advantages it sees working

within the GreenDroid environment and the expectations of performance from such a

prefetcher.

3.1 Memory Prefetchers

Memory prefetchers are designed to help minimize memory latency in comput-

ing systems. Memory latency is caused by circuit and physical slowdowns found be-

tween processing elements and main system memory. Latency is one of the key factors

affecting performance in most general-purpose computer architectures. Since memory

latency tends to increase with memory size (and associated complexity), the latency

problem is commonly dealt with by imposing a strict memory hierarchy. This hierar-

chy allows the system to utilize small, low latency memory for storing data that are

frequently accessed, while retaining the ability to store large amounts of data which are

more rarely used in larger sets of slower memory.

18
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Most prefetchers attempt to monitor the flow of memory requests, seeking to

extrapolate patterns. When a pattern is identified, the prefetcher uses it to predict the

location of future, near-term memory requests. The prefetcher may then issue a request

on behalf of the processing hardware. The goal is that this piece of data will be requested

by the processor shortly and may be accessed with lower latency because the initial

request to main memory came before the data was needed. This reduces the number

of cycles during which the thread in execution will have to wait for the data to arrive,

speeding up the overall computation.

Since channels to main memory can be a valued commodity in the memory

system, there is a cost to the issuance of a prefetch request. The prefetcher only consid-

ers issuing requests that it has determined are likely to be used by the processor soon.

The question of cost comes down to the resultant memory contention increase that the

prefetch request may cause. Also, in low-power architectures, the energy required for

the issuance of extraneous, unnecessary memory requests can be detrimental. For these

reasons, the prefetcher must be judicial with its determination of the cost-to-benefit ratio

of issuing each request.

3.2 Expected Work Load

In order to determine the work load that a GreenDroid prefetcher is likely to

encounter, it is useful to consider the domain of possible applications that may be run on

the processor. This is a difficult task, since GreenDroid is a general-purpose processor.

However, certain assumptions can be made based on the standard libraries and system

code of which Android applications tend make heavy use. One of the motivations for

the production of a c-core processor for the Android operating system is that Android

applications tend to rely heavily on standard libraries and the operating system itself.
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The specific c-core set selected for a GreenDroid release can be used to define a chunk

of the application domain for the processor.

3.3 Design Goals

Since the prefetcher of this project is being designed to work with GreenDroid,

its primary goals are power efficiency, accuracy, and simplicity.

Accuracy, on the part of the prediction logic, is a key attribute to improving pro-

cessor performance. It is also key to prefetcher power efficiency. Reducing the number

of extraneous fetch requests made to the DRAM can improve power efficiency, since it

will in turn reduce the burden of extraneous work laid upon the DRAM. Simplicity is

important, both for power efficiency, and for the reduction of the prefetcher’s footprint.

The prefetcher should not take up more space in GreenDroid’s space-limited environ-

ment than necessary.

3.4 Expectations of Performance

This section focuses on the theoretical potential for performance increases that

any GreenDroid prefetcher could effect. This potential is based on the benefits and

limitations placed on a prefetcher by the GreenDroid environment.

3.4.1 DRAM Configuration

DDR2 DRAM is divided into a set of banks, which are memory partitions that

are capable of acting independently in parallel. Within a bank is a series of rows, each

of which is divided into columns. A cache line’s address is defined by a particular bank,
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row, and column. In order to perform a read operation for a particular cache line, the

appropriate bank must first ensure that the appropriate row is opened. If it is not opened,

the bank must first close another row if it is opened, and then open the new row. The

row closing, or precharge, operation returns the bank to a neutral state. The opening

of the new row is called a Row-Address-Select operation (RAS). Once the appropriate

row is opened, the bank may accept Column-Address-Select (CAS) commands to read

cache lines from the opened row.

The amount of time required to service a particular request is known as the re-

quest latency and it depends on several factors. Firstly, the physical makeup of the

DRAM defines certain RAS and CAS latency values. Secondly, the location of the re-

quested address and the current state of the DRAM’s banks determines whether a bank

will have to be precharged and whether a new row will have to be activated. While the

precharge operation does take some time, it is usually much less time than an RAS or

CAS operation. The primary factors in determining the latency are the RAS and CAS

latencies and whether or not an RAS must be performed.

The second concern with regards to memory request speed is throughput. In

a pipelined DRAM, multiple requests may be issued before a single request has been

serviced. While the time taken to service each individual request will not be effected

by this pipelining, the total number of requests serviced in a given period of time may

be increased. The maximum throughput in a DRAM is limited by the maximum rate at

which the DRAM can accept requests. In an SDRAM this is determined by the clock

frequency. If a stream of proximal cache line requests is fed to a DRAM controller,

each address may be able to be serviced by a different bank. This means that the CAS

latencies of the banks will overlap, and the throughput will increase. Furthermore, the

RAS latency can be avoided for most operations since the same row will be accessed

over and over within each bank until all of the cache lines in that row have been accessed
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and a new row must be opened.

GreenDroid’s simulator incorporates a DRAM simulation module, which ac-

cepts one memory request address at a time. It waits a predefined number of cycles (in

order to simulate latency). Once the latency has been simulated it proceeds to accept an-

other request address (and respond with a value if the original request was a read). This

differs from the DDR2 DRAM capabilities discussed above in that it cannot service

multiple outstanding requests by pipelining through the leveraging of different banks.

A prefetcher’s potential effectiveness is dependent on the memory system for

which it prefetches. A pipelined DRAM would be able to handle multiple outstanding

cache line requests at once. By contrast, GreenDroid’s DRAM simulation module is

able to handle only one outstanding request at a time. This distinction has an effect

on the design and potential performance of the prefetcher. In the simulated module,

the memory system has to wait for an outstanding prefetcher request to be serviced

before it is capable of servicing a processor request. For this reason, an inaccurate

prefetcher being used with such a DRAM can be a significant drain on the system: if the

processor’s DRAM requests routinely run into frivolous outstanding prefetcher requests,

the effective DRAM latency may be increased by as much as a 2:1 ratio.

In the case of a pipelined DRAM, the amount of time required to wait between

the servicing of two concurrent requests may be significantly less than the average la-

tency of the DRAM; it will instead depend on the clock frequency of the DRAM. In this

case, a processor request may be made even with one or more outstanding prefetcher or

processor requests already in the pipeline. For this reason, in the simulation environ-

ment, a prefetcher must be more diligent about making only promising requests than a

prefetcher being used with a pipelined DRAM.

The prefetcher’s performance will be heavily influenced by the constraints on
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the memory system. Firstly, the memory bandwidth to latency ratio will bound the max-

imum performance of any prefetcher on any system. Where the primary limiting factor

in memory access speed is latency as opposed to throughput (for instance, in the case

of the simulator, where only one piece of data may be fetched at a time, and sequential

data may not be streamed out of multiple banks efficiently), the system is faced with

a 2:1 maximum possible latency reduction per DRAM controller, as illustrated in the

following analysis:

In the best case, a prefetcher can anticipate all memory accesses ahead of time;

if this occurs, there are three cases for what could happen to the processing speed per

code segment:

1. The processor had been spending most of its time waiting for cache misses. In this

case, the processor would quickly catch up to the prefetcher, and end up waiting

for cache misses, even if they had been requested by the prefetcher ahead of time.

Thus, in short order, the processor would reach steady-state, spending about the

same amount of time waiting for cache misses, since the prefetcher would only be

able to make requests at about the same rate as the processor.

2. The processor had been spending most of its time performing processing, rarely

missing in the cache. In this case, since the processor had been spending less than

half of its time waiting for cache misses, even bypassing all of that time would

not reduce total running time by more than half. The maximum performance gain

in this case would be governed by Amdahl’s Law [2], where the portion of time

eligible for speedup were less than half.

3. The processor had been spending half of its time waiting for cache misses. In

this case, the processor would end up finishing its processing time between cache

misses just as the next would-be cache miss arrived in the cache or prefetch buffer,
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at the prefetcher’s request. At this point the processor would be able to use the

value requested and continue processing while the next value were prefetched.

This, the best case for prefetcher effectiveness, would result in a 2:1 speedup,

since the 50% processing time would take 100% of its original time, and the 50%

cache miss time would take 0% of its original time.

In any type of DRAM, the ordering of requested addresses can be important.

