
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Software and Hardware Techniques for Attacking the Multicore Interference Problem

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Anshuman Gupta

Committee in charge:

Professor Michael Bedford Taylor, Chair
Professor Chung-Kuan Cheng
Professor Brian Demsky
Professor Bill Lin
Professor Steven Swanson

2013

Copyright

Anshuman Gupta, 2013

All rights reserved.

The Dissertation of Anshuman Gupta is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii

DEDICATION

I dedicate this work to my family.

To my dear father, who has inspired me to always soldier on.

To my caring mother, who has always encouraged me to dream higher.

To my beloved wife, who has stood by me through all my hardships.

And finally, to my lovely sisters, who always believed in me.

Thank you!

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xi

Acknowledgements . xii

Vita . xiii

Abstract . xiv

Introduction . 1

Chapter 1 Qtime: Measuring Execution Quality in Software 12
1.1 Architectural Interference and Performance Measurement 15
1.2 Qtime: A Tool to Measure Online Application Execution Quality 19
1.3 Qtop: A Dashboard for Monitoring and Controlling Execution Qualities

of Other Applications . 26
1.4 Results . 29

1.4.1 Evaluation Methodology . 29
1.4.2 Quality Time Estimation Results . 30

1.5 Related Work . 33
1.6 Conclusion . 36

Chapter 2 Qplacer: Improving Execution Quality in Software 37
2.1 Qplacer: A Quality Time based Affinity Mapping Tool 39

2.1.1 Simulated Annealing . 39
2.2 Results . 41

2.2.1 Evaluation Methodology . 41
2.2.2 Affinity Results . 42

2.3 Related Work . 42
2.4 Conclusion . 44

Chapter 3 TimeCube: Measuring Execution Quality in Hardware 46
3.1 TimeCube Overview . 49
3.2 Shadow Performance Modeling in TimeCube . 51
3.3 Results . 55

v

3.3.1 Evaluation Methodology . 55
3.3.2 TimeCube’s Quality Time Estimation is Highly Accurate 61
3.3.3 Area and Energy Distribution in TimeCube 61

3.4 Related Work . 63
3.5 Conclusion . 65

Chapter 4 Quality Tables: Controlling Execution Quality in Hardware 67
4.1 Dynamic Execution Isolation in TimeCube . 71
4.2 Quality Tables in TimeCube . 75
4.3 Dynamically Repartitionable Static NUCA (DR-SNUCA) 78

4.3.1 Dynamically Repartitionable Static NUCA Design 81
4.3.2 Flattened Partial LRU Vector . 86

4.4 Results . 87
4.4.1 Quality Tables Created in TimeCube . 87
4.4.2 DR-SNUCA Evaluation . 92
4.4.3 Area and Energy Distribution in TimeCube 95

4.5 Related Work . 96
4.6 Conclusion . 98

Chapter 5 SPOT: Improving Execution Quality in Hardware 100
5.1 Maximizing Mean Quality Time: A Unified Resource Management

Objective . 103
5.2 SPOT: Finding the Resource Allocation to Maximize the Mean Quality

Time . 107
5.3 Prefetcher Throttling . 109
5.4 TimeCube Execution Model with SPOT . 111
5.5 Results . 113

5.5.1 Overall Results . 113
5.5.2 Prefetcher Throttling . 117
5.5.3 Varying Workload Composition . 120
5.5.4 System Scaling . 124
5.5.5 Load characteristics . 125
5.5.6 Varying Workload Diversity . 131
5.5.7 Variable Cache Switching Frequency . 134
5.5.8 Cache and Bandwidth Sensitivity Study . 135
5.5.9 Area and Energy Distribution in TimeCube 137

5.6 Related Work . 140
5.7 Conclusion . 142

Chapter 6 Conclusion . 144

Bibliography . 146

vi

LIST OF FIGURES

Figure 1. Execution time of applications under varying co-schedules 2

Figure 2. Worst-case Application Slowdowns on a simulated 32-core proces-
sor. 3

Figure 1.1. Choosing hardware events that have low extrapolation error. 18

Figure 1.2. Quality Time estimation accuracy increases with increasing sam-
pling overhead. 19

Figure 1.3. Qtime framework. 20

Figure 1.4. State Machine for application execution when running Qtime tool. 21

Figure 1.5. Shared Memory Region. 22

Figure 1.6. Application Execution. 23

Figure 1.7. Qtop monitors the online quality of applications using the Qtime
tool. 28

Figure 1.8. Quality Time can be accurately and efficiently estimated by our
technique. 31

Figure 1.9. Quality Time estimation, by benchmark. 32

Figure 1.10. Instantaneous tracking of Quality Time. 33

Figure 2.1. Qplacer can improve throughput by using Quality Time for place-
ment. 43

Figure 3.1. Worst-case Application Slowdowns on a simulated 32-core proces-
sor. 47

Figure 3.2. TimeCube Layout. 49

Figure 3.3. Augmenting manycore processors to measure Quality Time in
TimeCube . 50

Figure 3.4. Benchmarks can be classified based on the sensitivity of their miss
rate to L2 cache sizes. 57

Figure 3.5. Area distribution in TimeCube for calculating Quality Time. 61

vii

Figure 4.1. Quality Tables provide Quality Times for a spectrum of resource
allocations. 69

Figure 4.2. Static DRAM buffer partitioning in TimeCube. 74

Figure 4.3. Quality Tables for TimeCube. 75

Figure 4.4. Associatively partitioned DNUCA caches are not energy scalable. 79

Figure 4.5. Layout of Dynamically Repartitionable Static NUCA. 81

Figure 4.6. Cache access with Indirect Cache Addressing in DR-SNUCA. . . . 82

Figure 4.7. DR-SNUCA Reconfiguration . 84

Figure 4.8. Tag-Duplication in DR-SNUCA . 85

Figure 4.9. Flattened Partial LRU Vector . 86

Figure 4.10. Normalized Quality Tables for astar, hmmer, and namd. 88

Figure 4.11. Normalized Quality Tables for bwaves, lbm, and sjeng. 89

Figure 4.12. Normalized Quality Tables for bzip2, leslie3D, and soplex. 90

Figure 4.13. Normalized Quality Tables for h264ref, mcf, and specrand. 91

Figure 4.14. DR-SNUCA reduces overall execution energy 93

Figure 4.15. DR-SNUCA performance is comparable to the baseline DNUCA. 93

Figure 4.16. Area distribution in TimeCube for calculating Quality Tables and
providing Dynamic Execution Isolation. 95

Figure 5.1. Simultaneous resource allocation leads to better resource utilization
for better overall performance. 106

Figure 5.2. TimeCube uses Simultaneous Performance Optimization Table, or
SPOT, to find the optimal resource allocation. 108

Figure 5.3. Prefetcher throttling in TimeCube . 110

Figure 5.4. TimeCube execution model. 112

Figure 5.5. TimeCube’s resource allocation leads to higher throughput. 114

viii

Figure 5.6. Performance improves when cache and bandwidth are allocated
simultaneously. 116

Figure 5.7. Prefetcher Throttling maximally utilizes the available bandwidth
by intelligently switching between full prefetching, no prefetching,
as well as in between aggression levels. 118

Figure 5.8. Prefetcher throttling further improves performance gains achieved
by simultaneous resource allocation. 119

Figure 5.9. Variation in IaaS earning gains and fairness with changing workload
composition. 121

Figure 5.10. IPC contours for varying compositions. 123

Figure 5.11. With TimeCube, performance improvement increases as we in-
crease the system size. 124

Figure 5.12. TimeCube gives increasingly better performance with increasing
number of applications per chip. 126

Figure 5.13. Simultaneous Resource Allocation performs better under increasing
system load. 127

Figure 5.14. IPC and speedup wrap-contours for changing load. 128

Figure 5.15. IPC and speedup contours for changing load. 130

Figure 5.16. The performance improvements of TimeCube are impervious to
changing diversity of applications within types. 131

Figure 5.17. System throughput improvement remains high with changing ap-
plication diversity. 132

Figure 5.18. Throughput and speedup contours for changing application diversity 133

Figure 5.19. Different mappings between cache size and reconfiguration interval
have varying benefits. 134

Figure 5.20. Simultaneous cache and bandwidth allocation provides higher re-
source utilization for a range of total cache and memory bandwidths. 136

Figure 5.21. System IPC iso-contours showing the cache and bandwidth sensi-
tivity of TimeCube. 138

ix

Figure 5.22. Overall energy distribution in TimeCube. 139

Figure 5.23. Overall area distribution in TimeCube. 139

x

LIST OF TABLES

Table 1. Modern multicore and manycore processors provide abundant exe-
cution resources for concurrent threads [BFPS11]. 1

Table 2. Low per-core resource availability in modern manycore processors
leads to increased contention. 2

Table 1.1. Machine configuration used in Qtoolkit evaluation. 29

Table 1.2. Benchmarks used in Qtoolkit evaluation. 30

Table 3.1. Processor Model used for TimeCube evaluation 56

Table 3.2. Energy (pJ) consumption numbers for some operations in TimeCube 58

Table 3.3. Characteristics of benchmarks used in TimeCube evaluation. 60

Table 3.4. TimeCube’s Quality Time estimation is highly accurate. 62

Table 3.5. TimeCube can estimate the execution times of applications with a
good precision. 63

Table 4.1. FPLV efficiently provides shadow statistics for DR-SNUCA. 94

xi

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Michael Bedford Taylor for his support as

the chair of my committee, and funding my research endeavours through many years. I

would also like to acknowledge Dr. Jack Sampson for his valuable advices and help in

editing the publications that came out of this work.

Chapters 1 and 2, in parts, are a reprint of the material currently being prepared

for submission to the Technical Program Committee of the 2014 International Symposium

on Performance Analysis of Systems and Software, ISPASS 2014, for their consideration

to include the paper in the conference technical program. The dissertation author was the

primary investigator and author of this paper.

Chapter 3, 4, and 5, in part, are a reprint of the paper “Timecube: A Manycore

Embedded Processor with Interference-agnostic Progress Tracking”, Gupta, Anshuman;

Sampson, Jack; Taylor, Michael Bedford; published in the proceedings of the 2013 IEEE

International Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation, IC-SAMOS 2013. The dissertation author was the primary investigator and

author of this paper.

Chapters 4 and 5, in parts, are a reprint of the paper “DR-SNUCA: An Energy-

Scalable Dynamically Partitioned Cache”, Gupta, Anshuman; Sampson, Jack; Taylor,

Michael Bedford; published in the proceedings of the 2013 International Conference of

Computer Design, ICCD 2013. The dissertation author was the primary investigator and

author of this paper.

Permission to use these contents has been obtained through signed letters from

the co-authors.

xii

VITA

2001-2005 Bachelor of Technology, Computer Science and Engineering
Indian Institute of Technology, Kanpur

2005–2006 Design Engineer, Advanced Micro Devices

2006–2013 Graduate Research Assistant, Computer Science and Engineering
University of California, San Diego

2006–2009 Master of Science, Computer Science and Engineering
University of California, San Diego

2006–2013 Doctor of Philosophy, Computer Science (Computer Engineering)
University of California, San Diego

FIELDS OF STUDY

Major Field: Engineering (Specialization or Focused Studies)

Studies in Computer Architecture
Professor Michael Bedford Taylor

xiii

ABSTRACT OF THE DISSERTATION

Software and Hardware Techniques for Attacking the Multicore Interference Problem

by

Anshuman Gupta

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2013

Professor Michael Bedford Taylor, Chair

Multicore processors are ubiquitous in servers and have started dominating other

domains, such as embedded systems. In order to increase utilization, these multicore

processors are sharing memory resources among an increasing number of cores. This

sharing leads to memory interference, which causes significant non-uniform slowdowns

of concurrent applications, such as 12× on 32-core processors and 2.8× on 4-core

processors. The distorting effect of interference on execution quality has posed new

challenges for these consolidated systems, which continue to use legacy software that

relies on application CPU Time to infer progress. Novel solutions are required to

xiv

improve our reasoning about myriad properties from fairness, to QoS, to throughput

optimality in the increasingly concurrent computing environments, such as smartphones

and datacenters, under the influence of interference.

There are three key challenges posed by interference on multicore processors:

How do we measure, control, and improve execution quality of concurrent applications?

This dissertation proposes three novel solutions to tackle these problems. First, Quality

Time, a metric that represents application progress on a standalone processor and can

be used to measure execution quality. Second, Quality Tables, a data structure that

provides execution qualities for different system configurations and can be used to

control execution qualities. And third, SPOT, a data structure to determine resource

allocations that improve execution qualities.

I present scalable software and hardware implementations of these techniques

that can handle live applications. The software techniques are bundled into Qtoolkit,

a publicly available package, while the hardware techniques are demonstrated using

TimeCube, a manycore processor. I present a detailed evaluation of these mechanisms,

which show that we can measure Quality Time with just 1% error in hardware and about

8% error in software. By using the resource mangement techniques proposed, we can

control the QoS provided to application in hardware with just 1% error and improve

throughput by 36% in hardware, using SPOT, and 5.76% in software, using Qplacer. The

area, energy, and performance overheads for these mechanisms are very low.

Results of the experimental evaluation show that these solutions can be practically

implemented in both software as well as hardware to attack the interference problem, and

strongly argue for implementing these techniques in consolidated multicore systems of

the future.

xv

Introduction

Multicores, which integrate multiple processors, or cores, onto a single die, have

become ubiquitous in both the server and embedded spaces. With successive process

generations continuing to provide more transistors, in accordance with Moore’s Law, we

can expect that increasingly large core counts will be integrated into a single chip.

An important attribute of these multicore processors is that they provide an

abundance of on-chip resources shared between cores [teg], as shown in Table 1. While

this sounds very attractive, in reality the per-core resource availability for these manycore

processors is low when compared to the existing multicore processors, as shown in

Table 2. This per-core resource scarcity causes an increased resource contention between

applications [Jal] [MQ06], leading to large slowdowns, as shown in Figure 1. This figure

shows the execution slowdown of a variety of benchmarks when they are scheduled in

pairs and with two instances of each application on a 4-core 2.4 GHz Core 2 Duo machine.

The slowdowns reach as high as 2.7×, average 1.35×, and have a very high standard

Table 1. An important as well as attractive attribute of recently introduced multicore
processors is the abundance of on-chip resources provided at the disposal of concurrently
executing applications.