When a set of proximal addresses are fetched in series in ascending order, the DRAM

may be able to respond more quickly by using multiple banks in parallel. This can allow

the DRAM to avoid the extra RAS latency involved with less contiguous patterns. Be-

cause the fastest series of addresses to fetch are often contiguous in memory, stride [16],

stream [23, 25, 37], and scheduled region [29] prefetchers can be particularly effective

as they tend to issue prefetch request streams pertaining to largely contiguous data.

Only by stacking multiple memory requests on top of each other in a pipeline

could a memory system begin to see greater than 2:1 speedups per DRAM controller

due to a prefetcher. In this case, a prefetcher could be much more effective at leveraging

the advantages of the memory pipeline than a single processing core. A processing core

executing a single thread will generally stall while waiting for each cache miss to be

serviced in the memory. This means that only one request from the given thread will

be put through the pipeline at a time. The reason the processor stalls is that the rest of

the thread’s execution and the decisions of the processing core will likely depend (at

least in part) on the value of the requested memory address. Conversely, a prefetcher’s

decisions may be largely or completely independent of the value of the data returned

from the memory. Thus, the prefetcher may be able to issue multiple requests in short

order without any regards for the latency of each request.

The nature of the simulation environment to accept only one outstanding mem-
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ory request at a time could have had some bearing on the prefetcher design. In the

benchmark situations, the amount of time taken to calculate and request a new address

was sufficient to stay ahead of the processor for nearly all of the cases encountered dur-

ing simulation. The prefetcher seemed able to make its high-value requests as needed

with the unpipelined DRAM. Furthermore, the processor spent very little time waiting

for the prefetcher, even in the worst cases, indicating that contention was not a big issue.

Thus, it seems likely that the prefetcher, as simulated, would have benefited little from a

pipelined DRAM. However, perhaps had a pipelined DRAM been used, the prefetcher’s

aggressiveness could have been higher, and it could have been allowed to make more

lower-confidence requests, resulting in higher hit ratios (see 4.4 for a discussion of ag-

gressiveness).

3.5 Prefetchers in Developing DRAM Configurations

If we attempt to look into the future and make some predictions as to how the

need for prefetchers will develop by forecasting the development of DRAM, we look

at the upcoming DDR4 spec for clues. Similarly to the DDR2 to DDR3 transition, we

see an increase in bandwidth (by increasing the clock frequency from 1066MHz to as

much as 2133MHz) and a decrease in power consumption by a lowering of the operating

voltage (from 1.2-1.65V to 1.05-1.2V). However, if the DDR2 to DDR3 transition is an

indicator, we can expect the low-voltage DDR4 DRAM to have higher latencies than

the higher-voltage DDR3. With more banks (16 banks per chip for up to eight chips per

package allowing for an effective 128 independent banks in DDR4), however, the RAS

latency should be encountered less often. The higher bandwidth and the higher number

of banks should go to increase the possible throughput for consecutive address streams

dramatically.
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Since prefetchers are primarily concerned with hiding the effects of latency and

can potentially benefit from increased bandwidth, it appears that there will be the same

or more need for them in the near future. The DDR3 to DDR4 transition may effect

the decisions of a low-power prefetcher such as the one developed in this project: be-

cause DDR4 is designed to reduce power consumption of memory operations, low-

power prefetchers may be able to be more liberal with their prefetch issuance without

having as much of an effect on the overall system power budget.



Chapter 4

Design

This chapter details the design of the prefetcher, walking the reader through

decision points in order to illustrate the reasoning behind each decision. It also details

the final design of the prefetcher simulated and argues the implementability of the final

design.

4.1 Placement

The initial phases of the design were focused on determining the best logical

location for the prefetcher and its prefetch buffer. The outcome of this decision would

have effects on the size and arrangement of the prefetcher buffer, the maximum rate

of prefetcher request issuance, and the physical size and complexity of the prefetcher

decision logic itself. Factors considered in determining this placement included the size

of the prefetcher buffer, the tile to prefetcher buffer latency, and the prefetcher’s effect

on the on-chip mesh network.
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4.1.1 At the Tile Cache

Figure 4.1: A depiction of the potential prefetcher location: At the Tile Cache

Placement of prefetchers alongside individual tile caches (see Figure 4.1) would

suggest multiple prefetchers, each tied to a specific tile. These prefetchers could fetch

into local prefetch buffers or into the d-caches of their tiles.

There would be potential advantages to this setup. Firstly, prefetchers could

fetch either into a buffer positioned on their tile or directly into their tile’s d-cache.

Both of these buffer locations would promote low latency to prefetched data. Secondly,

communication of miss streams and mode switch packets from tiles would be low in

latency and would not require use of the chip’s networks.

Local tile prefetchers would have several disadvantages. Firstly, they would

compete for valuable processor real estate and cooling. As can be seen in Figure 4.1,

the prefetcher would be competing for the same chip real estate on each tile as the

general-purpose processor, the c-cores, and the L1 cache. Any prefetcher logic placed

on a tile would have to be put there in place of other, perhaps more valuable hardware,

and the heat generated by such logic would contribute to the dissipation demands on the

processor. Secondly, a proximal prefetched data storage system would put extra stress

on the chip’s networks, some of which could be unnecessary since some prefetches
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could never be used. Thirdly, if local prefetch buffers were used, they would have to be

kept coherent; this would put a significant burden on the chip’s networks as well as the

complexity of the prefetcher and its integration with the rest of the chip. Conversely, if

the tiles’ d-caches were used as prefetch buffers, then prefetched data would inevitably

evict program requested data, creating a conflict of interest between the prefetcher and

the program.

On-tile logic would not be necessary for an on-tile buffer or d-cache storage of

prefetched data. Prefetched data could be delivered to such proximal locations by off-

tile logic via the GDN or the MDN. This could help to alleviate some of the real estate

and power budget contention issues associated with local prefetchers.

From the perspective of prefetcher development as an optional system to aug-

ment the functionality of GreenDroid, a set of prefetchers designed to be local to each

tile, would be much less flexible in their design. Integration and removal of such

prefetchers would be far more complex than would that of a prefetcher which did not

have machinery amongst the chip’s tiles. Local prefetchers would also burden the c-

core development system with additional complexity, since it would have to set up each

prefetcher on each tile so that it could work with and share space with the particular

c-cores placed on that tile.

4.1.2 At the Edge of the Mesh Network

This location would be on the GreenDroid chip itself between the side of the

mesh network and the external DRAM ports (see Figure 4.2).

This location would have advantages over the previous. Firstly, the prefetcher

would be able to make requests to the DRAM without using on-chip networks. This

could reduce the burden of unused prefetch requests on those networks significantly.
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Figure 4.2: A depiction of the potential prefetcher location: At the Edge of the Mesh

Network

Secondly, using a single prefetch buffer would eliminate the need for buffer coherence

without causing the prefetched data to contend with the program requested data for d-

cache locations. Thirdly, by moving all of the prefetcher’s hardware outside of the tiles,

several complexity issues associated with on-tile hardware placement (discussed above)

could be mitigated.

There would be disadvantages of this system above as well. There would be

higher latency between each tile and its prefetcher logic and buffer since all commu-

nication between the tiles and the prefetcher would have to go over on-chip networks.

Also, prefetcher logic communication (such as mode switch packets) would put a small

burden on those networks, although this would be expected to be trivial, since mode

switches would not occur frequently. Similarly to the previous location, in this location,

the prefetcher would be limited in physical size and complexity, as it would still be com-

peting with other components for processor real estate. While the complexity regarding

chip integration could be reduced, there would still be issues: the prefetcher’s design

would be tied to that of the rest of the chip, complicating independent development, and

its footprint would have to be taken into account whenever a chip’s c-cores changed.
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While the prefetch buffer capacity would be limited by this placement, the la-

tency between tiles and the prefetcher would be similar to the average latency between

two tiles, which would be low compared to the latency between a tile and a location in

DRAM.