Resources Provided Tile Gx 8072 Xeon Phi 7120X
Cores 72 61
Caches 23 MB 30.5 MB
DDR channels 4 16
Memory Bandwidth 100GB/s 352 GB/s

1

2

Table 2. While manycore processors boast of a resource abundance, the per-core resource
availability is actually lower than existing multicore processors. This leads to resource
contention between applications, which in turn leads to unpredictable slowdowns.

Per-Core Resources Tile Gx 8072 Xeon 4650
Cache / core 327 KB 2.5 MB
Memory BW / core 1.16 B/cyc 4.26 B/cyc

deviation relative to the execution times. The performance effect on one application might

differ when running with another application, which makes it challenging to predict the

application slowdowns when running on a multicore processor with other applications.

This is termed as Interference.

Benchmarks

175.vpr

181.mcf

300.twolf

401.bzip2

429.mcf

458.sjeng

462.libquantum

470.lbmE
xe

cu
tio

n
T

im
e

N
or

m
al

iz
ed

 to

 S
ta

nd
al

on
e

E
xe

cu
tio

n
T

im
e

0
0.5

1
1.5

2
2.5

3

Figure 1. Execution time of applications under varying co-schedules Despite the ex-
istence of both software and hardware mechanisms to improve fairness across concurrent
applications, the range of execution times varies widely with different co-schedules due
to interference.

The increasing concurrency in multicore processors, compounded with a height-

ened tendency to share microarchitectural resources, will lead to a continuous increase in

the magnitude as well as the unpredictability of these slowdowns, as shown in Figure 2.

3

This figure shows the worst-case application slowdowns when running a spectrum of 32

benchmark compositions on a 32-core simulated manycore processor with shared last

level cache and memory bandwidth. The worst-case slowdown for these manycore runs

can be as much as 12× and average 6× over all compositions. The composition details

are available in Section 3.3.1. Thus, resource sharing and resulting interference in future

multicore processors will lead to increasingly large application slowdowns.

32−Benchmark Compositions

E
xe

cu
tio

n
T

im
e

In
cr

ea
se

 (
%

)

0

250

500

750

1000

1250

Figure 2. Worst-case Application Slowdowns on a simulated 32-core processor. On
a simulated 32-core processor (see Section 3.3.1 for details), we see that slowdowns
are both large, 6× on average, as well as highly variable, from less than 2×, to as
much as 12× in the worst case. Thus, CPU-time should not be used as a proxy for
progress when making high-order decisions in embedded systems or datacenters using
space-multiplexed manycore processors.

Microarchitectural interference manifests itself even at the higher layers of the

system architecture and can lead to insignificant inaccuracies. Many multicore systems

use legacy software components, such as the operating systems, the batch schedulers,

etc., which were originally written for unicore processors. These softwares continue to

make several crucial decisions, such as scheduling and resource allocation, maintaining

Quality-of-Service (QoS) guarantees, metering, etc. based on the application CPU-time,

4

which was used as representative of the application progress. Interference breaks the

representativeness of CPU-times for program execution on multicore processors, and it

can lead to significant errors in these crucial decisions.

Challenges Interference is becoming an increasingly important problem for com-

puting domains using multicore processors, and novel techniques and mechanisms are

required to reduce its detrimental effects. In this work, I focus on three key challenges

posed by interference:

• How do we measure the execution quality of an application running concurrently

with other applications while sharing resources?

• How do we provide performance guarantees to applications in the presence of

interference?

• How do we allocate resources between applications on a concurrent system for the

good of many, but without punishing anyone?

Solutions In this dissertation, I discuss three novel techniques to address these

challenges as well as their implementation in software and hardware:

• I introduce a novel metric called Quality Time to quantify the execution quality of

applications running concurrently on a multicore processor; it is defined as follows:

Quality Time is the amount of time that it would have taken the

thread to attain its current execution progress if that application had

had exclusive use of the machine.

I will demonstrate software as well as hardware mechanisms that estimate Qual-

ity Times to measure an application’s execution quality while running in live

5

concurrent systems with high accuracy and low overheads.

• I introduce a novel data structure called Quality Tables that can be used to provide

performance guarantees to applications on multicore processors.

Quality Tables provide estimates of application execution quali-

ties for a spectrum of system configurations, such as all possible

resource allocations, all possible application placements, etc.

I will demonstrate mechanisms to generate these Quality Tables in live hardware

as well as software and discuss how the system can use them to provide online

performance guarantees to applications in the presence of interference.

• I introduce a novel software technique for improving application placement, called

Qplacer, and a novel hardware-generated data structure called SPOT , or Simultane-

ous Performance Optimization Table, to find optimal microarchitectural resource

allocations. These techniques use the Quality Tables to improve resource manage-

ment on multicore processors on-the-fly.

The software implementations of these techniques are packaged into a user-space

open-source toolkit called Qtoolkit. These techniques were implemented in hardware as

well using TimeCube, a manycore processor, as a demonstration vehicle. These software

and hardware implementations are independent of each other, but they can be used in

conjunction as well. This dissertation presents a detailed evaluation of these software

and hardware implementations.

An application’s Quality Time is equivalent to its standalone execution time on

its current processor. Software systems can use Quality Time, as a counterpart for CPU-

times on multicore processors, when making decisions based on interference-agnostic

application progress. However, calculating Quality Time of applications on a multicore

6

processor with high accuracy and low overheads is a challenging problem because the

hardware mechanisms responsible for sharing resources inside multicore processors are

generally black-boxes and do not provide any direct means to measure their effects on

application performances. However, most architectures provide hardware performance

counters to give insight into the application execution, and these counters can be used to

detect interference in the system.

In Chapter 1, I introduce Qtime, an architecture-independent user-space tool

that uses the hardware performance counters, provided in most modern processors, to

measure application Quality Time with low performance overhead and good accuracy.

For this purpose, the tool preloads a dynamic library before application execution and

continuously tracks application’s Quality Time without requiring any code modification

or recompilation. Qtime can calculate Quality Time simultaneously and online for

multiple applications running on the system. Qtime is included in Qtoolkit, which also

contains a user-space dashboard, called Qtop, that can be used to simultaneously visualize

the Quality Time of all applications running on the system with Qtime. This dashboard

enables an administrator or a user to monitor and analyze the execution quality of a single

application as well as the entire system.

While measuring and visualizing application Quality Time is valuable for sys-

tem software, an even greater opportunity lies with combining the online estimation of

Quality Time with system heterogeneity, commonplace in today’s multicore systems, to

improve the system performance. I describe in Chapter 2 how we can place applications

with conflicting resource requirements on cores that do not share the contentious re-

source and increase the applications’ execution qualities. I present Qplacer, a user-level

tool included in Qtoolkit, that tracks live application qualities for different application

placements and uses these tables in an online simulated annealing algorithm to improve

application placement on live heterogeneous multicore processors to increase their overall

7

performance.

I provide experimental evaluation of Qtime and Qplacer in this dissertation,

which shows that by using Qtime, in contrast to using CPU-time, we can reduce errors

in estimating application progress on a modern commercial quad-core processor from

150.29% to just 23.14% in the worst case, and from 36.91% to 8.18% on average, with

an overhead of under 1% and without requiring any code recompilation or modification.

I also show that the Qplacer can increase the overall system Quality by 5.76% without

requiring any administrator-level or kernel-level privilege. Thus, Qtoolkit can be effec-

tively used in existing multicore systems to measure as well as improve execution quality

of applications.

Quality Time estimation in software has two inherent limitations. First, software

estimation adversely affects Quality Time accuracy since it uses hardware performance

counters to indirectly estimate interference on otherwise-opaque multicore processors,

and typically only a limited number of hardware events and counters are provided that

do not reveal sufficiently detailed information about the microarchitectural execution.

Second, the software estimation incurs performance overheads, such as collecting hard-

ware events, running the Qtime code, etc. We can overcome these limitations by doing

Quality Time estimation in hardware. Hardware mechanisms will have higher accuracy

as they would have the knowledge of processor internals; furthermore, they will have

significantly lower energy overheads and no time penalties due to the dedicated logic.

In Chapter 3, I describe an efficient and highly accurate hardware mechanism to

estimate live application Quality Time using shadow performance modeling. I demon-

strate this mechanism on TimeCube, a manycore processor that is augmented with the

hardware mechanisms to estimate Quality Times. TimeCube uses an analytical model

approximating the hardware execution details and shadow structures for critical shared

hardware resources to gather the necessary statistics and accurately determine Quality

8

Time. I present an experimental evaluation of a 32-core TimeCube instance, which shows

that TimeCube can estimate Quality Time and measure an application’s execution quality

with just about 1% error, at the cost of energy and area overheads of under 0.21% and

6%, respectively.

Estimating Quality Time in hardware allows us to check the execution quality of

applications on-the-fly, even in the presence of changing application phases; however, this

is insufficient to control the execution quality and provide the performance guarantees

required in embedded systems and datacenters. Existing systems use interference-aware

application scheduling to control execution qualities, but this approach is coarse-grained

and often leads to under-utilization of resources.

In Chapter 4, I demonstrate how TimeCube is augmented to control an appli-

cation’s execution quality at a fine granularity through dynamic execution isolation.

TimeCube employs scalable mechanisms for dynamically partitioning critical shared

microarchitectural resources to isolate every application’s execution and control its qual-

ity. It features a novel energy-efficient Dynamically Repartitionable Static NUCA, or

DR-SNUCA, for shared last-level cache, described in Chapter 4. DR-SNUCA reduces

the energy consumption of applications by 16% on average when compared with the

existing state-of-the-art DNUCA caches, with less than 1% performance overhead. There-

fore, these dynamic partitioning mechanisms are area and energy-efficient and provide

dynamic execution isolation in TimeCube with negligible performance overheads.

However, resource isolation is not sufficient to provide performance guarantees

because the correspondence between resource availability and application performance

is non-trivial. For example, 50% resource allocation does not guarantee 50% application

performance. Moreover, slowdown experienced with 50% resource allocation varies

widely across applications, and finally, slowdown due to 50% reduction in cache is

not the same as slowdown due to 50% reduction in memory bandwidth, as I show in

9

Chapter 4. TimeCube uses Quality Tables, a collection of Quality Time values for all

possible resource allocations, to precisely determine the resources required to attain a

certain level of application performance, and then allocate the resources correspondingly

to create performance guarantees for live applications. TimeCube periodically generates

these Quality Tables in hardware for all applications by using an augmented shadow

performance model, described in Chapter 4.

Due to the high resource contention, it is challenging to find a resource distribution

in multicore systems that maximizes the resource utilization as well as throughput

while maintaining fairness across applications. The ability to control execution quality

and resource distribution is insufficient as we need to first determine a good resource

allocation. In Chapter 5, I present a novel progress-based resource allocation technique

that uses Quality Tables inside a dynamic programming algorithm to periodically generate

a novel data structure called the Simultaneous Performance Optimization Table, or SPOT ,

which gives an optimal resource distribution between active applications that fulfills

the system objectives of throughput and fairness with very low overheads. I present a

detailed qualitative, as well as quantitative, analysis of this mechanism, and I show that,

inside TimeCube, it provides a 36% improvement in throughput compared to existing

hardware resource management algorithms.

Dynamic Execution Isolation, in combination with Quality Tables, provides a

fine-grained control over execution qualities, but it has the following side-effect as well:

Dynamic resource partitioning significantly increases the design space for mechanisms

using these shared resources, such as the DRAM prefetchers consuming the memory

bandwidth, making it difficult to statically tune these mechanisms at design time. For

example, with a variable memory bandwidth availability, it becomes difficult to find

a single prefetcher design to perform well for all possible allocations. In Chapter 5, I

present a novel Dynamic Prefetcher Throttling mechanism that tunes the prefetcher on-

10

the-fly to send just the right number of prefetches to the main memory, based on the utility

of prefetches, for near-optimal bandwidth utilization. I show that prefetcher throttling

enables an application to maximize its performance at every possible bandwidth allocation

inside TimeCube. Similar dynamic tuning can be done for other such architectural

mechanisms to improve the resource utilization and application performance for all

possible resource allocations under dynamic execution isolation.

To summarize, interference poses an impediment to systems utilizing multicore

processors by making it difficult to measure, control, or improve the execution qualities

of concurrent applications. I present three novel solutions in this work to attack these

three key interference problems. First, I quantify the distorting effects of interference

using Quality Time, a proxy for CPU-time on multicore processors, and use this metric

to measure execution quality of applications on concurrent systems. Quality Time

can be efficiently measured in software as well as hardware for live applications with

high accuracy. Second, I propose generating a novel data structure called Quality

Tables, a mapping from all possible system configurations to the resulting application

performances, and then using these tables for allocating resources to applications, through

dynamic execution isolation, to provide precise performance guarantees and tackle the

problem of controlling execution qualities. I show that we can efficiently and accurately

create Quality Tables in hardware and control the QoS provided to applications on-

the-fly. Third, I propose using these Quality Tables to improve application placements

and resource allocations in order to increase the overall system performance without

compromising on fairness. I show that we can do this resource management in live

systems with significant performance improvements and low overheads. Overall, these

software and hardware mechanisms can be used to reduce the detrimental effects of

interference, leading to significant gains in system performance as well as transparency.

The results make a compelling case to develop and employ these techniques to measure,

11

control, and improve execution qualities in multicore processors of the future, making

them even more attractive to computing domains such as datacenters and embedded

systems.

Chapter 1

Qtime: Measuring Execution Quality
in Software

Multicore processors are ubiquitous today [Cas] [Bai] and have helped increase

the computational density and energy-efficiency of not only personal computers but

also datacenters [EC2] [IBM] and embedded systems [arm]. The dynamic sharing of

architectural resources on these multicore processors among concurrent applications

leads to interference, which manifests itself through widely varying and unpredictable

slowdowns, as shown in Figure 1, that are dependent on the time-varying interaction of

system components and the workload.

Under interference, an application’s CPU time, while still indicative of resource

occupancy, has become a poor indicator of application progress since total progress now

also depends on the net impact of the other concurrently scheduled applications. Unfortu-

nately, many existing codes, ranging from “fair” thread scheduling heuristics, to the user

commands ps and top, implicitly employ CPU time as a proxy for application progress,

in addition to being the traditional representative of resource consumption. Progress-

dependent decisions made by such softwares, such as metering on the Infrastructure-as-a-

Service (IaaS) clouds, can lead to substantial inaccuracies in the presence of interference,

as shown by Govindan et al. [GLKS11].

12

13

Going into the future, with increasing use of multicores and the advent of IaaS

clouds, mechanisms that increase transparency about application progress will become

increasingly useful, for instance, for improving metering and improving application

scheduling or placement to control or reduce interference. I propose a metric, Quality

Time, which improves on CPU time as a measure of application thread progress. Quality

Time is the amount of time that it would have taken the thread to reach its current

execution progress if that application had had exclusive use of the machine. Using

Quality Time, we can also compute %Quality, analogous to the %CPU field displayed by

ps or top.

Quality Time, measured for live applications in concurrent systems, is a tremen-

dously beneficial metric as it allows online tracking of an application’s progress as

well as execution quality. Offline measurements are not able to adequately account for

interference, especially in the presence of dynamic application phases, i.e. working

sets and code regions, as there are nearly limitless combinations of these phases across

applications. Moreover, offline profiling incurs an additional execution and storage

overhead and requires knowledge of all applications that can ever execute in the system.

Another benefit of in-situ execution quality measurement is that there is no additional

effort required in either replicating the execution environment or verifying it, unlike in

the case of offline profiling.

In this chapter, I show a simple sampling-based technique that enables low-

cost online estimation of each application thread’s Quality Time and %Quality. The

technique is highly portable because it runs entirely in user-space and employs existing

hardware mechanisms that are prevalent across most general purpose processors: an

event counter that counts instructions issued, or alternatively, a counter that counts L1

data cache accesses. The technique allows measurement accuracy and overhead to be

traded off, with typical settings of < 1% overhead yielding accurate estimations. I also

14

introduce Qtime and Qtop, which make use of the Quality Time metric. Qtime, analogous

to the time utility, allows profiling or metering of a single application by providing online

reporting of its Quality Time. Qtop, analogous to the top utility, provides system-

wide monitoring and visualization of individual and collective quality of execution over

time across applications. These applications run in user-space and require only that

an environment variable be set to enable the QLib library to use the Qtime tool; no

recompilation is required.

The novel contributions described in this chapter include:

• The QLib library for accurately estimating Quality Time I developed a library

that coordinates the sampling of hardware counters to estimate Quality Time within

8.18%. I have released the source code for both QLib and the three utilities that

rely on it under GNU license.

• Efficient estimation of Quality Time entirely in user-space I demonstrate that

by merely setting an environment variable to pre-load QLib when an application

runs, we can estimate Quality Time for unmodified binaries entirely in user-space.

• Qtime I have developed Qtime, a utility that provides real-time, online estimation

of a given application’s Quality Time for profiling and metering purposes. Com-

pared to using CPU-time to estimate progress, Qtime drops worst case errors from

150.29% to 23.14%, and reduces average case error from 36.91% to 8.18% for an

overhead of less than 1%.

• Qtop I have developed Qtop, a dashboard utility that provides visibility of execu-

tion quality across an entire system.

The remainder of the chapter proceeds as follows. Section 1.1 describes the

insights and methods used for inferring Quality Time from hardware counters. Section 1.2

15

describes the implementation of QLib and the Qtime utility, and Section 1.3 describes the

implementation of Qtop. Section 1.4 showcases results for Qtime accuracy. Section 1.5

reviews related work, and Section 1.6 concludes.

1.1 Architectural Interference and Performance Mea-
surement

In modern processors, interference is difficult to predict and manage because of

two factors. First, microarchitectural resources, such as cache occupancy and bandwidth,

are often shared in a free-for-all fashion and resource allocation decisions occur at very

fine temporal granularity. Since main memory is vastly slower than on-chip memory,

every memory access from any thread could have potentially detrimental effects on the

execution of its cohorts if servicing the memory request forces the eviction of a more

useful cache line. Second, applications running on out-of-order superscalars differ greatly

in both their demand for resources, and in their sensitivity to not having their demands

met. Third, threads frequently transition through execution phases [SPHC02], which

results in many possible phase combinations when different threads are run together.

Thus, the space of all possible combinations of co-scheduled resource demands is large,

frequently changing, and effects depend on interactions of address streams at run-time.

Analyzing CPU Time As a Proxy for Application Thread Progress In the context-

switched uniprocessor domain, it was sensible to rely on CPU Time as a metric for

thread progress. With interference, we are driven to cast about for potential hardware

mechanisms that might be more effective substitutes. Implicitly, CPU Time is computed

by the OS using either a timer circuit that asserts a periodic interrupt, or a cycle counter,

which counts the number of clock cycles that have elapsed. Relying upon these hardware

mechanisms for measuring thread progress works poorly in a multicore environment

16

because these measures are oblivious to any external effects from other threads that may

slow execution.

Alternative Proxies Hardware metrics that are more closely tied to program progress

are more promising. Of particular interest are hardware event counters, which count

events in a processor’s execution, and have become increasingly ubiquitous in modern

processors. Such event counters provide a plausible proxy for execution progress because

they are highly correlated to real-program progress. For example, in a simple loop

accessing an array, the number of L1 data cache accesses, or even simply the number of

instructions executed, correlate directly with the number of iterations/progress through

the loop. Ideally, we can select among the many event counters that are available and find

one or more that are not particularly sensitive to interference, making their measurement

more strongly tied to program fundamentals than the current execution environment.

Measuring Event Rates However, there is one key challenge in using counters that

are essentially counting program properties – normal, interference-free values may vary

between different programs or different inputs, leaving us with no sense of the expected

value for that run. We need to estimate the expected rate that those events occur at

in interference-free execution, in order to convert from “event” units to “time” units.

Because of program phases, event rates are likely to change with time even within a

single thread, so we can not rely on static conversion ratios.

In order to estimate an application’s Quality Time, we repeatedly measure event

counter statistics first over a very short sample period, where other application threads

have been temporarily suspended, and then over a much longer execution phase, wherein

it is co-scheduled. The short sample period is used to establish the event rate under

interference-free execution. Then, we use that rate to convert the total number of events

17

into a interference-free time value, aka Quality Time.

Choosing a Counter Using this sampling-based approach to sample the interference-

free event rate relies upon the hypothesis that the sampled event-rate of a small execution

period of the application can be used to extrapolate the behavior of a much larger period

of execution. The choice of event counter greatly affects the quality of that extrapolation.

Ideally, we would have an event that is 1) high frequency, to avoid aliasing errors due to

integer precision counters; 2) oblivious to interference, in the sense that the number of

counted events in a fixed sequence of instructions should not vary when other programs

are run and 3) low variability in measured event-rates (e.g. events/cycle) across program

execution.

Every architecture provides a number of hardware event counters for insight and

debugging purposes. To choose among the many such options, we examined the events

exposed by the PAPI [TJYD09] library over all the benchmarks from Figure 1, each

running interference-free, to select the events with minimal extrapolation error. We used

the cycles/event ratio present in a single interval of 1 ms to predict the cycles for the

next 99 ms using the event count for those 99 intervals (1% sampling). As shown in

Figure 1.1, the extrapolation error varies widely depending on the event selected. L1 data

cache access (L1-DCA) and instructions committed (TOT-INS) ended up being among

the best metrics, because they were strong on all three requirements for events. First,

they have low aliasing error compared to low frequency events such as L2 cache misses

(L2-TCM). Second, they are interference-oblivious, unlike for instance, L2 cache misses.

Third, and finally, they have relatively low variability (with L1-DCA having the lowest)

across programs. For the remainder of the paper, we will focus on L1 data cache access

and instructions committed as the two hardware events to track.

18

Hardware Events

L1
 D

at
a

C
ac

he
 A

cc
es

s
In

st
ru

ct
io

ns
 C

om
m

itt
ed

L1
 In

st
 C

ac
he

 R
ea

d
L2

 In
st

 C
ac

he
 H

it
L1

 In
st

 C
ac

he
 M

is
s

In
st

 Is
su

e
S

ta
ll

C
yc

le
B

ra
nc

h
T

ak
en

L2
 In

st
 C

ac
he

 A
cc

es
s

F
P

U
 Id

le
 C

yc
le

L1
 In

st
 C

ac
he

 A
cc

es
s

L2
 T

ot
al

 C
ac

he
 A

cc
es

s
L2

 D
at

a
C

ac
he

 A
cc

es
s

B
ra

nc
h

In
st

ru
ct

io
ns

L1
 D

at
a

C
ac

he
 M

is
s

B
ra

nc
h

M
is

pr
ed

ic
ts

L2
 T

ot
al

 C
ac

he
 M

is
s

F
P

 M
ul

t I
ns

tr
uc

tio
ns

L2
 D

at
a

C
ac

he
 M

is
s

V
ec

to
r

In
st

ru
ct

io
ns

F
P

 O
pe

ra
tio

ns
F

P
 A

dd
 In

st
ru

ct
io

ns
F

P
 In

st
ru

ct
io

ns

E
xt

ra
po

la
tio

n
E

rr
or

 (
%

)

10 4

10 3

10 2

10

1

AVERAGE MAX

Figure 1.1. Choosing hardware events that have low extrapolation error. Quality
Time estimation samples a small region of execution and acquires an event rate that is
then applied to estimate the behavior of a larger region of code. Event counters that
generate good event rates have low aliasing errors, are interference-agnostic, and have
low variability. The top counters were Instructions Committed and L1 Data Cache Access,
and are used for the remainder of the paper.

Choosing a sampling interval that is accurate and low overhead For our sampling

approach, we must select both sampling rate and per-sample durations in order to balance

overheads and accuracy. Ideally, the sampling duration should be long enough to absorb

micro-variations in the application execution. At the same time, increasing the sampling

duration increases the disruption to other threads during sampling, and, given a fixed

sampling overhead, may negatively impact the dynamism of our predictions and our

coverage of different application phases. We explored the impact of sampling overhead

and duration on Quality Time estimation accuracy. Figure 1.2 shows the results of

19

E
st

im
at

io
n

E
rr

or
 (

%
)

1000

100

10

1

Sampling Overhead (%)
10.03.01.00.3

100,000 1,000,000 10,000,000 100,000,000

Sampling Duration (ns)

Figure 1.2. Quality Time estimation accuracy increases with increasing sampling
overhead. We can estimate Quality Time with less than 10% inaccuracy using sampling
with an overhead of 1%. In this paper, we employ 1 millisecond sampling durations.

our sweep over sampling duration and frequency for the L1DCA event using the same

experimental setup as in Figure 1.1. The accuracy increases with higher sampling rates,

as expected, but this also leads to a higher overhead. On the other hand, the impact of

sampling duration was not as direct, since different applications have different phase

durations and behave differently for varying sampling durations. For this paper, we use a

1 ms sampling duration.

1.2 Qtime: A Tool to Measure Online Application
Execution Quality

There are two paths toward implementing counter-based approaches for estimat-

ing Quality Time. Namely, the approach can be implemented either in the kernel or in

20

user-space. The former would provide a system-wide view of the effects of interference

and allows for the greatest variety of responses to the incoming data. A user-space

approach is also desirable because any user can portably reason about the quality of

execution of their jobs on any system they may find themselves executing those jobs on.

However, since a user-space approach can only control that user’s applications, there is

the potential for lost accuracy due to interference from other concurrent users.

In the following, we describe the design of Qtime, a user-space tool for estimating

an application’s Quality Time. Qtime requires measurements of hardware event counters

to indicate application progress when running alone as well as concurrently. The tool

uses the PAPI library [TJYD09] to provide access to the hardware event counters and

read them out periodically. The PAPI library itself relies on the perfCtr module in linux

kernel. PAPI virtualizes the event counters, so the tool can continue to get meaningful

statistics even in the face of context switches.

Stat Collection

Suspended Sampling

Application C

Application D

Execution

Application A

Application B

Figure 1.3. Qtime framework. Qtime uses a sampling-based framework implemented
in a dynamically linked library called QLib. Through this library, the applications
regularly collect hardware event counters, either in standalone mode or concurrent mode,
to estimate the application progress and execution quality online. To collect samples in
standalone mode, all other applications are suspended. This synchronization between
applications is managed through a shared memory region, which is managed by the QLib.

21

INIT	

EXIT	

DUMP	

SUSP	

Signal

Check

	

	

	

	

	

	

	

	

	

	
 	
 	
 	
 	
 Execu0on	

SMPL	

	

	

	

	

	

	

	

	

Concurrent	

STAT	

EXEC	

U
nl

oc
k Lock

Sigalrm

Sigalrm
O

vf
l/S

ig
al

rm

R
eturn

Figure 1.4. State Machine for application execution when running Qtime tool. An
application, when using Qtime tool to estimate its Quality Time, starts in the sampling
state (SMPL) where it tries to collect event counters in standalone mode by signaling
other applications to suspend (SUSP). Samples are collected (DUMP) in the counter
overflow handler. After some predetermined time, the application resumes execution
(EXEC) in concurrent mode and periodically collects event samples in the concurrent
mode (STAT).

In our user-space implementation, we allow concurrent applications to simul-

taneously estimate their Quality Time. Each invocation of Qtime attaches to a single

application, whose Quality Time will then be measured. Each application must collect

its event statistics both in isolated and concurrent execution. These measurements occur

throughout execution to provide robustness against application phase-changes. Since

we use hardware event counters to track progress, applications periodically read the

current hardware event counters for their execution, as shown in Figure 1.3. Since

hardware counters are usually shared among all concurrent applications on a processor,

there is some orchestration required to get accurate measurements during concurrent

22

execution. In addition to the sampling phases, wherein other applications are suspended,

the applications also time-multiplex the collection of event counts during concurrent

(non-sampling) periods. This is clearly seen in Figure 1.3 in the pattern of stat-collection

periods between the two indicated sampling periods. Overall stat counts for the entire

concurrent execution period are extrapolated linearly.

App	
 A	
 	
 	
 	
 SMRE	

App	
 B	
 	
 	
 	
 SMRE	

App	
 C	
 	
 	
 	
 SMRE	

App	
 D	
 	
 	
 	
 SMRE	

Applica/on	
 A	

Applica/on	
 B	

Shared Memory Region (SMR)

Shared Memory Region Entry (SMRE)

WRSHM

Applica/on	
 C	

Applica/on	
 D	

QTOP	

RDSHM

Quality-­‐Time	
 Instruc/ons	
 CPU-­‐Time	
 L1	
 accesses	
 PID	

Figure 1.5. Shared Memory Region. Applications write their Quality Time, CPU-
times as well as execution statistics into a Shared Memory Region (SMR) where they
can be read (RDSHM) by other applications for synchronization as well as management
purposes. Each application is allocated a Shared Memory Region Entry (SMRE), which
contains application PID, Quality Time, CPU-time, and other hardware statistics. The
shared memory region also contain the variables indicating currently sampling application
as well as the application currently collecting execution statistics.