Using underutilized on-chip tile caches to hold victim entries from neighboring

tiles is an idea that has been considered by other GreenDroid teams. This prefetcher

location could benefit from such a setup since the victim cache network packet pro-

tocol could potentially be hijacked by the prefetcher, allowing it to use underutilized

caches as prefetch targets without having to deal with cache contention or local prefetch

buffer coherence. For prefetches with a high likelihood of use, this could help to push

the prefetched data closer to the tiles which would need them. It could also prove to

be an effective use of otherwise dormant on-chip hardware. By using a hybrid tech-

nique wherein prefetched data could be stored in a prefetch buffer or in victim cache

areas, on-chip network contention could be reduced by limiting the pushing of high-

value prefetches to times when the network availability were evaluated to be low; such

evaluation would be a complex issue of its own since the decentralized nature of the net-

work would make it difficult to know where traffic might be occurring. These advantages

would depend on a system which is not yet in place; if that system were implemented,

the effectiveness of this location could be reevaluated.

4.1.3 At the DRAM Controller

This location would be nearly the same as the edge of the mesh network, the

difference being that it would be off-chip (see Figure 4.3).

There would be several advantages to moving the prefetcher off-chip. Firstly,

it could effect savings of on-chip real estate with relatively small differences in tile-to-
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Figure 4.3: A depiction of the potential prefetcher location: At the DRAM Controller

prefetcher-buffer latency. It would not change the prefetcher’s capabilities with regards

to its access to the DRAM since it would be essentially in the same place on the tile-to-

DRAM path.

The primary disadvantages would be that it would result in slightly higher la-

tency to the prefetch buffer than an on-chip solution, and that it would not lend itself as

well to prefetching in to underutilized on-chip data caches (if a system conducive to this

functionality were implemented on GreenDroid).

4.1.4 Final Decision

Because of the increase in demands on the chip’s resources imposed by local

prefetchers per tile, and the low expected latency overhead of an off-chip prefetcher, the

location at the DRAM controller was chosen for the prefetcher. This location allowed

for independent development of the prefetcher and the GreenDroid chip, providing for

a logistically adventagious decoupling.
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4.2 Number

Three primary concerns affect the number of prefetchers to use for this multi-tile

processor:

1. The scalability of the prefetching system should be tied to that of the DRAM.

2. The processor’s memory request stream should be communicated to the prefetcher

efficiently.

3. The memory request stream data should be partitioned so that it can be effectively

used to make next address calculations for the set of active tiles.

The prefetcher can either see the processor request stream as coming from a

set of unrelated tasks or as coming from a single task being performed by a series of

related threads. In a massively parallel processor, many threads are expected to be in

execution at once, and those threads are not necessarily expected to be working on

related data. In the case of GreenDroid, there is a large set of distinct processing regions,

each with their own processing elements; however, the expectation is that processes will

use GreenDroid’s processing regions to migrate around the chip in order to gain access

to different sets of c-cores, and that fewer unrelated threads will be executed in parallel

than might be expected from other systems with so many processing cores.

4.2.1 Independent Logic per Tile

In this setup, the prefetcher would differentiate between the stream of addresses

being requested on a per tile basis. This could be accomplished either by using multiple

prefetchers, each specifically tied to a certain tile or set of tiles, or by using a single
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prefetcher, which would treat streams coming from different tiles or sets of tiles differ-

ently.

This setup would be advantageous in several ways and particularly under certain

usage conditions. The need to differentiate between streams of requests coming from

different tiles would arise primarily if the streams were unrelated and treating them as

being related would cause confusion in pattern recognition. Under any usage conditions,

if the prefetch buffer were divided into pieces, each tied to an individual tile, it could

speed up buffer searching, since each sub-buffer would be smaller.

This setup would suffer if cache miss streams from different tiles were related,

since each predictor would see a smaller portion of the the overall stream. This would

mean that each predictor would have less information than were available about the

stream for which it were predicting.

4.2.2 Singular Logic for All of Main Memory

This could potentially be the simplest set up. The prefetcher would make de-

cisions based on a singular stream of processor requested memory addresses, without

differentiating them by the tile that asked for them.

This system would work best if all of the memory accesses from the chip were re-

lated; i.e. multiple tiles were performing subtasks with overlapping working sets. Since

GreenDroid is designed to use its many tiles to perform different subtasks at different

times, mostly pertaining to a small set of programs, it is expected that the GreenDroid

chip will often be using its many tiles to work on a single job or a small set of jobs.

The primary disadvantage of this setup would be its scalability. As the de-

mands on maim memory increased, and multiple DRAM controllers became involved,

the speed of the singular logic of this system could become a bottleneck.
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4.2.3 Independent Logic per DRAM Controller

This setup would be similar to the singular logic in that it would not differentiate

between requesting tiles in the partitioning of the processor request stream; instead, it

would consider all members of each stream of addresses coming to an individual DRAM

controller to be related. It would be different, from the aforementioned in that it would

scale with the number of DRAM controllers. This setup would be advantageous since

GreenDroid’s main memory access system scales in the same way.

In order for a synchronized setup to work with data sets that arbitrarily spanned

multiple DRAMs, all prefetchers would need either to receive all synchronization mes-

sages, or an extra layer of communication between predictors would have to be imple-

mented in order to effect synchronization. This could provide a bottleneck that were

more restrictive that that affecting the DRAM under those certain circumstances.

4.2.4 Final Decision

Since most of the tiles in GreenDroid are expected to work on parts of the same

problem, and the prefetcher will, in this iteration, not be prefetching data directly to

different buffers (or caches) for each tile, the best options seem to involve the consider-

ation of address streams from different tiles as related. Independent Logic per DRAM

Controller can scale with the main memory access system. For this reason, tying the

prefetcher’s logical systems and buffers to individual DRAM controllers was chosen.

This connection between prefetchers and DRAM controllers can be easily accomplished

because of the chosen location of prefetcher elements in the memory system: off chip,

just before the DRAM controllers.
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Figure 4.4: A prefetcher datapath diagram (prefetcher internals).

4.3 Prediction Logic

Some prior work has indicated that stride and related prefetchers, while simple

and space efficient, can also be very effective, even given little prior information about

data structure and access patterns [16,23,25,37]. Other work has sought to use software

devices, such as helper threads [8,11,27,47,48] and explicit prefetch commands added

to code by a specialized compiler [34], to help define order where a generic prefetcher

might have trouble.

4.3.1 Condensed Stride

The condensed stride prefetcher logic seeks as many addresses as it can find

between the most recent processor requested address and each of the previous requested

addresses within a certain time frame such that the difference between the two addresses

in question is within a specified maximum distance. It is called "condensed" because it

keeps a small amount of state for detecting streams, only allowing itself to prefetch for

readily visible streams; its simplicity is intended to reduce its footprint and its power

requirements.
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4.3.2 Null

The Null prefetcher makes no requests. It never makes any prefetch decisions,

and it does not use the prefetch buffer as a conflict cache, enforcing the condition that

its buffer is always empty. It suffers no latency due to prefetch buffer searches. This

prefetcher is used as a baseline for cycle time comparisons of the system with different

prefetcher setups to the system without any prefetcher effects.

4.4 Aggressiveness

Prefetcher aggressiveness determines the frequency with which the prefetcher

will be allowed to issue prefetch requests. In a memory system where DRAM contention

can be a significant impediment to performance, prefetcher aggressiveness can be of

primary concern.

The prefetcher can be throttled in two ways: Firstly, its prediction logic may

only attempt to issue prefetch requests when they are deemed prudent by the prediction

mechanism. For example, a stride prefetcher may only make fetches for addresses that it

believes with high confidence will be needed by the processor. Secondly, the prefetcher

may be disallowed from making prefetch requests when it runs the risk of contending

with the processor for DRAM access. This second type of throttling may be effected

externally to the prefetcher’s decision logic, since it is intrinsically linked to the demands

on the memory system rather than to the prediction mechanism. Both of these types of

throttling may be used to determine the ultimate level of prefetcher aggressiveness. The

second type is the focus of this section, since it is a global concern, which may apply in

the same way to any prefetcher logic used. The first method is covered on a per decision

logic basis, since it is much more directly tied to the specific decision logic in question,
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and will generally differ between different prediction logic setups working in the same

memory system.