As described above, there is a need for synchronization between applications for

using the counters. This synchronization can be provided by a centralized controller;

however, in order to reduce unnecessary context switches for the controller execution,

calculate application Quality Time using its own resources, and provide scalability

through decentralization, we let the application execute the sampling and Quality Time

estimation code. We create a library, called QLib, which contains this code.

The QLib library has to be linked to the application binary. To eschew recom-

pilation, we take advantage of LD PRELOAD to intercept libc start main and link

23

Shared
Memory

Region (SMR)

LOAD

EXECUTE

W
RSHM

PAPI
Overflow

PRELOAD

APP SMRE

Qlib	

Dynamic
Linkage

EXIT

Execution

Suspended Sampling

 Stat Collection

Figure 1.6. Application Execution. Qtime preloads QLib at the launch of an applica-
tion, which sets up the application sampling framework. During execution the statistics
are written to the SMR when PAPI is triggered by an event counter overflow. Applications
suspend other applications to collect samples for standalone execution by sending a signal
to other applications. On receiving the signal the application remains suspended, and
periodically checks the SMR to see if the application has finished sampling, after which it
resumes execution. In concurrent mode, applications can collect samples after obtaining
a stat collection lock present in the SMR.

in QLib, a library to handle the communications among the applications, PAPI, and a

shared memory region holding Quality Time statistics, as shown in Figure 1.6. QLib

24

connects with PAPI and configures the hardware event counters. It also sets up an

overflow controller that tells PAPI to read out the hardware event counters every time

the PAPI TOT CYCLES counter exceeds a given threshold. During these overflows, the

statistics will be written (WRSHM) into the shared memory region shown in Figure 1.5.

QLib writes the collected event counts during sampling phases to a different location

in shared memory than the non-sampled statistics. These isolated application statistics

are collected for use as representative samples. QLib also sets up the signal handlers for

beginning the sampling phases, and an exit handler such that when the application exits,

it frees up associated entries in the shared memory region. It also sets up a SIGALRM

handler.

During both the sampling and execution phases, the applications periodically

send event statistics, CPU-time, and the currently calculated Quality Time to a Shared

Memory Region, or SMR, for communicating this information, as shown in Figure 1.5.

SMR is divided into Shared Memory Region Entries, or SMREs, where each SMRE

can store an application’s PID, Quality Time, CPU-time, instructions committed and L1

cache accesses. At the beginning of execution, every application allocates a SMRE. The

application periodically updates the SMREs with its execution statistics. The statistics

reported are cumulative, so they are overwritten and there is no need of a read-modify-

write. When an application exits, its SMRE is freed and can be allocated to other

applications.

Figure 1.4 describes the state machine in QLib that controls the sampling and

statistic collection behaviors for each thread. We use SIGALRM to periodically schedule

when the application will be ready to get samples in standalone mode or concurrent mode,

and when it should stop collecting samples. Once an application decides to sample an

application, it sends a real-time signal to all other applications. On receiving the signal,

all the other applications enter a suspended state and periodically read a shared memory

25

region to check if the sampling state is over. Meanwhile the sampling application initiates

the hardware event counters and collects the counters on periodic counter overflows.

After a predetermined sampling duration, the application stops collecting samples, writes

a value to the shared memory region that indicates that the sampling is over, and resumes

execution. When the suspended applications next read the shared memory region, they

resume their execution as well.

The applications also collect samples during the concurrent execution. In the

SIGALRM handler, if it needs to start collecting samples, it tries to obtain a lock placed

in the shared memory region to ensure that no other application is currently using

the hardware counters. On obtaining the lock, the application initializes the hardware

counters, records event counts, and calculates the Quality Time. The Quality Time is

also updated in the shared memory region every time the PAPI TOT CYCLES counter

overflows.

Before the application begins standalone sampling, it dumps its current statistics

in the Shared Memory Region, changes the mode to sampling mode and resets the

hardware event counters. Then it dumps the statistics in the shared memory region on

overflows until it finishes standalone sampling. At this point, it again dumps the statistics,

resets the hardware counters, changes to the EXEC state, and resumes execution. During

the EXEC state, the application is not collecting any samples and, since it temporarily

suspends the event gathering, it doesn’t register any event overflows. As a result, during

the EXEC state the Quality Time estimation is done inside the SIGALRM handler. Qtime

records the ratio of application’s Quality Time progress versus the CPU-time progress

during the STAT state. Qtime then uses this ratio during the EXEC state to update the

application Quality Time based on its CPU-time progress.

Since the hardware counters are read on cycle overflow, while the state transitions

happen inside the SIGALRM handler, which is triggered on time, the state transitions

26

and statistics collection are not synchronized. Thus we can get dirty data across these

transitions. To avoid that, every time the application transitions from a statistics collecting

state, it reads the counters, dumps the data into the shared memory region, and resets the

hardware counters before starting the next state.

Taken as a whole, Qtime provides an efficient and accurate tool that allows an

application to see its own Quality Time. This is already highly useful for purposes such

as profiling, but in the next section, we will show how collecting Quality Times for all

currently running applications is useful for managing overall system quality.

1.3 Qtop: A Dashboard for Monitoring and Control-
ling Execution Qualities of Other Applications

In addition to Qtime, we also implemented Qtop, a dashboard which continuously

tracks application qualities, and provides monitoring and controlling facility for the

overall system quality. Applications run with Qtime dump application statistics including

PID, Quality Time, and CPU-time in the shared memory region to communicate with

other applications. Qtop periodically reads this shared memory region for the execution

statistics and maintains a history of the application qualities over time.

The Qtop dashboard presents a compact visualization of the system execution

quality at present as well as over the past. Qtop creates a live display of the quality of

applications executing using the Qtime tool, as shown in Figure 1.7. It displays not just an

application’s Quality Time and CPU-time, but also takes a ratio of these two time metrics

to calculate the application’s execution quality over recent execution, and displays it in

ascii at a resolution of 10% execution quality. It also summarizes the application quality

over the entire execution as well as customizable periods, such as last 1 second or last 5

seconds, and displays them in the application summary. Finally, it also shows the cores

on which the application was executing for each update.

27

Qtop can be readily used for detecting a lack of overall quality in the system as

well as the offending workload. Similarly, it could be used to detect whether the system

is underutilized and can be further consolidated. Qtop can monitor the entire system with

very low overhead (¡ 1% core overhead) comparable to common linux monitoring tools

such as top.

28

Figure 1.7. Qtop monitors the online quality of applications using the Qtime tool.
Qtop periodically reads the shared memory region for information about the applications
running Qtime, and displays their overall as well as current execution quality, for example
during the last 1 second and 5 seconds. It shows the history of each application’s quality
in a live curve where each dot represents a 10% quality during that second. Underneath,
the core on which the application was running at that point is shown.

29

1.4 Results

1.4.1 Evaluation Methodology

We now describe the evaluation of our user space tools: Qtime, which approxi-

mates application Quality Times, and Qplacer, which uses simulated annealing to improve

application placements.

We implemented a user-space tool, Qtime, to suspend and sample applications,

and calculate Quality Time using statistics collected from applications. The other user-

space tool Qplacer is a tool that monitors application qualities and improve application

placement using simulated annealing. We run our experiments on the setup described

in Table 1.1. We use the PAPI library [TJYD09] version 5.0.1.0 to collect application

execution statistics. We use sampling periods of 1 millisecond and sampling periods of

1% compared to concurrent execution periods. We use the PAPI overflow threshold as 1

million cycles.

We use benchmarks from SPEC2000 [Hen00] and SPEC2006 for our evaluation.

We describe the benchmark characteristics in Table 1.2. For each workload, we run all

the benchmarks in a loop until all the applications have finished at least once and measure

the Quality Time for all the applications simultaneously.

Evaluating our Quality Time scheme and comparing alternatives requires us to

replay each scheme in the face of potentially variable machine behavior. Thus, we

Table 1.1. We run our user-space tools included in Qtoolkit on a modern multicore
processor to determine Quality Time estimation accuracy in software.

OS CentOS release 5.8 (Final), Linux 2.6.39.4
Processor Quad-core Intel Xeon X3220, 2.40GHz,

2 x 4MB shared L2 cache
Memory 1066MHz FSB, 6GB DDR3

30

Table 1.2. We use 13 benchmarks from SPEC2000 and SPEC2006 benchmark suites.
These suites are a good representative of typical applications that are run on multicore
applications.

Application Suite Description
164.gzip SPEC2000 File compression
175.vpr SPEC2000 Place and route CAD tool
181.mcf SPEC2000 Vehicle scheduling algorithm
183.equake SPEC2000 Seismic wave propagation
188.ammp SPEC2000 Computational chemistry
197.parser SPEC2000 Word processing
256.bzip2 SPEC2000 File compression
300.twolf SPEC2000 Computer aided design
401.bzip2 SPEC2006 File compression
429.mcf SPEC2006 Vehicle scheduling algorithm
458.sjeng SPEC2006 Pattern recognition
462.libquantum SPEC2006 Quantum computing
470.lbm SPEC2006 Computation fluid dynamics

run both our baseline isolated executions and each benchmark tuples multiple times

to better cover the scope of real program behaviors. Overall we collected >750 data-

points to evaluate the accuracy of Qtime. For comparing the accuracy of instantaneous

estimates, we use the simplifying assumption that, for these benchmarks, an equivalent

number of committed instructions implies an equivalent amount of application progress.

This simplifying assumption is borne out by the minimal variance in total committed

instructions across runs for SPEC benchmarks.

1.4.2 Quality Time Estimation Results

We ran Qtime with a sampling period of 1% compared to the concurrent execution

period and a sampling duration of 1 millisecond using the L1-DCA and TOT-INS events.

We observe that while the existing method of using CPU time to track application progress

has an error of 36.91% on average, our initial simple sampling-based technique is able

31

AVG
STDEVP

ro
gr

es
s

E
st

im
at

io
n

E
rr

or
 (

%
)

0
5

10
15
20
25
30
35
40

CPU−time TOT−INS L1−DCA

TOT−INS−CAP L1−DCA−CAP

MAX

0

50

100

150

200

Figure 1.8. Quality Time can be accurately and efficiently estimated by our technique.
Sampling-based Quality Time estimation has an accuracy of 10.81% on average and
1.74% geometric mean, when using L1-DCA. However, the maximum error is 110.70%
with L1-DCA and 189.61% with TOT-INS. We are able to reduce the max error to 23.14%
(and 8.18% on average) when using L1-DCA by capping the Quality Time each interval.

to reduce this error for almost all the workloads, as shown in Figure 1.8, to 10.81% on

average when using L1 data cache access and 16.43% when using instructions committed,

as shown in Figure 1.8. However, for some workloads, the error goes up significantly

when using our sampling technique. This is due to the amplification effects of sampling:

If our “representative” sample is actually in a different phase than the execution we

use it to predict, then our back-calculation of time can be erroneous. In particular, if

we sample during a low event-frequency phase, and predict for a high event-frequency

phase, our estimation of time elapsed can be implausibly high. As a result, the maximum

error is still very high, 110.70% and 189.61% for L1 data cache access and instructions

committed respectively, as shown in Figure 1.8.

Fortunately, we can refine our technique by applying capping to our Quality Time

32

Benchmarks

164.gzip

181.mcf

183.equake

188.ammp

197.parser

256.bzip2

300.twolf

401.bzip2

470.lbm

OVERALL

P
ro

gr
es

s
E

st
im

at
io

n
E

rr
or

 (
%

)

0

20

40

60

80

100

120

140

160

11.13 11.84
7.23 10.69 7.09 7.87 7.26 6.29 4.24

8.18

CPU−time
Quality−time

Figure 1.9. Quality Time estimation, by benchmark. We show the ranges of error
for both CPU-Time and L1-DCA Quality Time estimation. Our technique improves
the accuracy and reduces the variability in approximating application progress in the
presence of interference.

estimation to improve our results. We know that for every interval, the Quality Time

cannot be less than zero. Also, ignoring the rare case of speedups when sharing resources,

the Quality Time can be assumed to be less than or equal to the CPU time. We apply

these two limits every intervals to bound our Quality Time estimation. As shown in

Figure 1.8, capping leads to better Quality Time estimation, especially when using L1

data cache accesses. When using L1 data cache access, capping reduces the maximum

error to 23.14% and average error to 8.18% with a standard deviation of 3.39%, as shown

in Figure 1.8. Figure 1.9 shows the final results by benchmark.

33

Time (sec)
0 10 20 30 40 50

E
st

im
at

ed
 Q

ua
lit

y
T

im
e

(s
ec

)

0

10

20

30

40

50 CPU−Time
Ideal
L1−DCA−CAP

Figure 1.10. Instantaneous tracking of Quality Time. We plot the calculated and
ideal Quality Time for 401.bzip2 as a function of time. We show that our technique can
provide accurate instantaneous estimations of Quality Time as well as accurate holistic
estimations, with the estimated Quality Time closely tracking the ideal.

Figure 1.10 shows an example of how our technique can provide consistently

accurate estimations over the course of execution, as well as accurate summary statistics.

Figure 1.10 shows that, for the entire course of the execution of 401.bzip2, the estimation

of progress tracks very closely with the ideal. While whole-execution accuracy is

sufficient for use cases such as IaaS metering, fine-grained accuracy is necessary for

using Quality Time for scheduling, resource allocation, or other dynamic decisions.

1.5 Related Work

Architectural Interference. Typical commercial multicore processors share re-

sources among concurrent threads, and resource sharing leads to interference between

applications, as described by Tang et al. [TMV+11]. Govindan et al. [GLKS11] show

34

that even with the use of hypervisors the unpredictability in slowdowns is very high.

Stillwell et al. [SSVC09a] also examined the performance impact of resource sharing

in servers at the system level. For these resource-sharing processors, it is important

to precisely estimate the performance of applications in order to improve resource ac-

counting and utilization, as shown by Armbrust et al. [AFG+10]. For resource-sharing

commercial systems, it is important to accurately estimate the progress of applications

and exercise control over it in order to maintain performance guarantees and improve

resource utilization, as also pointed out by Buttazzo [But06], since even state-of-the-art

resource management schemes, such as the ones proposed by Gohner et al. [GWG+] and

Elmroth et al. [EMHF09], do not account for application slowdowns due to sharing of

processor resources.

Quality Time provides a performance abstraction for interference-free execution.

Such abstractions can be useful for high-order decisions such as resource management

and progress tracking, as suggested by Zhang et al. [ZDFS07], in multicore systems.

Performance Analysis. Several tools and techniques have been proposed previ-

ously that do performance analysis of application executions, such as VTune [Rei05]

and Cilkview [HLL10]. These techniques are mostly offline, such as by London et

al. [LDM+01]; moreover, these techniques analyze application performance in isolation.

Zagha et al. [ZLTI96] propose an offline performance analysis using hardware counters

for specifically MIPS R10K, whereas our technique can be used on any platform. Com-

pared to context-sensitive technique proposed by Ammons et al. [ABL97], our technique

provides less information, which is sufficient for our purpose; as a result, the tool is

efficient enough to be used online.

Kambadur et al. [KMHK12] propose using remote machines to analyze profile

data obtained from live datacenter applications using Google Wide Profiler [RTM+10].

35

This technique has a very low overhead; however, since they collect profiles on live

applications, but process them on remote machines, the round-times are too large to make

phase-sensitive analysis/scheduling. Moreover, they do not have standalone performance

estimates, which is very useful in providing bounded QoS to applications in certain

settings, such as IaaS or embedded-systems.

Performance Estimation. Performance estimation has been studied in existing

literature for different objectives. For example, Eyerman et al. [EHE11] used a mech-

anistic performance modeling to create CPI-stacks, which can be used to determine

performance bottleneck in systems. These models however require some knowledge of

the microarchitecture as well as some offline regression. Lee et al. [LB06] use offline

regression to estimate performance and power consumption of applications. However, our

performance estimation technique is online and requires no knowledge of the underlying

microarchitecture.

Research has been done to even create application progress estimates in hardware.

It is faster to accumulate execution statistics in hardware and most importantly, the

performance estimation inside architectures can produce very high accuracy due to their

intimate knowledge of the architectural details. TimeCube [GST13] tracks application

progress using an analytical performance estimation model similar to the one proposed by

Solihin et al. [SLT99]. These models are able to model minute architectural details such

as tracking prefetches, measure memory bandwidth constraints, and cache intricacies

such as dirty lines, such as the mechanism proposed by Kaseridis et al. [KSCJ10]. They

even model off-chip architectural resources that affect application performance, such as

the details of DRAM DDR protocol and bank buffer behaviors. These mechanisms can

even obviate the need for standalone execution by using shadow structures, for example

shadow cache techniques that have been proposed for associative caches, such as by Zhou

36

et al. [ZPS+04], which are based on the LRU-stacking property [Hil87]. The shadow

structures measure hardware events such as cache misses for arbitrary resource amounts,

such as cache sizes, which is required for the hardware shadow performance modeling.

These hardware mechanisms are efficient and more accurate, but they are not useful

for existing processors which are already facing architectural interference problems, for

which the solution has to be implemented in software.

1.6 Conclusion

While multicore processors are commonplace in desktops as well as servers, it is

only recently that their use in commercial cloud computing and embedded computing has

highlighted the problem of microarchitectural interference present in these processors.

This interference, which can lead to a wide variation in execution times, can be efficiently

measured for all active applications to track their live progress, or Quality Time, using

Qtime and monitor all of them simultaneously using Qtop, which can be used to get

system insights as well as make other higher-order decisions, such as metering and

resource management.

Acknowledgment

Parts of these chapters are reprinted from the following papers:

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “Quality Time: A

Simple Online Technique for Quantifying Multicore Execution Efficiency”. To be

submitted at the International Symposium on Performance Analysis of Systems

and Software, ISPASS 2014.

Permission to use these contents has been obtained through signed letters from the

co-authors. Dissertation author was the primary investigator and author on this paper.

Chapter 2

Qplacer: Improving Execution Quality
in Software

Multicore processors are used by systems to promote consolidation, which in turn

provides an increased compute density and reduced operating costs. This consolidation in

turn leads to interference, which can prove detrimental to the system in terms of accuracy

and throughput. However, the consolidation itself also provides an opportunity to reduce

this interference. The consolidated systems typically provide some heterogeneity within

the multitude of applications being executed, as well as the processing elements and their

associated physical resources.

The variations in applications transcend to the differences in their execution

behaviors and, more specifically, their resource requirements and sensitivities. This

implies that while certain combinations of applications contend for the same resources,

leading to larger interference, an alternative application combination can be symbiotic,

leading to lesser resource contention and, therefore, reduced interference.

At the same time, there is physical heterogeneity in multicore processors, both

across as well as within. The variations between processors across generations or

different commercial offerings is a common source of heterogeneity multi-processor

systems. There can be heterogeneity within a single server with multiple sockets, as a core

37

38

shares the off-chip bandwidth with another core on the same socket, but not with a core

on a different socket. Even within multicore processors, we are witnessing increasingly

complex resource distribution; for example, a core might share on-chip cache only

with a subset of the remaining cores on the socket. This physical heterogeneity can be

exploited to reduce interference in multiple ways, such as co-scheduling cache-sensitive

applications on non-cache sharing cores.

In this chapter, I introduce Qplacer, a user-space tool that recognizes the appli-

cation and physical heterogeneity on the system and exploits it by intelligently placing

the applications on cores in order to reduce the interference on the system. Qplacer

uses Quality Time information to discover preferable affinities among co-scheduled

applications and can re-map applications to different cores to improve execution quality

and throughput.

The novel contributions described in this chapter include:

• Qplacer I have developed Qplacer, a user-space affinity mapping tool that actively

monitors inter-application interference using Quality Time metrics, and efficiently

moves application threads among cores to reduce the interference.

• Improvement of application placement in user-space I present a quantitative

analysis of Qplacer on a multicore system with >100 data-points to show that

Qplacer achieves 5.76% higher average throughput over a random scheduling and

provides a maximum throughput improvement of 47.42%.

The remainder of the chapter proceeds as follows. Section 2.1 describes the

implementation details of Qplacer. Section 2.2 presents the evaluation results for Qplacer

showing throughput improvements. Section 2.3 reviews related work, and Section 2.4

concludes.

39

2.1 Qplacer: A Quality Time based Affinity Mapping
Tool

The quality of application execution can be significantly affected by architectural

resource contention, and different schedules of applications to cores will result in different

levels of contention. Since Qtime enables online monitoring of application qualities,

it provides an opportunity to alter system configurations on-the-go and quickly react

to changing application phases. This level of dynamic reactivity is very difficult when

monitoring or profiling is done offline or on remote machines. We create a user-space

tool, Qplacer, that attempts to improve system throughput by suggesting application

placements that will improve execution quality. Qplacer is a user-space tool and does not

require root access to run.

While Qplacer does not interfere with OS application scheduling in terms of which

applications are currently scheduled, it attempts to increase system quality by discovering

better application placements. For this purpose Qplacer uses simulated annealing, which

ensures that even if the system converges to a locally optimal placement, it continues

to probabilistically try other configurations and provide robustness against dynamically

changing application phases and interactions.

2.1.1 Simulated Annealing

Application qualities provide a direct indication of possible resource contention in

the system. However, it doesn’t give an insight about which resource is under contention;

as a result, even if we see a drop in application qualities, we cannot determine alternate

placements for the applications to cores that do not share the contentious resource. While

it is possible to use the program counters to determine the resource under pressure, this

reduces the portability of the placer by making it architecture-dependent. Instead, we rely

40

on the empirical knowledge of interference between applications for different placements.

There exists a fixed number of possible application placements on a processor.

Some of these placements can be equivalent, i.e. all pairs of applications share the same

set of resources in both placements. We identify these unique configurations for the

processor, empirically determine the quality of applications for each of these unique

configurations, and switch to the configuration with the highest overall application quality.

However, the application phases can change over time; as a result, we need to regularly

update our empirical knowledge of application qualities, and continually switch to the

best possible configuration. We employ simulated annealing to accomplish this, since it

allows us to get out of local maxima for the total application quality.

Qplacer uses the following simulated annealing model:

• States, S: Represented by unique configurations in the system. Two configurations

are not unique if all applications are homogeneous co-locations in the two configu-

rations. For example, on our evaluation machine, there are three possible unique

configurations, i.e. ”ab,cd”, ”ac,bd”, and ”ad,cb”.

• Energy, E(S): Each configuration has an associated energy. Qplacer records the

Weighted-Quality of each application in each configuration, and uses the sum of

these Weighted-Qualities of all applications as the energy of the configuration.

Every interval, the Weighted-Quality of all applications are calculated by taking

the sum of their existing Weighted-Quality, weighted down by a damping constant,

and the current Quality of these applications, weighted down by one minus the

damping constant. The initial Weighted-Quality of each application is a 100%.

• Temperature, T: The system temperature determines its entropy. Qplacer is less

willing to change soon after a configuration switch. So it uses the natural logarithm

of the time (in milliseconds) since last switch as the system temperature.

41

• Switch Probabilities, P: Finally, Qplacer determines the probability to switch from

state S to S’ as:

P(S,S′,T) = eβ×(E(S′)−E(S))+T (2.1)

β is a convergence constant. The probabilities are normalized so that the sum of

all switch probabilities is 1.0.

Every interval, Qplacer estimates the switching probabilities, and then generates

a random number to determine the next state of the system. The Qtop monitoring tool

displays the application swaps made. While there are overheads associated with swapping

configurations, our results indicate that the swaps occur infrequently enough, and the

programs converge to beneficial schedules rapidly enough that affinity control can provide

benefits in the common case. This is particularly promising compared to static profiling

approaches, as it means that Qplacer or similar approaches will provide benefits even for

previously unseen programs. Thus, Qplacer will be particularly useful for expanding IaaS

and cloud computing domains wherein arbitrary user computations may be offloaded to

consolidated servers for execution.

2.2 Results

2.2.1 Evaluation Methodology

We now describe the evaluation methodology for our experiments. We use a

framework similar to the one used in Section 1.4.1. We run the experiments on the system

described in Table 1.1. Qplacer is a user-space tool, which allows a user to improve the

placement, and therefore the performance, of its applications even in the absence of any

system support. We use 0.25 as the damping constant for simulated annealing, and 2.00

as the convergence constant. We collected >100 data-points with Qplacer with different

application workloads to evaluate the performance improvement with Qplacer. For total

42

system throughput we compare the sum of execution times for all the applications’ first

runs.

2.2.2 Affinity Results

Since Quality Time can accurately estimate the impact of interference on an

application, making Quality Time information available to a scheduler can be useful

in dynamically discovering which application pairings result in the least conflicting

schedules.

We evaluated our affinity scheduler’s ability to produce good co-schedules by

scheduling two copies each of two applications on a multi-chip module with two proces-

sors, each with two cores. We compare our tool’s dynamic scheduling against the average

throughput over the 3 possible distinct static scheduling configurations. Figure 2.1 shows

that, for most sets of applications, choosing to dynamically reschedule based on Quality

Time indications of interference is beneficial for overall throughput. In cases where

there was little potential benefit between the best and average schedules, the technique

sometimes decreased throughput due to the errors in estimation of the Quality Time

leading to a misguided choice of application placement. The migration and sampling

overheads were small and did not significantly impact the overall throughput. Improving

our Quality Time estimation and heuristic to avoid these low benefit cases will be a future

effort.

2.3 Related Work

Resource Management. Several hardware techniques have been proposed to manage

resources inside processor itself, such as profiling based allocation schemes proposed

by Liu et al. [Chu04] and Suh et al. [SDR02a]. Bitirgen et al. [BIM08] proposed

simultaneous cache and bandwidth allocation using machine learning. These management

43

W
or

kl
oa

ds

16
4.

gz
ip

_1
81

.m
cf

(x
2)

18
3.

eq
ua

ke
_1

64
.g

zip
(x

2)

18
3.

eq
ua

ke
_1

97
.p

ar
se

r(x
2)

18
3.

eq
ua

ke
_2

56
.b

zip
2(

x2
)

18
3.

eq
ua

ke
_3

00
.tw

ol
f(x

2)

18
8.

am
m

p_
16

4.
gz

ip
(x

2)

18
8.

am
m

p_
18

1.
m

cf
(x

2)

18
8.

am
m

p_
18

3.
eq

ua
ke

(x
2)

18
8.

am
m

p_
18

3.
eq

ua
ke

(x
2)

18
8.

am
m

p_
19

7.
pa

rs
er

(x
2)

18
8.

am
m

p_
25

6.
bz

ip
2(

x2
)

18
8.

am
m

p_
30

0.
tw

ol
f(x

2)

19
7.

pa
rs

er
_1

64
.g

zip
(x

2)

19
7.

pa
rs

er
_1

81
.m

cf
(x

2)

19
7.

pa
rs

er
_1

81
.m

cf
(x

2)

25
6.

bz
ip

2_
16

4.
gz

ip
(x

2)

25
6.

bz
ip

2_
18

1.
m

cf
(x

2)

25
6.

bz
ip

2_
19

7.
pa

rs
er

(x
2)

30
0.

tw
ol

f_
16

4.
gz

ip
(x

2)

30
0.

tw
ol

f_
19

7.
pa

rs
er

(x
2)

30
0.

tw
ol

f_
25

6.
bz

ip
2(

x2
)

47
0.

lb
m

_1
88

.a
m

m
p(

x2
)

47
0.

lb
m

_1
97

.p
ar

se
r(x

2)

47
0.

lb
m

_2
56

.b
zip

2(
x2

)

47
0.

lb
m

_2
56

.b
zip

2(
x2

)

47
0.

lb
m

_3
00

.tw
ol

f(x
2)

Throughput Improvement with Qplacer (%)

−
1001020304050

Fi
gu

re
2.

1.
Q

pl
ac

er
ca

n
im

pr
ov

e
th

ro
ug

hp
ut

by
us

in
g

Q
ua

lit
y

Ti
m

e
fo

rp
la

ce
m

en
t.

Q
pl

ac
er

ca
n

us
e

th
e

on
lin

e
Q

ua
lit

y
Ti

m
e

es
tim

at
es

fo
r

th
e

ap
pl

ic
at

io
ns

,w
hi

ch
ch

an
ge

s
ov

er
tim

e
du

e
to

ap
pl

ic
at

io
n

ph
as

es
,a

nd
dy

na
m

ic
al

ly
de

te
rm

in
es

ap
pl

ic
at

io
n

pl
ac

em
en

tu
si

ng
si

m
ul

at
ed

an
ne

al
in

g.
In

ou
re

va
lu

at
io

n
th

is
le

ad
s

to
an

av
er

ag
e

th
ro

ug
hp

ut
im

pr
ov

em
en

to
f

5.
76

%
ov

er
10

1
ru

ns
an

d
a

m
ax

im
um

th
ro

ug
hp

ut
im

pr
ov

em
en

to
f4

7.
42

%
.T

he
im

pr
ov

em
en

ts
sh

ou
ld

be
ev

en
la

rg
er

fo
r

sy
st

em
s

w
ith

hi
gh

er
he

te
ro

ge
ne

ity
.