4.4.1 Strong: Continual Stream

This setup would allow the prefetcher to issue a prefetch request for every cycle

in which it had a calculated address ready, provided that the DRAM queue could accom-

modate a new fetch request (in the case of GreenDroid the maximum queue length would

be one, so prefetch requests would only be able to go out when there were no other out-

standing DRAM requests). It could allow the prefetcher to get significantly ahead of the

processor when it were confident about its prefetch addresses; this could be beneficial,

since it could result in a buffer full of useful addresses. However, if the prefetcher were

largely inaccurate and still requesting addresses, this setup could cause the processor to

be delayed when its requests missed in the prefetch buffer. In a pipelined or otherwise

multi-ported DRAM, a nearly continual stream of prefetcher requests could be less dan-

gerous, since new requests would be processed while outstanding requests were still in

the pipeline.

4.4.2 Relaxed: DRAM Free

In this setup, the prefetcher would be restricted to making requests only when

there were no outstanding processor requests that had missed in the cache. This would

be a conservative strategy, aiming to minimize the number of cycles that the proces-

sor waited due to outstanding prefetch requests. While something closer to a continual

stream could be effective in a fully pipelined design, when used with a single-ported,

unpipelined DRAM, it could potentially block the processor from making needed re-

quests for periods equal to the maximum DRAM latency. This could effectively double
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the DRAM latency for the processor if the prefetcher’s predictions were completely in-

accurate. Under the belief that that some requests are unpredictable by any prefetcher,

this would be a much more sensible aggressiveness setting for use with a single-ported,

unpipelined DRAM.

4.4.3 Final Decision

Since GreenDroid is using a single-ported, unpipelined DRAM, its prefetcher

will use the DRAM Free notion of aggressiveness. This prefetching system endeav-

ors never to be in the way of the processor. With an unpipelined DRAM, the prefetcher

could easily end up blocking the processor routinely by having too aggressive a prefetcher.

A DRAM Free aggressiveness level will help to minimize that danger.

4.5 Conflict Cache

The idea of using the prefetcher buffer as a conflict cache was added after having

run some tests of the simulation system. Certain stride simulations were reporting more

buffer hits than prefetch requests. This suggested that the test in question (summing

three arrays) was suffering in a noticeable way from conflict cache misses, and that the

prefetcher buffer was helping to alleviate that problem by supplying its buffered cache

lines several times in a row. Since a DRAM Free prefetcher is restricted to making

requests only when the processor is making none, its buffered values could become

"outdated" after a long stream of processor requested buffer misses. For this reason,

when the prefetcher is dormant (whenever the processor is missing in its cache) its

buffer is filled by processor requested cache lines, allowing it to act as a fully associative

conflict cache for the processor.
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4.6 Condensed-Stride Logic

4.6.1 Description

Figure 4.5: A datapath depicting the layout of the Condensed-Stride prefetcher next

prefetch address calculation logic.

The condensed stride prefetcher logic attempts to detect progressive memory ac-

cess patterns defined by standard stride lengths. It keeps a record of the last 32 addresses

to be requested for a read. For each entry, a single bit defines whether that address will

be used as a base for finding standard stride-length memory accesses. The prefetcher

also stores two indexes: a high eye and a low eye. In order to calculate a new address to

be prefetched, the prefetcher measures the difference between the address at the location

of the high eye and all other addresses stored in the history. It then decrements the low

eye from the high eye until it finds an address for which the difference is small enough

to prefetch; at this point, it checks the prefetcher buffer to make sure it won’t fetch an
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address which is already in the buffer. Once an acceptable stride length is found, the

address at the high eye is marked as unusable as a base and the high eye is decremented.

If no acceptable stride lengths are found for a high eye address, the prefetcher marks the

address at the high eye as unusable as a base and decrements the high eye. At this point

one address calculation is complete. If a stride length has been determined, a prefetch is

made for the address at twice the stride length from the address at the high eye. Once all

addresses have been marked unusable as a bases, the prefetcher stops making requests

until new data is made available by the processor.

Traditionally, stride detecting prefetchers use saturating counters to detect and

begin fetching for request streams. Conversely, this condensed stride prefetcher does

not use saturating counters; instead, it assumes a stream for the maximally temporally

proximal pairs of processor requested addresses within the minimum stride distance

from each other. This setup may result in the issuance of more extraneous prefetch

requests when numerically proximal requests that are not parts of streams are issued in

close temporal proximity, but it should also cause streams to begin being fetched for

more quickly. Since each request address may only be paired with one other address

while functioning as the high eye, and the request address history buffer is as large as

the prefetch buffer, the prefetcher will never out pace any processor request stream by

more requests than can fit in the prefetch buffer.

The name "condensed-stride" refers to the condensed footprint of this prefetcher.

It was designed to keep less state than conventional stride prefetchers. It also was de-

signed to be easily added and/or removed to/from the GreenDroid system with as little

overhauling of other systems as possible. Often stride prefetchers attempt to associate

request streams with different program execution locations by tying their counters to

data they receive from the program counter (see [1]). By contrast, this condensed-stride

prefetcher does not have such data available, since making it available could require sig-
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nificant modifications to the memory request system, including the packet system of the

MDN (or the use of some of other network(s)) to communicate such information, and

this prefetcher was designed to function without making major modifications to other

systems on the chip.

4.6.2 Implementability and Simulation Tuning Numbers

The next address calculation restarts whenever and only when the high eye

moves. Whenever this happens, the state of all of the calculated numbers in the prefetcher

needs to be updated. The longest path to such an update passes through one multiplexer,

one subtracter, and one adder; for this path, we will allow two cycles. Once the state

has been updated, the low eye must traverse all of the history cells. This traversal could

potentially be done more efficiently using a binary tournament tree; however, we would

still need to enqueue accesses to the prefetcher buffer to check for overlap. We allow six

cycles for the traversal plus how ever many cycles are necessary for the various checks

of the prefetcher buffer. We also add an additional cycle for each time the low eye tra-

verses the history cells completely, resulting in a reduction of the high eye without any

address having been produced. Thus, we give the condensed-stride prefetcher decision

logic eight to nine cycles for each traversal of the low eye plus a penalty for each time it

checks the prefetcher buffer.



Chapter 5

Related Work

This project is related to other work on memory prefetching. Some prominent

hardware and software prefetching works are discussed in this section. Most pertain in

some way to software prefetching via explicit compiler-generated prefetch commands or

via blocking or non-blocking helper threads or to hardware prefetching using machine

learning techniques.

5.1 Stride Prefetchers

[1] discusses the design of stride prefetchers which incorporate the use of the

program counter (PC) to differentiate between different memory access streams. Such

associations can increase the accuracy of stride prefetchers since many streams are ac-

cessed by the same PC location as a program iterates through a loop or executes a re-

cursion. In this paper, the authors discuss methods of limiting the amount of data that

needs to be sent along with each memory request. Instead of sending whole PC values,

they send only the four least significant bits; their results indicate that such hashed data

can be used effectively to gain similar advantages to those gained by using the full PC.

43
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The condensed-stride prefetcher by contrast, does not use the PC at all in deter-

mining its streams. It avoids the use of the PC because the sending of any PC data along

with every memory request would eliminate its easy integration (and/or deintegration)

into the GreenDroid system. The CS prefetcher looks for stream access by temporal

and address-based proximity of requests only. This works well for certain applications,

but it may work less well in other applications than a prefetcher that took the PC into

account might.

5.2 Markov Prefetching

In their 1997 paper, "Prefetching Using Markov Predictors," [24] Doug Joseph

and Dirk Grunwald discussed the idea of using a Markov-like model for performing a

form of correlation-based prefetching. This concept was designed to prefetch for access

patterns that were not conducive to stride or stream prefetchers. Their model made use

of correlations between series of fetches, training a limited-overhead Markov model on

cache misses, and then prefetching based on the model’s predicted following addresses.

Their system gave scores to potential prefetch addresses based on their expected likeli-

hood of request by the processor, placing them in a priority queue based on those scores.

Processor requested addresses were placed in the same queue with the highest priority.

By fetching addresses dequeued from this priority queue, this system was able to throttle

itself to reduce memory contention with the processor while also increasing its prefetch

usefulness ratio.
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5.3 Assisted Execution

Michael Dubois and Yonh Ho Song introduced, in their 1998 paper [11], the idea

of "assisted execution," which involved the creation of extra assisting "nano-threads."