44

schemes are tuned for varying purposes; for example, Hsu et al. [HRIM06] tune their

cache allocation algorithm to maximize different metrics such as fairness and throughput;

and Guo et al. [GSZI07] allocate cache partitions based on QoS provided by choosing

between strict, elastic, and opportunistic schemes. However, these policies are better

managed at the software level, because of the possible changes in the system requirements.

Symbiotic Job Scheduling. In software, co-scheduling can reduce pressure on the

resources and increase performance when sharing scarce resources between multiple

applications. Amongst previous works, Cazorla et al. [CKS+05], Jiang et al. [JSCT08],

El-Moursy et al. [EMGAD06] and Snavely et al. [ST00] discuss mechanisms for applica-

tion scheduling. Federova et al. [FSSN05] examined OS-level scheduling to optimize

CMT (multi-thread CMPs) performance. However, due to increasing heterogeneity

within the processors as well as across different processors, application placement is

becoming increasingly important. Qtop uses simulated annealing to affect application

placement while leaving the scheduling decisions to the kernel.

2.4 Conclusion

Application and physical heterogeneity can be exploited in systems to reduce

interference on multicore processors by smart application placement, i.e. applications

contending on a certain resource should be placed on cores that do not share that resource,

while allowing symbiotic applications on cores sharing resources. Qplacer uses Quality

Time to efficiently improve application placement, which can lead to better resource

utilization as well as throughput without requiring application modification.

Acknowledgment

Parts of these chapters are reprinted from the following papers:

45

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “Quality Time: A

Simple Online Technique for Quantifying Multicore Execution Efficiency”. To be

submitted at the International Symposium on Performance Analysis of Systems

and Software, ISPASS 2014.

Permission to use these contents has been obtained through signed letters from the

co-authors. Dissertation author was the primary investigator and author on this paper.

Chapter 3

TimeCube: Measuring Execution Qual-
ity in Hardware

Multicore processors are common place in datacenters and have already become

ubiquitous in some embedded domains, such as smart phones. In these, as in other

domains utilizing multiprocessors, there is a trend toward greater concurrency that will

soon move us from an era of multicore designs into an era of manycore designs. Manycore

processors are attractive for datacenters as well as embedded applications because they

optimize energy per operation [BFPS11] for high compute workloads as demonstrated

by recent manycore offerings, such as Tile Gx100 [Sch10] and Intel’s SCC [HDH+10].

The growth in core-count comes with an increase in concurrency and a lower

per-core resource availability, as shown in Table 2. This leads to increased interference on

manycore processors, resulting in large unpredictable slowdowns, as shown in Figure 3.1.

I proposed using Quality Time in space-multiplexing multicore processors, as a substitute

for CPU-time on unicore processors, to provide the notion of interference-free progress

and make high-level decisions, such as tracking performance as well as scheduling or

distribution of resources. We can continue to use Quality Time for making these decisions

in manycore systems as well.

In Chapter 1, I presented a software tool, called Qtime, to measure Quality Time

46

47

Compositions

100% stream, 0% slope

75% stream, 0% slope

75% stream, 25% slope

50% stream, 0% slope

50% stream, 25% slope

50% stream, 50% slope

25% stream, 0% slope

25% stream, 25% slope

25% stream, 50% slope

25% stream, 75% slope

0% stream, 0% slope

0% stream, 25% slope

0% stream, 50% slope

0% stream, 75% slope

0% stream, 100% slope

AVERAGE

W
or

st
ca

se
 S

lo
w

do
w

ns

0
1
2
3
4
5
6
7
8
9

10
11
12

Figure 3.1. Worst-case Application Slowdowns on a simulated 32-core processor.
On a simulated 32-core processor (see Section 3.3.1 for details), we see that slowdowns
are both large, 6× on average, as well as highly variable, from less than 2× to as much as
12× in the worst case. Thus, CPU-time should not be used as a proxy for progress when
making high-order decisions in embedded systems or datacenters using space-multiplexed
manycore processors.

of live applications in user-space without any code modification or recompilation. While

Qtime is able to track Quality Time with low error (8.18% on average) and low overheads

(< 1% per application), the lack of knowledge of hardware internals limits the accuracy

that can be achieved in software. Moreover, it requires sampling of applications in

standalone mode, which leads to relatively large execution overheads. In this chapter,

I propose a hardware mechanism to measure live application Quality Time with no

performance overheads, and the mechanism’s knowledge of the hardware internals leads

to a significantly higher accuracy as well.

I describe TimeCube, a manycore processor that is augmented by hardware to

efficiently enable the simultaneous and online estimation of Quality Times for all appli-

cations with a high degree of accuracy using shadow performance modeling. TimeCube

48

is modeled along the lines of typical commercial manycore processors, such as Tile GX

and Intel Xeon Phi, where many application threads execute concurrently on independent

cores while sharing architectural resources, such as last-level cache, memory bandwidth,

DRAM channels, etc. Their exists a hierarchy of caches, and though all these cache

levels are kept coherent for an application, coherence of data shared across multiple

applications are kept coherent through software.

I also present detailed experimental evaluation of a 32-core instance of TimeCube,

which shows that the shadow performance modeling provided in TimeCube enables

online estimation of application Quality Time with an average error of less than 1% on

a 32-core concurrent system with very low area and energy overheads, even when the

slowdowns witnessed due to interference were 6× on average and as much as 12× in the

worst case. The accuracy of Quality Time estimation makes it highly reliable for use in

high-order decisions, as I show in subsequent chapters.

In summary, this chapter describes the following novel contributions:

1. Quality Time I develop Quality Time as a counterpart of application CPU-time

for interference-free progress in computing domains using space-multiplexed

manycore processors. These systems can use Quality Time to accurately track

online application progress in hardware and make high-order decisions.

2. TimeCube I describe TimeCube, a manycore processor, which provides online

Quality Time estimation with very low energy and area overheads and no perfor-

mance penalties.

3. Efficient and accurate estimation of live Quality Time in hardware I present

a detailed manycore evaluation of the shadow performance modeling used by

TimeCube, and show that it can track Quality Time with less than 1% error, even

in the presence of 6× average slowdown.

49

The remainder of the chapter proceeds as follows. Section 3.1 presents an

overview of TimeCube design. Section 3.2 explains the shadow performance modeling

used by TimeCube to calculate live Quality Time. Section 3.3 provides a detailed

manycore evaluation of TimeCube. Section 3.4 discusses related work and Section 3.5

concludes.

3.1 TimeCube Overview

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

M
em

ory	
 Controller	

M
em

ory	
 Controller	

M
em

or
y	

Co

nt
ro
lle
r	

M
em

or
y	

Co

nt
ro
lle
r	

DIM
M
s	

DIM
M
s	

DI
M
M
s	

DI
M
M
s	

C DCores L2 Cache Block

Figure 3.2. TimeCube Layout. TimeCube is a scalable architecture (b) with spatially
distributed cores (C) and L2 cache blocks (D) connected over a network-on-chip, or
NOC. TimeCube allows many applications to execute concurrently while sharing these
architectural resources.

TimeCube is a manycore processor with abundant architectural resources, such

as multiple levels of caches for instruction as well as data, many DRAM prefetchers,

multiple DRAM channels, main memory bandwidth, IO bandwidth etc. This is a scalable

50

architecture, and in order to keep the access latencies of these resources low, while

maintaining their energy-efficiency, they are spatially distributed across the processor, as

shown in Figure 3.2, over tiles which are accessed using dynamic on-chip mesh networks.

Multiple applications can execute simultaneously on TimeCube; even more than the

number of cores, since it supports temporal-multiplexing. Every application executes on

an independent core with private L1 data and instruction caches and a DRAM prefetcher

These applications share the last-level caches, memory bandwidth, and DRAM banks,

similar to existing commercial manycore processors [SB08].

	

	

	

Track	
 &	
 Use	
 Progress-­‐Time	

Processor	

TimeCube

Processor	

Processor	

w1

w2

w1,2
p1

p2

App1

App2

App1

App2

time

Figure 3.3. Augmenting manycore processors to measure Quality Time in TimeCube
TimeCube uses shadow performance modeling to estimate the quality times (v1 and
v2) for live applications (App1 and App2) running simultaneously for CPU-time w1,2.
Application quality times are equal to their standalone CPU-times (w1 and w2).

The interference resulting from this resource sharing breaks the correspondence

between CPU-time and actual performance on space-multiplexed manycore systems,

which can lead to erroneous estimations regarding progress of execution, even in the

presence of state-of-the-art virtualization techniques [GLKS11]. In existing multicore

systems, many high-order decisions, such as resource allocation and scheduling, are done

in accordance to application progress. Therefore, we propose that these decisions should

not be made based on application CPU-times, but their Quality Times: the amount of

51

time required for an application to complete the same amount of work it has done so far,

were it to have been allocated all CPU resources. TimeCube is augmented with hardware

mechanisms to efficiently and accurately track application progress. It uses shadow

performance modeling to estimate the Quality Time simultaneously for all concurrent

applications running in the system, as shown in Figure 3.3.

While offline techniques [Chu04][SDR02a] have been proposed to measure the

architecture-specific interference between applications, online progress tracking allows

us to handle previously unseen applications, handle live input data for known applica-

tions, capture phase-specific interference, and finally provide better online control over

application progress rates. TimeCube tracks the online application Quality Time with

no performance penalties as the shadow performance modeling is done using dedicated

hardware on each core in parallel with application execution. In order to strike a balance

between shadow performance modeling overhead, which is proportional to the Quality

Time update frequency, and its fine-grained accuracy, which improves with update fre-

quency due to changing application phases, an application’s Quality Time is updated

after regular time-intervals of 1ms.

3.2 Shadow Performance Modeling in TimeCube

Shadow Performance Modeling allows an application’s standalone performance to

be estimated with a high degree of accuracy using an extrapolation of its actual execution.

TimeCube takes into account micro-architectural resource usage to accurately estimate

quality time for a single manycore chip. For taking into account system-level resources,

we would need to isolate and estimate performance based on all system components

including network and I/O.

TimeCube calculates quality time using an analytical performance model that

uses execution statistics collected through shadow hardware structures placed on every

52

core. TimeCube updates the Quality Time, which is stored in the cores, in parallel with

application execution, after regular execution intervals. I now describe TimeCube’s

analytical model to calculate quality time for application i for an execution interval j, if

it were allocated all the system cache and memory bandwidth.

ExecTime j[i] = const j +(L2Hit j[i]×L2HitLatency j[i])

+(Pre f Hit j[i]×Pre f HitLatency j[i])

+(PageHit j[i]×PageHitLatency j[i])

+(PageMiss j[i]×PageMissLatency j[i])

+(PageCn f l j[i]×PageCn f lLatency j[i])

(3.1)

TimeCube’s analytical model estimates the hypothetical execution time for the work done

by an application in the last interval, but for an arbitrary cache and bandwidth allocation,

by estimating the delays caused by the in-order 1 L1 private cache misses in the shared

L2 cache, prefetcher and the DRAM (Equation 3.1).

We assume that the in-core execution time remains unaffected by changing cache

and bandwidth allocations. We represent this in-core execution time by const j for interval

j in our analytical model. We collect this value for the current execution by counting

the cycles for which the application executed while discarding the cycles spent waiting

on L1 private cache misses. We then use this value as the in-core execution time for

calculating application quality times for the next interval for all possible cache and

bandwidth allocations. The time spent inside I/O calls is included within the cycles spent

inside the core (const j), not waiting for the memory system. We assume this time to be

1TimeCube has an in-order memory system, like RAW [MBT04], where the core is stalled during its
memory miss. Thus, there is no miss concurrency for a single application.

53

independent of the cache and memory bandwidth allocation.

To find the time spent in L2 caches we use a shadow cache structure, described

below, to estimate the L2 cache hits if the application was allocated all the cache in the

system. We measure the average L2 hit latency for the current cache and bandwidth

allocation, and use it for our estimation for the next interval. Similarly, we use a shadow

prefetching structure, described below, to estimate the number of prefetch hits, while

using the average prefetch hit latency from the current execution. When a request misses

both L2 and the prefetcher, it is served by the main memory. We measure the DRAM

page hit, miss and conflict latencies for the current execution, and use them along with the

page hit, miss and conflict rates calculated using a shadow DRAM structure, described

below, to calculate the remaining components of our analytical model.

With this model we calculate quality time for all applications if each of them was

exclusively given all the cache and memory bandwidth in the system for next interval.

According to this model we need to estimate certain shadow L2 cache, prefetcher, and

DRAM statistics to estimate the execution times for full resource allocations. We use the

following shadow hardware structures to collect these shadow statistics:

• Shadow-Tags [MQ06] provide an efficient hardware mechanism to estimate the

cache miss rates for any arbitrary cache size. In order to reduce the shadow cache

overheads we use set-sampling.

• Shadow Prefetchers run a dummy prefetching algorithm by tracking miss streams

and launching fake prefetches, i.e. while the prefetch request is created, no actual

data request is sent to the memory system, and maintain shadow statistics such as

prefetches issued, prefetch hit rate, and prefetch hit latency.

• Shadow Banking tracks the current state of the DRAM row buffers by modeling

DDR behavior for DRAM requests and maintains shadow statistics such as page

54

hits, misses, and conflicts. Our experimental results suggest that shadow banking

may not be absolutely essential for this system; using a fixed memory latency

imparts on average an error of only 2% in estimating application quality times.

We use one shadow-tags structure, one shadow prefetcher and one shadow banking

structure per core.

ReqBWj[i] =
L2Misses j[i]+Pre f Rqs j[i]−Pre f Hits j[i]

ExecTime j[i]
(3.2)

Per f ormance j[i] =


Instructions j[i]
ExecTime j[i]

, i f ReqBWj[i]≤ Btotal

Instructions j[i]×Btotal
ExecTime j[i]×ReqBW j[i]

,otherwise
(3.3)

The hardware also needs to estimate bandwidth stalls to estimate application perfor-

mance. We use cache misses and prefetch statistics to calculate the required bandwidth

(Equation 3.2). If the allocated bandwidth exceeds required bandwidth then we assume

no bandwidth stalls. Otherwise, the bandwidth stalls are accounted for by reducing

performance by the ratio of required and allocated bandwidths (Equation 3.3). This is

based on the assumption that the memory requests are uniformly randomly distributed

over program execution.