These light-weight threads would run on the same processing core as the main thread,

making speculative memory requests ahead of the main thread. In this way, when they

were active, they would end up performing some prefetching for the main thread. Since

they would be separate threads, they could be suspended while waiting for their mem-

ory requests to be serviced without upsetting the computational critical path of the main

thread. These threads, for example, could easily be instructed to proceed with a series of

contiguously addressed prefetches whenever the main thread were about to traverse an

array. The authors reported "Simulation results on several SPEC95 benchmarks show

that sequential and stride prefetching implemented with nano-thread technology per-

forms just as well as ideal hardware prefetchers." [11]

5.4 Speculative Precomputation

More work on software prefetching was published in 2001 by Jamison D. Collins,

et al. [10]. This work discussed the idea of Speculative Precomputation (SP): the use of

idle hardware thread contexts to execute pieces of code speculatively, in an attempt to

push data cache misses to occur before the data will be needed by the main thread. This

system is designed to leverage otherwise unused thread contexts, for executing applica-

tions which are largely sequential, making little use of multi-threaded hardware. This

type of software prefetching targets systems in which all code executes on a general-

purpose processing core, wherein there is no specialized knowledge of any particular

code segments. However, it is still fundamentally conducive to an architecture such as
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GreenDroid with many available processing cores, especially for applications which are

otherwise difficult to parallelize.

A complete heterogeneous prefetching solution for GreenDroid could include

something such as Speculative Precomputation for code segments which were run on

the general-purpose processor. Speculative Precomputation threads could be executed

on nearby tiles in order to reduce the number of caches misses for these low-information

situations. This would require that tiles be able to fetch from adjacent tiles’ L1 caches,

which is a potential capability for future GreenDroid releases (see 2.2.3). Since SP

generates extra, non-essential threads, it could increase power consumption, the mini-

mization of which, in the case of GreenDroid, is of primary concern. Because power

constraints for GreenDroid are set more to maximize battery life than to minimize pro-

cessor heat dissipation (meaning that the processor will not necessarily overheat if extra

threads are added), the processor could potentially run with added prefetching mecha-

nisms such as SP only when its host phone were plugged into an external power source.

5.5 Software-Controlled Pre-Execution

Also in 2001, Chi-Keung Luk wrote a paper discussing the idea of software-

controlled pre-execution in SMT processors [31]. The system illustrated differs from

the previous one in that the software prefetching threads are spawned by a software-

controlled mechanism as opposed to an automatic hardware controlled system, which

spawns speculative threads whenever a cache miss occurs in the main thread.

Speculative execution-based helper threads are incapable of achieving speedups

of greater than 2:1 in processing time, since they stall whenever they initiate a fetch from

the DRAM. In order for such a system to achieve greater than a 2x speedup, multiple

threads need to be used, each speculating on a different code segment , so that when



47

one thread is stalled, another can be fetching ahead of it. By staggering such specula-

tive threads, full sections of the program could have been fetched for by the time their

predecessors finished executing.

5.6 Prefetcher Throttling

In "Reducing DRAM Latencies with an Integrated Memory Hierarchy Design,"

we see the same non-competition notion as DRAM Free being employed: "region

prefetches are scheduled to be issued only when the Rambus channels are otherwise

idle." [29]



Chapter 6

Simulation

This chapter discusses the process by which the prefetcher was simulated on the

GreenDroid cycle accurate simulator and outlines the benefits shown by the use of this

prefetcher. We begin with an introduction to the simulator itself. We then discuss the

process by which specifics of the simulations were chosen and the challenges that were

faced in the implementation. Finally, we conclude by illustrating and discussing the

results obtained.

6.1 Software Environment

The GreenDroid cycle accurate simulator is the framework in which the sim-

ulation of the prefetcher design was performed. In this section, we will discuss the

simulator as the means by which tests and benchmarks were performed.

48
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6.1.1 Cycle Accurate Simulator

Operation of GreenDroid is simulated one cycle at a time. Each device is de-

scribed in a .bc file, using the bc language. Devices are defined using an initialization,

or init function and a calculation, or calc, function, which are each registered with the

environment by a call to a native registration function. The state of each device is stored

in a struct-like data structure, which is initially populated by the init function, and is

ultimately passed to the calc function, when the chip simulation starts. The calc func-

tion operates in a continuous loop, yielding after each cycle using an explicit call to

the built-in yield primitive. For each cycle of the simulation, each device is executed

starting at its last call to yield and stopping at its next. Devices are generally coded

to perform the appropriate computations for the cycle at hand between successive calls

to yield; sometimes devices may simply yield for a certain number of cycles, and then

perform their computations for all of the elapsed cycles at once.

User Code

The compiler included with the simulator environment is capable of compiling

programs written in C which make use of standard C libraries as well as specialized

GreenDroid libraries to run on GreenDroid under the Linux-basedoperating system.

In hardware simulation, allowing software running on the simulated hardware

to report to the user of the simulator is a challenge. Communication itself can strongly

affect the simulation results. For example, one could use the simulation environment

to monitor the contents of some existing register, thereby allowing the software to use

that register as a means of communication with the user. This would, however, affect

the register’s primary function as a part of the simulated hardware. Fortunately, Green-

Droid’s simulator has a low overhead means through which programs can communi-
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cate with the user: The architecture includes space for special processor instructions

which allow the program running on the processor to deliver one from a set of mes-

sages, each containing one integer value, to the user. This communication mechanism

requires a minimal cycle overhead. GreenDroid’s C libraries expose this functional-

ity with the functions: raw_test_pass(int), raw_test_fail(int), and raw_test_done(int).

These functions are instrumental in debugging user code written for the simulator and

in returning user code measured results when performing hardware tests. When called,

raw_test_pass(int) communicates the pass message, the int value specified, and infor-

mation about the source of the call. raw_test_fail(int) and raw_test_done(int) deliver

their messages in similar ways. Unlike raw_test_pass(int), both of the other calls result

in a termination of the simulation at the point of the call.

In order to categorize statistical data during the prefetcher simulation, the code

running on the processor must be able to communicate section breaks to the prefetcher’s

statistical machinery; without this ability, the prefetcher would be unable to differenti-

ate between the periods when each processor job were being carried out, and would thus

be unable to collect data regarding its performance on different code segments. To ac-

complish such sectioning, the user code piggy-backs on the mechanism used to request

mode switches from the prefetcher. Using a special protocol for section definition added

to the GDN communication mechanism, the user code is able to tell the prefetcher’s sta-

tistical mechanisms when it begins and ends significant code sections. Although this

mechanism comes with a slight GDN overhead, it is low in the grand scheme of a large

test, since section divisions rarely occur.
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Hardware Description

The simulator is divided into devices. Each device has its own event loop. Be-

cause the prefetcher and the DRAM work so closely, the prefetcher description source

code was added to the same source file that already contained the DRAM source. The

prefetcher’s event loop describes its next address calculation and fetching functions.

The addition of knowledge to the prefetcher from the processor’s address stream and

the seeking of prefetched data within the prefetcher buffer upon processor requests,

however, is set within the DRAM’s event loop. In this way, the prefetcher’s operations

are split between two event loops, since some of them are essentially autonomous, while

others re influenced by or have influence on the DRAM itself.

The prefetcher code is designed so that its calc routine can choose to invoke

some particular subroutine depending on the prefetcher type (Condensed-Stride or Null).

The prefetcher is allowed to calculate a new prefetch address based on a next address

calculation timer. The timer is decremented at every prefetcher calc loop yield call;

when it reaches 0, a calculation is performed, and if there are no outstanding requests

to the DRAM, the address produced is prefetched into the prefetch buffer. In order

to enact the DRAM Free aggressiveness level, the prefetcher keeps track of the current

state of processor DRAM fetch request activity. The prefetcher calc time counter may be

decremented when the DRAM is not free, simulating a next prefetch address calculation,

but prefetches may not be issued.Prefetch buffer find latency is simulated by yielding

once in the DRAM calc loop for each cycle of prefetch buffer latency. DRAM latency

is simulated in a similar way using the appropriate DRAM latency for the type of fetch

occurring (see Section 6.3 for a description of the different DRAM latencies used).
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bc Language

The bc language used to describe devices is based on C. It has several syntactical

additions which improve ease of development. Firstly, it has an implied data type which

can be used by declaring a variable as global or local. Using this data type, it allows for

the creation of hashmap data structures, with special "." syntax for adding and accessing

their fields. It also allows for function pointers to be added to hashmap structures using

&fn syntax. This means that hashmaps can be used similarly to C++ objects, since a

"self" variable is passed as the first argument to any function which is called from a

hashmap pointer.