Quality Timeinc
j [i] =

Real Per f ormance j[i]
Per f ormance j[i]

× IntervalTime (3.4)

Quality Timei = ∑
interval j

Quality Timeinc
j [i] (3.5)

We calculate the application’s quality time for this interval for full cache and bandwidth

allocation by multiplying the interval-time with the ratio of the performance for current

execution and the one with all the cache and memory bandwidth allocated (ctotal ,btotal),

as shown in Equation 3.4. TimeCube sums up an application’s quality times for all past

intervals to get its total quality time (Equation 3.5).

55

TimeCube, in-line with existing commercial manycores like Tile64, uses wimpy

cores and in-order memory systems to provide energy-efficiency with high throughput.

However, performance for out-of-order cores can be modeled as well, as shown by

Moreto et al. [MCRV]. Moreover, even though TimeCube is designed for multiprogram-

ming rather than parallel programming, it is reasonable to believe that the techniques

outlined here would support consolidated multi-threaded applications as well if given

their associated performance models.

Quality Times can also be used on multi-chip multicore systems, and potential

processor heterogeneity can be managed in a way similar to the existing heterogeneous

systems, which calibrate processor performances over a workload. TimeCube can

likewise re-normalize the quality time estimates over heterogeneous processors.

3.3 Results

In this section, I will describe an experimental evaluation of the shadow perfor-

mance modeling done by TimeCube. I will present a manycore evaluation methodology

followed by the model’s accuracy results.

3.3.1 Evaluation Methodology

In this section, I describe the processor model used for evaluation and the bench-

marking methodology. The evaluation prototype is modeled along the lines of com-

mercial manycore processors (e.g. Tile64 [SB08]). Each core is superscalar, i.e. it

can simultaneously execute multiple instructions, but the memory system requests are

sent in-order. A reconfiguration interval of 25 million cycles is used. The evaluation

is based on PTLsim [You07] and a memory-system emulator to simulate execution of

multiple applications on a single many-core chip while sharing last level cache and

off-chip memory. The emulator internally uses DRAMsim2 [WGT+] for modeling

56

Table 3.1. The processor model used to evaluate TimeCube is along the lines of typical
commercial manycore processors, such as Tile64 [SB08].

Cores 32, x86-64 ISA, 3GHz, superscalar, in-order memory
L1 cache 32KB inclusive, 4 way associative, 8 word line,

1 bank, 3 cycle hit, pipelined, 1 read/write port
L2 cache 128 cache-arrays, 1 bank per cache-array, 128KB

per bank, 8 word line, 4-way associative, pipelined,
1 read/write port

Network 64-wide, mesh, dynamic router, 1-cycle hop
Prefetcher stream prefetcher, 128 streams, 32 buffers
Memory 4 controllers, bit-interleaved, 4 DIMMs/channel, 4

Ranks/DIMM, 8 Banks/Rank, 64MB/Bank, 16 Banks
and 1GB DDR3 per core, 96Gb/s memory bandwidth

details of the DRAM memory system. Detailed specifications of the evaluation model

are presented in Table 3.1. I analytically model the area and power consumption using

area and energy numbers obtained from RAW [MBT04] and McPAT [LAS+09] scaled

to 45nm, as specified in Table 3.2. In order to reduce simulation run times, I extract

application representative phases using SimPoint [SPHC02] and then concurrently run

SimPoint combinations.

Benchmarks and their Classification In order to simulate a typical manycore

processor workload, I run combinations drawn from 26 benchmarks that span SPEC2K,

SPEC2K6, and an I/O intensive benchmark suite I developed internally to model data-

intensive workloads, as shown in Table 3.3. This selection provides a rich spectrum of

cache and memory characteristics, as well as instruction level heterogeneity as shown by

uops/inst, and includes applications such as web crawlers, photo filters, face detection,

computer aided design tools, scientific computations, data compression, parsing, image

recognition, and security algorithms.

The manycore evaluation space, where I run all possible benchmark combinations,

57

s
lo

p
e

L
2
 C

a
c
h
e
 S

iz
e

1K
B

4K
B

16
K
B

64
K
B

25
6K

B

Requests per Kilo Insts

0

0
.51

1
.52

2
.53

3
.54

P
re

fe
tc

h
e
r

N
o
 P

re
fe

tc
h
e
r

s
tr

e
a
m

L
2
 C

a
c
h
e
 S

iz
e

1K
B

4K
B

16
K
B

64
K
B

25
6K

B
Requests per Kilo Insts

05

1
0

1
5

2
0

2
5

P
re

fe
tc

h
e
r

N
o
 P

re
fe

tc
h
e
r

c
lif

f

L
2
 C

a
c
h
e
 S

iz
e

1K
B

4K
B

16
K
B

64
K
B

25
6K

B

Requests per Kilo Insts

0

0
.51

1
.52

2
.53

P
re

fe
tc

h
e
r

N
o
 P

re
fe

tc
h
e
r

(a
)

(b
)

(c
)

Fi
gu

re
3.

4.
B

en
ch

m
ar

ks
ca

n
be

cl
as

si
fie

d
ba

se
d

on
th

e
se

ns
iti

vi
ty

of
th

ei
rm

is
s

ra
te

to
L2

ca
ch

e
si

ze
s.

Fo
r

so
m

e
ap

pl
ic

at
io

ns
lik

e
bz

ip
2

(a
)c

ac
he

si
ze

ha
s

a
st

ea
dy

im
pa

ct
on

m
is

s
ra

te
,w

hi
le

fo
ro

th
er

s
lik

e
ap

si
(b

)i
th

as
no

ef
fe

ct
,a

nd
so

m
e

ap
pl

ic
at

io
ns

lik
e

m
gr

id
(c

)h
av

e
a

cl
iff

-l
ik

e
pr

ofi
le

.

58

Table 3.2. I derive energy and area numbers for TimeCube evaluation using
RAW [MBT04] and McPAT [LAS+09] scaled to 45nm.

Operation Energy

Instruction Execution 57.2

L1 Tag Match 22.5

L1 Data Read 36.0

L1 Data Write 38.2

L2 Tag Match 42.2

Quality Time Calc 53.4

Shadow-Tag Shift 21.1

L2 Data Write 70.9

Memory Read 5230.1

Memory Write 5120.0

L2 Data Read 65.7

Network Send 6.2

Network Rcv 6.4

Network Hop 4.3

is very large. Moreover, it provides no intuition about the benchmarks that I have not

included in our evaluation. In order to limit the evaluation space as well as incorporate

a structure into our evaluation, I classify our benchmarks according to a three-type

taxonomy, and then examine runs that include different ratios of the three types. The

taxonomy is as follows: An application which sees no drop in miss rate with increasing

cache size is a stream application, an application which sees a sudden drop in miss

rate with cache size is a cliff application, and an application whose miss rate drops

59

gradually with increasing cache size is a slope application, as described in Figure 3.4. I

can then run representatives of these classes to estimate behavior of similar applications

to refine our manycore evaluation space. For our experiments, I run workloads with

incrementally changing composition of benchmarks classes. For each composition, I

run all possible combinations of benchmarks within every benchmark class, and report

the arithmetic mean of their results. In the applications examined, cache sensitivity

was a strong classifier that predicted other characteristics, such as stream applications

having good prefetching behavior and high bandwidth requirements. For a workload with

high variance within cache sensitivity categories, additional classification axes would be

beneficial.

60

Table 3.3. I use benchmarks from SPEC2000, SPEC2006 and some IO applications,
which provide a diverse mix of memory characteristics such as miss rates in L1, hit rate
in L2, and cache miss profiles for TimeCube evaluation.

Benchmark uops 32KB L2Hit L2Hit Type
/Inst MPKI 128KB 16MB

IO/webCrwlr 1.67 8.01 12.27% 20.52% slope
IO/fotoBlur 1.69 11.34 10.79% 17.22% slope
CFP2000/wupwise 1.68 15.37 0.07% 1.11% cliff
CFP2000/swim 1.68 28.86 0.00% 56.47% cliff
CFP2000/mgrid 1.68 2.52 0.00% 35.96% cliff
CFP2000/applu 1.68 2.56 4.38% 7.87% strm
CINT2000/vpr 1.65 11.82 8.99% 87.82% slope
CFP2000/art 1.68 45.02 0.00% 0.00% strm
CFP2000/equake 1.67 11.41 7.68% 11.89% strm
CINT2000/astar 1.71 1.47 27.36% 40.57% slope
CINT2000/bwaves 1.73 0.17 0.39% 2.01% cliff
CFP2000/h264ref 1.67 1.54 18.57% 59.90% slope
CINT2000/hmmer 1.68 2.60 2.70% 84.69% cliff
IO/faceDetect 1.71 0.27 60.81% 60.96% strm
IO/diskBckup 1.70 9.33 12.87% 19.21% slope
CFP2000/ammp 1.68 9.14 3.21% 97.25% slope
CFP2000/lucas 1.73 5.38 0.00% 0.04% strm
CFP2000/fma3d 1.73 3.44 4.05% 22.53% cliff
CINT2000/parser 1.65 8.52 11.32% 97.72% slope
CINT2000/bzip2 1.70 2.21 3.08% 78.48% slope
CINT2000/twolf 1.65 19.03 3.55% 88.51% slope
CFP2000/apsi 1.68 22.64 0.00% 00.00% strm
CFP2000/namd 1.71 2.49 62.77% 87.94% slope
CINT2000/sjeng 1.70 1.08 53.55% 74.23% slope
CFP2000/soplex 1.71 2.56 10.19% 56.23% slope
CINT2000/specrnd 1.65 0.06 4.17% 4.31% strm

61

3.3.2 TimeCube’s Quality Time Estimation is Highly Accurate

In this section we evaluate the shadow performance modeling mechanisms for

estimating Quality Time in TimeCube. For validation of the performance estimation

model, we measure an application’s estimated standalone performance in concurrent

mode, or Quality Time, and compare it to its actual performance in the standalone mode.

I ran experiments using the methodology explained previously, and the results show that

TimeCube is able to estimate an application’s standalone performance and its estimated

slowdown with just about 1% average error, as shown in Table 3.4. Moreover, TimeCube

was also able to track Quality Time for all the benchmarks with very high accuracy,

as shown in Table 3.5. Thus, we can reliably use TimeCube’s shadow performance

modeling to estimate Quality Time for progress measurement and resource management

in concurrent multicore systems.

3.3.3 Area and Energy Distribution in TimeCube

Core (20.26%)
Prefetcher (0.79%)
Networks (4.75%)
Memory Controller (0.30%)

L2 Tag (6.84%)

Quality Time Logic (0.47%)

L2 Data (58.24%)

Shadow Cache (1.39%)
Shadow Prefetcher (3.80%)

Others (3.17%)

Figure 3.5. Area distribution in TimeCube for calculating Quality Time. The area
consumed by Shadow Tags, Shadow Prefetchers, and Quality Tables is small (1.39%,
3.80%, and 0.47% respectively).

I now analyze the area and energy distribution for Quality Time estimation

in TimeCube. The microarchitectural mechanisms required to estimate Quality Time

62

Table 3.4. TimeCube estimates Quality Time with only 1% average error over a spectrum
of benchmark compositions, so they can be reliably used for progress measurement and
resource management.

strm slope cliff error
(%) (%) (%) (%)
100 0 0 0.39
75 0 25 0.41
75 25 0 0.27
50 0 50 1.26
50 25 25 0.51
50 50 0 0.01
25 0 75 1.72
25 25 50 0.49
25 50 25 0.19
25 75 0 0.16
0 0 100 7.04
0 25 75 1.76
0 50 50 0.61
0 75 25 0.40
0 100 0 0.35
AVERAGE 1.01

consume less than 6% chip area. Shadow-Tags consumes 1.39%, Shadow Prefetchers

3.80% and Quality Tables 0.47%, as shown in Figure 3.5. For an example 32 application

mix, my experiments revealed that the energy consumed for supporting Quality Time is

low, just 0.01%, while shadow structures consume only about 0.20% energy. Therefore,

the mechanisms for measuring Quality Time in TimeCube are energy and area efficient.

63

Table 3.5. TimeCube uses performance estimation mechanisms to postulate application
slowdown when ran concurrently with other applications. Our experiments reveal that
our estimates are correct within roughly 1% of the actual slowdowns, on average for all
the benchmarks over a spectrum of compositions.

Benchmark error (%)
164.gzip 0.05
168.wupwise 3.68
171.swim 6.18
172.mgrid 0.08
173.applu 2.62
175.vpr 0.03
179.art 0.07
183.equake 0.07
187.facerec 1.13
188.ammp 0.35
189.lucas 2.90
191.fma3d 0.37
197.parser 0.43
256.bzip2 0.05
300.twolf 0.03
AVERAGE 1.20

3.4 Related Work

Interference in manycore systems. The emergence of manycore computing in

the server space, punctuated by the arrival of Tilera’s Tile Gx100 [Sch10] and Intel’s

48-core SCC [HDH+10], offers higher density and energy-efficiency. However, these

benefits are only realizable if interference is more carefully controlled, as shown by Tang

et al. [TMV+11], as these manycore processors heavily rely on shared resources. We

are also witnessing an emergence of multicores in other ecosystems such as embedded

64

computing on the smartphones. These systems are under an even bigger pressure to share

resources due to limited area budgets, and this can lead to difficulties in existing resource

management techniques for multiprogrammed embedded systems, such as the ones pro-

posed by Lipari et al. [LB00], Bernat et al. [BB02], and Beccari et al. [BCZ05], reducing

the effectiveness of techniques such as resource reservation [AB04] and proportional

resource sharing [SAWJ+96] for real-time systems.

Govindan et al. [GLKS11] show that even with the use of software mechanisms,

such as hypervisors, the unpredictability in slowdowns when sharing architectural re-

sources is very high. Stillwell et al. [SSVC09b] also examined the performance impact

of resource sharing in servers at the system level, reducing the effectiveness of techniques

such as resource reservation [AB04] and proportional resource sharing [SAWJ+96]

for real-time systems. For resource-sharing embedded systems, it is important to ac-

curately estimate the progress of applications and exercise control over it in order to

maintain performance guarantees and improve resource utilization, as also pointed out

by Buttazzo [But06]. Our novel Quality Time abstraction quantifies the utility of re-

source partitions for applications, and allows a quantification of application progress on

manycore systems that can be used to both measure and control application execution.

Shadow Performance Modeling. TimeCube creates quality times using an analyti-

cal performance estimation model similar to the one proposed by Solihin et al. [SLT99].