6.2 System Constraints

In order to test this system, a set of assumptions was required. Since final perfor-

mance numbers, c-core configurations, and demands on GreenDroid were not known,

many assumptions had to be made to simulate an appropriate system for testing of

prefetcher configurations.

The following performance numbers for the memory system were imposed by

the simulation environment:

• Word width: 8 bytes

• Cache line width: 8 words

• L1 Cache size per tile: 32 kilobytes (4096 cache lines)

Based on the specs for the Xilinx Virtex-6 ML-605 DRAM controller to be used

with GreenDroid, the following performance numbers were chosen for the prefetcher:
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• DRAM max concurrent open rows: 4

• DRAM read latency (new row: RAS + CAS latency): 73 cycles

• DRAM read latency (open row: CAS latency only): 27 cycles

• DRAM write penalty: 70 cycles

In order to effect a conservative simulation, with the Null prefetcher, the CAS latency

was used for all reads. This is the same latency given to the condensed-stride prefetcher

because it is expected that most streams will make multiple requests on the same row

in short succession, so the row will stay opened and no RAS operation will need to be

performed. This situation should pertain for the most part to both the prefetcher and the

processor, so for these addresses it is prudent to give the same read latency to both.Under

this setup, there is no particular advantage given to the prefetcher or the processor based

on expectations of the proximity of the addresses it will request.

Finally, the following performance choices were made for the prefetcher itself.

These were considered conservative choices based on the maximum amount of time that

the prefetcher would be expected to take to generate addresses and search its (small)

prefetch buffer. These conservative estimates were made based on the design datapath

(see Figure 4.5).

• Prefetcher next address calculation time: 8 cycles+

• Prefetcher buffer find latency: 4 cycles

+ One extra cycle is taken for each full swing of the low eye that does not result

in the generation of a valid prefetch address, but serves only to invalidate the use

of the high eye on the current high eye address; if no valid next address is found,

another iteration must be made before a new address is generated. One times the

buffer find latency is also required for each lookup in the prefetcher buffer.
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The simulator’s DRAM module is capable of fetching two 8 word cache lines at

once. There is one DRAM, and it is non-pipelined, so the system must wait for an entire

fetch to finish before initiating another. While this is itself a performance limiter (see

discussion of this limitation in Section 3.4), it also presents a special challenge, since

it forces the prefetcher to be extra judicious with its prefetch requests, since they are

capable of blocking processor requests for a period equal to the maximum latency of the

DRAM.

6.3 Simulation Methodology

Simulation was performed using two different prefetcher setups: condensed

stride and null. The Null prefetcher was used to determine, roughly, how many cy-

cles were saved by the condensed ctride prefetcher over no prefetcher at all. The Null

prefetcher did not make any fetches, had a zero cycle buffer find latency, and always had

an empty prefetch buffer; it did not ever contend with the processor for DRAM fetch

time, nor did it offer any speedups to the processor.

Since the DRAM is capable of keeping up to four rows open simultaneously,

we assume that the stride prefetcher will most often be able to make request from open

rows, so we allow its prefetch requests to be made using the open row DRAM latency.

The condensed stride prefetcher was defined so that it always fetched two cache

lines at once and stored them in its buffer. The entire prefetcher system ran with a

DRAM Free (see Section 4.4.2) level of aggressiveness, only making prefetch requests

when the processor had no outstanding requests of its own.



55

6.4 Implementation

This section discusses the implementation details for the selected testing op-

erations, commenting on the challenges discovered and the specific methods used to

overcome those challenges.

6.4.1 Stride Detection

The prefetcher used condensed stride detection based logic to make prefetch

decisions. This prefetcher was developed to detect a series of stride pattern memory

access streams which could be occurring in an interlaced fashion. It was designed to be

able to ignore some level of noise in the request stream (i.e. requests not conforming to

any of the stride access series).

The condensed stride logic keeps a list of previous processor memory requests.

Whenever a new processor request is seen by the prefetcher, it compares the requested

address (its starting point) to each of the entries in its knowledge base in reverse chrono-

logical order, seeking the pair of addresses with the smallest difference. When it finds

an address pair with a smaller difference than it has thus far seen, it adds the difference

(positive or negative) to the requested address to produce a potential prefetch address. It

then checks the prefetch buffer for that address; if that address is found, then the differ-

ence at hand is considered nonviable. If the address is not found, it considers that address

the best prefetch candidate thus far found. It then resumes its search for the smallest vi-

able address difference. If it finishes its search and the smallest viable address difference

it has found is higher than some maximum acceptable stride length value, it declares the

latest processor requested address unfruitful, and proceeds to perform the same search

again, using the newest address in the knowledge base that is still considered fruitful as

its starting point. This next iteration is considered a new address calculation, requiring
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the same amount of time as the last. When all addresses in the knowledge base have

been declared unfruitful, the prefetcher becomes dormant. In this way, the condensed

stride prefetcher throttles its own use of the prefetcher buffer in order to keep itself from

getting too far ahead of the processor and overwriting useful entries which have yet to

be used.

6.4.2 Prefetcher Buffer as Conflict Cache

A series of simple programs and standard benchmarks were run using the con-

densed stride detection prefetcher in its various stages of development. One such pro-

gram traversed three arrays at once, building up a sum from their collective members.

The statistics gathered indicated that there were significantly more hits in the prefetch

buffer than there were prefetch requests, indicating that certain addresses were being

requested from the buffer multiple times having only been added to the buffer once. It

was determined that this was due to caching conflicts between the arrays, and that the

prefetch buffer was thus inadvertently acting as a conflict cache in this instance. From

there, the ability to use the prefetch buffer as a conflict cache was added; processor re-

quests that missed in the buffer would be stored once they had been fetched from the

DRAM. The overhead from this system was all in buffer usage, since the fetching of

these addresses would occur in either case. It was found to be somewhat effective for

certain tasks. When the stride detecting prefetcher were in an accurate phase, it would

rarely use its buffer space for conflict entries, since most of the processor requests would

hit in the buffer. Only at times when the prefetcher were not accurate, or were issuing

few requests of its own, due to a low rate of pattern detection, would a significant por-

tion of the buffer space be used to hold conflict entries. Thus, for this type of prefetcher,

which had spells of pattern detection and spells of low information, conflict caching was
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accomplished with little overall overhead.

6.5 Selected Benchmark Results

This section outlines the selected benchmarks and discusses their relevance to

this prefetcher. In this section, we discuss the results obtained during the simulation

runs. For each of the benchmarks, we present two graphs:

1. A graph depicting the prefetcher buffer hit ratio for memory request cache misses

over the course of the benchmark’s execution. This graph includes a scatter plot

which shows the local hit ratio for small set of temporally proximal memory re-

quests. It also includes a connected curve plotting the cumulative hit ratio for all

requests issued between the beginning of the program execution and the time as-

sociated with the x coordinate on the graph. The local hit ratio scatter plot can be

used to get an idea about where the hit ratio hovered, and how consistent it was

for small time intervals, and the cumulative hit ratio can be used to see how the

prefetcher’s performance evolved over time and what effect it had overall.

2. A graph depicting the number of cycles taken to reach each numbered cache miss

when the benchmark was run with the condensed stride prefetcher versus when it

was run the null prefetcher. Since no changes were made to the cache configu-

ration between these two scenarios, each cache miss indicates a specific, unique,

consistent location within the execution record of the program. Thus, for any

given cache miss index, a lower number of elapsed cycles indicates that the pro-

gram has approached the location of that cache miss in its execution more quickly

(using fewer processor cycles).
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Benchmarks from two categories were used to test the effectiveness of the prefetcher:

the PROJECT series, which included a set of benchmarks designed for this project, and

the SPEC CINT2000 series.

6.5.1 PROJECT Benchmarks

The PROJECT benchmarks implement common computational tasks. Each was

designed to run within a few hours. The test results were obtained by running the bench-

marks to completion.

1.traversal

The 1.traversal benchmark begins by creating four array, one of which is equal

in size to the L2 cache of the tile on which it runs. It proceeds to traverse the cache

array, reading from it in order, so as to clear the cache. It then sums the values of all

of the integers in the the other three arrays by traversing them in an interlaced manner,

reading one integer from each at a time.

In this simplest of benchmarks, we see exceptional hit ratios for the condensed

stride prefetcher. This is expected, since this benchmark performs multi-array traversal

making uniform-length strides along each of its arrays. The prefetcher appears to have

no trouble detecting and anticipating these stride access patterns.

We see a reasonable gain in cycle performance when using the prefetcher versus

when not using it. This performance gain is, of course, limited by the effect of memory

access delay on the computation. In the case of this benchmark, much of the compu-

tation involves the performing of load operations from main memory. However, our

performance gain is limited by the relative speed of the DRAM used with respect to the

speed of the processor itself.
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Figure 6.1: A graph depicting the local and cumulative prefetcher buffer hit ratios as

a function of the number of elapsed cycles during a run of the PROJECT 1.traversal

benchmark. As expected, since this benchmark performs a simple traversal with a uni-

form stride length, the prefetcher performs nearly perfectly, maintaining nearly a 100%

hit ratio over most of the course of benchmark.

Figure 6.2: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the PROJECT 1.traversal benchmark. This graph illustrates

significant speedups over the course of the benchmark. This is expected, since much of

the computational time spent during this benchmark is owed to memory latency, so with

a high prefetcher buffer hit rate, the computational time required to get to each cache

miss should be lowered. In this case, by incorporating the prefetcher, each point in the

computation was able to be reached in about half of the time.
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2.qsro

The 2.qsro (QuickSort Reverse Order) benchmark creates two arrays. The first of

these arrays is filled with values in descending order. The second array is then traversed

in order to clear the cache. Finally, the original array is sorted using the C library qsort

function.

Figure 6.3: A graph depicting the local and cumulative prefetcher buffer hit ratios as a

function of the number of elapsed cycles during a run of the PROJECT 2.qsro bench-

mark. Here we see very high hit ratios while the original array is populated, and while

the cache is cleared. During the sorting procedure, we see three zone types: one where

the prefetcher tended to have about a 50% hit ratio, one where it tended to have about

a 100% hit ratio, and one where it had about a 0% hit ratio. We presume that the 50%

section came from a period where the procedure traversed the array, flipping the posi-

tions of every pair of values it saw (reverse-sorted array), resulting in a lot of hits and

a lot of buffer value kills due to writes. For the 100% sections, we presume that these

came from traversals of resulting fully sorted sections. Finally, for the 0% sections, we

presume that these came from sections wherein the procedure randomly polled the array

in an attempt to determine a good pivot point. These hit ratios would be as expected for

such a procedure: very high during read traversals and very low during random accesses.

The prefetcher reached nearly a 70% hit ratio over the course of the sorting procedure.

Since the values in the unsorted array are set in reverse order, we expect some

regularity in the performance of QuickSort on the array. This regularity may come
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Figure 6.4: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the PROJECT 2.qsro benchmark. In this graph we see

the run with the prefetcher out pacing the run without the prefetcher by about a five

to three ratio during the sorting procedure. This speedup is effected in more in certain

zones than in others, since the prefetcher hit ratio swings between about 0% and about

100% in different sections. The five to three ratio we observe is significant especially

considering the prefetcher’s wide swing of hit local ratio values.



62

from consistently good pivot point selection, since the data is laid out in the array in a

simply patterned manner. QuickSort, when using good pivot points, begins by traversing

large strips of memory. As seen in Figure 6.3, these traversals appear to result in high

prefetcher buffer hit ratios. There are also other sections where the hit ratio is zero;

we suspect that these are related to the search for a good pivot point, which may be

performed at random throughout the array.

3.qsoo

The 2.qsro (QuickSort Out of Order) benchmark creates two arrays. The first of

these arrays is filled with values out of order. These values are generated by multiplying

the array index by a prime number which is about one third the size of the array (a

power of two) and then taking that product modulo the array size. The second array is

then traversed in order to clear the cache. Finally, the original array is sorted using the

C library qsort function.

In contrast to 2.qsro, 3.qsoo has a very non-uniform prefetcher buffer hit ratio

pattern. This seems to result from poorer pivot point selection. When poorer pivot

points are selected, the same data needs to be partitioned and pivoted more times, and

the partitions vary more in size and position. This results in a longer running time

(as seen in Figures 6.5 and 6.6) and more pivot point selections. It may also result

in a less uniform cache-hit/miss profile. These seem to be likely explanations for the

lower uniformity in prefetcher buffer hit ratios seen for this benchmark. This could also

explain the lower overall hit ratio for the prefetcher buffer, since the cache miss profile

would be less uniform if the cache were populated less uniformly, which would make it

more difficult to detect and fetch for stride-based accesses.
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Figure 6.5: A graph depicting the local and cumulative prefetcher buffer hit ratios as a

function of the number of elapsed cycles during a run of the PROJECT 3.qsoo bench-

mark. In this graph, we do not see the consistent partitioning of hit ratios that we saw

in the graph for PROJECT 2.qsro (Figure 6.3). The more random-eque ordering of the

array would have caused the procedure to have much less consistency in the offsets and

lengths of its traversals, and the numbers and configurations of its pivot point selections.

Interestingly, this de-partitioning of the procedure’s traversals only reduced the overall

hit ratio of the prefetcher during the sorting procedure from nearly 70% to about 45%,

indicating that even when traversals are not consistently long, the prefetcher can see

reasonable hit ratios.
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Figure 6.6: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the PROJECT 3.qsoo benchmark. Here we see a surpris-

ingly low speedup of under 10% during the sorting procedure, given that the overall hit

ratio for the prefetcher was about 45%. The execution of PROJECT 3.qsoo took sig-

nificantly longer than that of PROJECT 2.qsro (as expected for QuickSort since pivot

point selection would be harder with the supplied data, and the running time can be

asymptotically larger for poor pivot point selection). The presumed reasons for the low

speedup aside from the lower hit ratio are twofold: firstly, that during PROJECT 3.qsoo,

the sorting procedure spent a higher portion of its time performing calculations in the

processor and hitting in the cache and a lower portion waiting for memory requests than

it did during PROJECT 2.qsro, and secondly, that where the hit ratio was lower, the

prefetcher was being more inaccurate, and may have gotten in the way of the processor

more.
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4.bts

The 4.bts (Binary Tree Search) benchmark begins by creating two arrays. The

first of these arrays is populated by a tree of nodes laid out in memory in breadth first

search order; these nodes each contain an integer id, and a pointer to each of their left

and right children. They are laid out by stepping several counters along the length of the

array at different rates and placing nodes with appropriate pointers to other nodes within

the memory space. Once the nodes have been laid out, the second array is traversed in

order to clear the cache. Finally, the nodes are traversed again in depth first search order

(out of order in memory) using a recursive function that relies on each of their left and

right pointers, and their ids are summed.

In Figure 6.7, in the first partition, we see two distinct cache hit ratio zones

pertaining to the generation of the BFS ordered tree in memory: to the left, we see the

first phase of node creation, with an average hit ratio of over 90%; to the right, we see

the second phase with a hit ratio of only about 50%. In both phases, the algorithm moves

through the memory allocation very uniformly.

During the DFS portion of the execution, we see roughly a 70% hit ratio with a

well contained local range surrounding 70% throughout the run. Considering the recon-

struction pattern between a BFS and a DFS node ordering, this seems relatively high.

Presumably, what is happening is that each of the bottom levels of the tree represents

one stream as detected by the prefetcher. The prefetcher has a maximum limit to the

stride lengths that it will detect, so the higher levels in the tree will not be detected as

representing uniform stride distances, but the bottom levels will, as each level has all

of its nodes at a uniform distance. So roughly 70% of the nodes are below the highest

detected level.
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Figure 6.7: A graph depicting the local and cumulative prefetcher buffer hit ratios as a

function of the number of elapsed cycles during a run of the PROJECT 4.bts benchmark.

Here we see around a 50% hit ratio during the original construction of the tree. This is

somewhat surprising, since the majority of the work done during this time amounts

to an array traversal. The working hypothesis is that the processor simply outran the

prefetcher since it made so many requests so frequently. During the DFS, we actually

see a higher hit ratio of over 70%. This is a particularly high hit ratio. In this case, the

processor has more work to do outside of waiting for memory requests to be serviced, so

it is less likely to out run the prefetcher. Also, since the tree is laid out in BFS-order, each

level of the tree will have all of its nodes placed in memory at a consistent distance from

eachother, and can thus be prefetched for as a unique request stream. The prefetcher is

able to see a DFS on a BFS-ordered tree as a series of strided memory accesses. Since

the prefetcher is able to detect up to 32 request streams, it should be able to prefetch for

up to 32 levels in the tree, or until the first level in which the nodes are farther apart than

the prefetcher’s maximum allowable stride distance.
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Figure 6.8: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the PROJECT 4.bts benchmark. Here we see more than

a 2x speedup during the DFS portion of the execution. This speedup is much more

than the 1/3x speedup we see during the construction of the tree. The two suspected

culprits, aside from the higher hit ratio are, again, that more time would have been

spent performing computations and hitting in the cache in the first section and less time

waiting for memory requests, and that the more accurate prefetcher would have had

impeded the processor less by making fewer extraneous prefetch requests.
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6.5.2 SPEC CINT2000 Benchmarks

Each of the CINT2000 benchmarks was run for between one hour and several

hours. Since the simulator was designed to simulate everything that happens in the pro-

cessor, running them to completion could have taken days, and would have been infeasi-

ble. This makes the results difficult to interpret, since it is difficult to determine how far

through the central algorithm of the benchmarks the simulation ultimately proceeded.

Much of the early data comes from the startup portion of the benchmark programs.

175.vpr

Figure 6.9: A graph depicting the local and cumulative prefetcher buffer hit ratios as a

function of the number of elapsed cycles during a run of the CINT2000 175.vpr bench-

mark. The prefetcher started strongly with a few segments of 100% hit ratio and an

average hit ratio of about 20%, but after that initial success, it moved to a more consis-

tent ratio averaging about 3%.

CINT2000 175.vpr received some but little help from the prefetcher during this

initial portion of its execution. It turned out an overall hit ratio of about 6%. The graph

runs only to a place where the hit ratio settles, but this benchmark was run for its entire
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Figure 6.10: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the CINT2000 175.vpr benchmark. The prefetcher made

its most substantial gains early on, and then with only a 3% hit ratio, it ended producing

around a 2% cycle savings. While the prefetcher did not perform particularly strongly

on this benchmark, it did ultimately save more cycles than it cost.

duration, and the recorded hit ratio for the benchmarks entire duration was 6.57%. Use

of the prefetcher resulted in a slight decrease in overall cycles taken during the illustrated

portion of the execution.

181.mcf

The 181.mcf benchmark performed the worst of any of the CINT2000 series

during the measured portion of its run. During this portion of its run, it appears to have

made almost no uniform memory accesses. This benchmarks serves as an example of

the overhead of the prefetcher on applications which experience low hit rates while still

inducing inaccurate prefetches by the prefetcher. As evidenced in Figure 6.12, without

the prefetcher, the program actually ran faster to the end of the illustrated execution

portion. This likely resulted from the processor having to wait for the prefetcher to

finish its inaccurate fetches.
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Figure 6.11: A graph depicting the local and cumulative prefetcher buffer hit ratios as a

function of the number of elapsed cycles during a run of the CINT2000 181.mcf bench-

mark. This graph depicts the prefetcher’s worst performance on a selected benchmark.

It initially had a few hits, but ultimately the hit ratio degraded to nearly 0%. This was

presumably because 181.mcf performed nearly no standard stride length memory stream

access.

256.bzip2

The CINT2000 256.bzip2 benchmark should find the the prefetcher relatively

useful, since it moves over large swaths of data in a uniform manner in order to feed it

to its compression algorithm.

The CINT2000 256.bzip2 benchmark was run for the longest period of any of

the benchmarks used; thus, we see several distinct memory access regions. As expected,

it has performed well in some of these regions. However, as is the case with many of

these benchmarks, we do not know exactly what has gone on during these portions of

the bzip2 run, so it is difficult to extrapolate what these numbers mean.



71

Figure 6.12: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the CINT2000 181.mcf benchmark. This graph is illus-

trative of a very bad case for the prefetcher. It shows how prefetcher overhead (due to

processor/prefetcher memory contention) can actually make a run go more slowly if the

hit ratio is very low. In this case, we see less than a 1% deficit due to prefetcher over-

head, even with nearly a 0% overall hit ratio. Compared to the savings we saw in some

of the PROJECT benchmarks, this is a low deficit.
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Figure 6.13: A graph depicting the local and cumulative prefetcher buffer hit ratios

as a function of the number of elapsed cycles during a run of the CINT2000 256.bzip2

benchmark. Here we see the prefetcher’s best overall performance on any of the selected

CINT2000 benchmarks; this is not a surprise, since the benchmark in question traverses

larges swaths of data in order to compress them, presumably offering the prefetcher a

set of standard stride length memory access streams to detect. We also see strongly

defined partitioning of the prefetcher’s performance; again, this is expected since this

benchmark performs a series of differing jobs at different times (such as reading files,

setting up different arrays, executing the compression algorithm ,etc.).
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Figure 6.14: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the CINT2000 256.bzip2 benchmark. Here we see around

a 4% overall cycle savings. This is lower than what we saw for some of the PROJECT

benchmarks, but it is significant in this benchmark is more diverse in the types of work

that it performs during its run (it has to read files, for example).

Figure 6.15: A graph depicting the local and cumulative prefetcher buffer hit ratios as

a function of the number of elapsed cycles during a run of the CINT2000 300.twolf

benchmark. Here we see a similar profile to that of CINT2000 175.vpr (see Figure 6.9):

beginning more strongly and then teetering off into the single digits. While it is not a

terribly strong showing, the prefetcher is still managing to make some gains.
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Figure 6.16: A graph depicting the number of cycles taken to reach each unique cache

miss location during a run of the CINT2000 300.twolf benchmark. Similarly to what

was seen in CINT2000 175.vpr (see Figure 6.10), we see a several percent gain in per-

formance here. However, the majority of the gain comes at a point later in the run,

seeming to indicate that the profile of processor to memory latency cycles spent differs

between the two benchmarks.

300.twolf

CINT2000 300.twolf benchmark performed very similarly to CINT2000 175.vpr

during the portion for which results were recorded. Again, it is hard to extrapolate

further given this snippet of early results form the run.

6.5.3 Other Notes



Chapter 7

Conclusions

This project surveyed the current state of prefetcher technology, and illustrated a

prefetcher design concept, intended to be used with UCSD’s GreenDroid microproces-

sor. It went on to discuss the ways in which this concept was refined to work specifically

with the layout of GreenDroid, and the process by which a prototype version of this

prefetcher was simulated in the GreenDroid cycle accurate simulator. It also discussed

related work, comparing and contrasting it to this project’s design and illustrating ways

in which some of these related concepts could be used alongside this project’s design.

Finally, in this section, the project concludes with a discussion of the simulation results

and suggestions for future work.

7.1 Evaluation of Simulation Results

The effectiveness of a prefetcher would ultimately be largely dependent on the

relative performance of the GreenDroid processor and its DRAM. The system tested

found significant speedups over the Null prefetcher for the PROJECT benchmarks,
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which ran to completion performing common computational tasks using standard algo-

rithms to do so. By contrast, it found modest speedups for most of the SPEC CINT2000

benchmarks on which it was run. For the CINT2000 181.mcf benchmark, on which it

had a very low hit rate, it decreased overall performance by a very slight margin.

This prefetcher has a small footprint and is easily integrable into the GreenDroid

system. Its address calculation logic requires no information except for the cache miss

address stream. In simulation, it exhibited high hit ratios and significant performance

improvements for certain common computational tasks. It also made small performance

improvements to most of the CINT2000 benchmarks tested and made a slight perfor-

mance decrease for one of them.

7.2 Future Work

One note of concern is that when this prefetcher is being inaccurate, it can make

a lot of extraneous prefetch requests. This could be a problem for a low energy sys-

tem, since these requests effectively require the memory system to do more work than

would otherwise be necessary. One way to deal with this situation might be to include a

saturating counter which would keep track of the accuracy of the prefetcher’s requests.

When the counter were positive, the prefetcher would actually issue requests, and when

it were negative, the prefetcher would calculate but not issue requests. This could also

assist in keeping the prefetcher out of the way of the processor in situations where its

accuracy were low (see the results of the SPEC CINT2000 181.mcf simulation).
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