Performance estimation of an application for an artificial machine configuration is

non-trivial. Some previous works have proposed algorithms and mechanisms to do appli-

cation performance estimation. Emma et al. [Emm97], Solihin et al. [SLT99] and Luo

et al. [LLW+98] give a performance estimate for an application performance. I further

enhance the model by tracking prefetches, adding memory bandwidth constraints by

tracking dirty lines, similar to the mechanism proposed by Kaseridis et al. [KSCJ10], and

65

modeling the details of DRAM DDR protocol and bank buffer behaviors. For TimeCube’s

model we need cache miss estimates for full cache allocation. Shadow cache techniques

have been proposed for associative caches, such as by Chandra et al. [CGKS05], Iyer

et al. [Iye03], Gecsei et al. [GST70], Hill et al. [Hil87], Suh et al. [SDR02b], Zhou et

al. [ZPS+04] and Suh et al. [SDR01]. These techniques are based on the LRU-stacking

property [Hil87]. In order to reduce the shadow cache overheads we use set-sampling, as

suggested by Qureshi et al. [MQ06].

3.5 Conclusion

Manycore processors have to tackle the challenge of interference due to space-

multiplexing, which can cause large and unpredictable slowdowns if left unmanaged.

Overcoming this hurdle can improve their usability for systems using multicore proces-

sors, which need to accurately measure application progress and maintain guarantees

about quality of execution. Quality Time can be used to quantify application progress

irrespective of resource heterogeneity. TimeCube, a manycore processor, uses shadow

performance modeling to accurately estimate quality time with just 1% error for live

applications with very low overhead. Overall, the results argue for adding the requi-

site micro-architectural structures to estimate Quality Time in manycore chips to allow

accurate measurement of execution quality of concurrent applications.

Acknowledgment

Parts of these chapters are reprinted from the following papers:

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “DR-SNUCA: An

Energy-Scalable Dynamically Partitioned Cache”, International Conference on

Computer Design, ICCD 2013.

66

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “TimeCube: A

Manycore Embedded Processor with Interference-agnostic Progress Tracking”, In-

ternational Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation, IC-SAMOS 2013.

Permission to use these contents has been obtained through signed letters from the

co-authors. Dissertation author was the primary investigator and author on these papers.

Chapter 4

Quality Tables: Controlling Execution
Quality in Hardware

Manycore processors share microarchitectural resources, such as the last-level

caches, memory bandwidth, etc., between applications to increase the resource utilization.

However, the performance interference arising from contention for these shared resources

poses several challenges: Resource interference erodes performance guarantees, impedes

measurement and management of applications’ memory demands, complicates resource

allocation policies, and distorts metering for consumers in cloud-services.

While I propose Quality Time as a means to measure interference-agnostic

execution quality of applications using either software or hardware mechanisms, these

techniques are insufficient for a fine-grained control over execution qualities. Previous

research has pressed upon the challenges in controlling execution qualities, leading to

proposals for partitioning the shared resources. Static partitioning cannot fully utilize the

resources because application working sets and memory access patterns are time-varying.

As a result, many proposals explore dynamic partitioning of resources, such as cache

and memory, for both space as well as bandwidth. These mechanisms together provide

Dynamic Execution Isolation.

Dynamic Execution Isolation ensures that an applications execution, and

67

68

hence its Quality Time, is not unpredictably affected by other concurrently

running applications.

Dynamic Execution Isolation can allow us to dynamically control an application’s

execution quality by precisely controlling its resource consumption. TimeCube includes

hardware mechanisms that control interference over the critical microarchitectural re-

sources, i.e., the last-level cache, memory bandwidth, and memory banks, by dynamically

partitioning them. On the other hand, conventional runtime software mechanisms, such

as virtual machine monitors and hypervisors, can handle interference between I/O threads

contending for network bandwidth, or other such system-level resources, by applying

thread priorities in the scheduler and/or using backoff algorithms to reduce contention.

The existing mechanisms for dynamic cache partitioning do not scale well in

energy-efficiency when applied to manycore processors. I propose a novel dynamic

cache partitioning scheme, called DR-SNUCA, which provides an energy-efficient way

to reduce resource interference over shared caches on manycore chips. Our results show

that using DR-SNUCA reduces energy consumption by an average of 16.27%, compared

to associatively partitioned caches, such as DNUCA.

Even though dynamic execution isolation allows TimeCube to have a fine-grained

control over the resources allocated to applications, it is insufficient to control an ap-

plication’s execution quality because the relationship between resource allocation and

application performance is non-trivial. For example, 50% resource allocation does not

guarantee 50% application performance. Moreover, slowdown experienced with 50%

resource allocations varies widely across applications, and finally, slowdown due to

50% reduction in cache is not the same as slowdown due to 50% reduction in memory

bandwidth, as I will show in Section 4.4.1. The correspondence between resources

and performance varies not only across applications, but also across phases within an

69

application’s execution. To find this correspondence, we need to find the performance

that an application will get for its current phase for all possible resource allocations. I

term a collection of these performance estimates as the Quality Tables, or qTables, as

shown in Figure 4.1.

RESOURCE n

R
E

S
O

U
R

C
E

1

RESOURCE
0

Quality Time [res0] [res1]…[resn]
 for app i

…

Applications

Figure 4.1. Quality Tables provide Quality Times for a spectrum of resource alloca-
tions. Quality Tables, or qTables, provide Quality Times for a spectrum of possible
allocations of shared resources, say res0, res1 · · ·resn, for all applications. These qTables
are then used to make high-order decisions in TimeCube.

Quality Tables, or qTables, are a collection of Quality Time values for a

spectrum of shared resource allocations for the applications.

Quality Tables provide resource abstraction at the right granularity, i.e., concise

enough to be calculated by the hardware during program execution and rich enough to

be used in high-order decisions. Now even though there are numerous shared resources

on a chip, we can isolate a critical subset of resources and provide the Quality Time for

a range of possible allocations of these critical shared resources. Shared resources in

70

manycore processors, such as bandwidth, cores, and caches are countably discrete. Thus,

we calculate the Quality Time only at discrete points to create qTables. The mechs are

periodically (every 1ms) updated to account for the changing application phases.

Thus, TimeCube can use the Quality Tables to determine precisely how much

resources are required for an application to attain a certain level of performance, and then

it can dynamically allocate resources, partitioned under the dynamic execution isolation

scheme, to the application and provide guarantees about its execution quality. A higher

accuracy of Quality Time estimation allows TimeCube to provide stronger guarantees.

In summary, this chapter details the following novel contributions:

• Dynamic Execution Isolation I propose Dynamic Execution Isolation in many-

core processors to enable a fine-grain control over microarchitectural resource

allocation. TimeCube achieves this by dynamically partitioning critical shared

architectural resources.

• Quality Tables I propose Quality Tables, or qTables, a collection of Quality Time

estimates for a spectrum of shared resource allocations. An enhanced shadow per-

formance modeling model is presented that creates the Quality Tables in hardware

for live applications with low error and low overheads.

• Dynamically Repartitionable Static NUCA I introduce Dynamically Repartition-

able Static NUCA, or DR-SNUCA, an energy-efficient dynamically partitionable

shared cache for manycore processors.

• Flattened Partial LRU Vector I introduce Flattened Partial LRU Vector, a shadow-

tag structure for DR-SNUCA that allows efficient Quality Time estimation when

using DR-SNUCA in TimeCube.

• Energy-scalable dynamic execution isolation I present a detailed manycore eval-

71

uation that shows DR-SNUCA reduces energy-consumption in TimeCube by

16.27% while performing within 0.5% when compared to existing DNUCA cache

designs.

The remainder of the chapter proceeds as follows. Section 4.1 describes Dynamic

Execution Isolation for manycore processors. Section 4.2 explains the enhanced shadow

performance modeling used by TimeCube to create Quality Tables. Section 4.3 introduces

design details of the novel DR-SNUCA cache. Section 4.4 presents a detailed manycore

evaluation of TimeCube’s dynamic execution isolation and DR-SNUCA. Section 4.5

discusses related work and Section 4.6 concludes.

4.1 Dynamic Execution Isolation in TimeCube

TimeCube provides dynamic execution isolation by partitioning critical shared

resources and dynamically allocating portions of resources to the competing applica-

tions after regular intervals, as shown in Figure 3.2. This partitioning of shared micro-

architectural resources eliminates resource interference, and an application’s execution is

not affected by other concurrently running applications. The allocation is done dynami-

cally to avoid under-utilization of resources, since different applications have different

utility for on-chip resources, which can also vary over time. An application’s working set

size can change, average bandwidth utility can change etc. Thus, one time partitioning of

resources is not sufficient. TimeCube checks the application behavior from time to time

and can readjust the partitioning. In this work, I use a periodic interval based partitioning

triggered using a periodic interrupt. It might lead to some unnecessary checks but this

keeps it invisible to software, and therefore allows us to use legacy code.

There are many shared resources in manycore architectures, but here I focus on

three resources critical to compute workloads: last-level cache, off-chip memory band-

72

width, and DRAM space. Contention over memory controllers in an in-order memory

system is low - the situation for our NoC is similar. In a system with high contention

in either resource, TimeCube could be extended with fair queuing arbiters [NLS07], or

virtual channels, respectively, to provide dynamic isolation over these resources.

Along with the core, each application also gets a dynamically allocated portion

of the shared last-level (L2) cache 1, a portion of the shared memory bandwidth and

some statically allocated DRAM banks (determined in software). The partitioning and

reconfiguration of resources is kept invisible to software, which allows us to use legacy

code. The programs execute continuously and uninterrupted even while the resource

partitions are being reconfigured.

I now present the dynamic cache partitioning mechanisms used for each of the

shared microarchitectural resource in more detail.

Dynamic Cache Partitioning TimeCube partitions the shared last-level cache

between applications to provide dynamic execution isolation. The last level cache itself

is a NUCA cache, spatially distributed across the chip into a grid of cache-arrays. These

cache arrays are clustered into data tiles, as shown in Figure 3.2, which are accessed

in a scalable manner using a dynamic on-chip mesh network. Each cache-arrays is

dynamically allocated to an application, and any application can be allocated a multitude

of these cache-arrays, though only in powers of two in order to simplify the cache

management. Each application’s cache allocation is stored in its core, which is used

by the application to determine where to look for its cache lines. There are multiple

mechanisms possible to dynamically partition these cache-arrays, but TimeCube uses a

novel Dynamically Repartitionable Static NUCA, or DR-SNUCA, cache design, which is

explained in detail in Section 4.3. However, TimeCube can use any other dynamic cache

1TimeCube is a non-cache coherent architecture like Intel SCC [HDH+10]; inter-process coherence is
handled by the OS through separate memory allocation.

73

partitioning scheme to provide dynamic execution isolation over the shared last-level

cache.

Nesbit et al. [NLS07] described that it is not sufficient to merely partition the

cache space to remove interference, since contention over a limited cache access band-

width can also lead to interference. However, since TimeCube allocates every cache-array

to only one application, there is no contention over the cache port. There is contention

over the on-chip network that is used for accessing the cache-arrays, but experiments

show that due to an abundance of on-chip network bandwidth, network interference is

insignificant. In case of higher bandwidth contention, we can use virtual channels to

provide dynamic execution isolation over the on-chip networks.

Dynamic Memory Bandwidth Partitioning TimeCube dynamically partitions

the memory bandwidth between applications to reduce interference. Even if an appli-

cation is given its allocated bandwidth, if the memory scheduling is not done fairly,

the applications might have unpredictable slowdowns. TimeCube uses a fair queueing

arbiter [NALS06], which does fair scheduling across applications while staying within

their bandwidth quotas. The performance of individual applications can be further im-

proved by using state-of-the-art memory traffic scheduling techniques, which may reorder

application memory requests based on prefetcher accuracies [LMNP08], or the status of

DRAM row buffers [RDK+00] etc. In order to limit the possible bandwidth allocations,

TimeCube bins the bandwidth i.e. it allocates bandwidth only in multiples of a fixed

percentage of total bandwidth (1%).

Static DRAM Partitioning DRAMs are typically composed of a number of

banks that are fronted with a row buffer to reduce access latency on repeated accesses to a

line. In order to reduce interference on DRAM banks, TimeCube splits the memory banks

statically among the applications along with the corresponding row buffers; however,

the number of DRAM banks allocated to an application is not fixed and depends on

74

	

	

	

	

	

	

DIMM	
 (m-­‐1)	

	

	

	

	

	

	

Dram	
 Chip	
 0	

	

	

	

	

	

	

Dram	
 Chip	
 1	

	

	

	

	

	

	

Dram	
 Chip	
 2	

	

	

	

	

	

	

Dram	
 Chip	
 k-­‐1	

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

	

	

	

	

	

	

DIMM	
 0	

	

	

	

	

	

	

Dram	
 Chip	
 0	

	

	

	

	

	

	

Dram	
 Chip	
 1	

	

	

	

	

	

	

Dram	
 Chip	
 2	

	

	

	

	

	

	

Dram	
 Chip	
 k-­‐1	

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

	

	

	

	

	

	

DIMM	
 0	

	

	

	

	

	

	

Dram	
 Chip	
 0	

	

	

	

	

	

	

Dram	
 Chip	
 1	

	

	

	

	

	

	

Dram	
 Chip	
 2	

	

	

	

	

	

	

Dram	
 Chip	
 k-­‐1	

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

B0 B1 B2 Bn-1

…

	

	

	

	

	

	

DIMM	
 0	

	

	

	

	

	

	

DramChip	
 0	

	

	

	

	

	

	

DramChip	
 1	

	

	

	

	

	

	

DramChip	
 2	

	

	

	

	

	

	

DramChip	
 (k-­‐1)	

…

B0 B1 B2 B(n-1)

…

B0 B1 B2 B(n-1)

…

B0 B1 B2 B(n-1)

…

B0 B1 B2 B(n-1)

…

…
Row

Buffers {
DRAM
Banks {

Rank0,0

Figure 4.2. Static DRAM buffer partitioning in TimeCube. DRAM memory on
every channel consists of multiple DIMMs. These DIMMs contain multiple ranks created
by combining DRAM banks over multiple DRAM chips. TimeCube statically splits
these banks among applications, along with their row buffers, to reduce DRAM space
interference.

the amount of memory allocated to the application by the operating system. Thus, an

application cannot alter the contents of another application’s row buffers to unpredictably

affect its memory access time. This bank partitioning is maintained at the memory

controllers 2 , and the memory page allocator (OS) allocates pages to applications only on

the memory banks assigned to them, as described by Liu et al. [LCX+12]. While this is a

simpler approach compared to interference-prone performance-preserving techniques like

ballooning [Wal], experiments done showed that bank partitioning does not significantly

reduce performance for typical manycore architectures, since the memory-sensitive

workloads are bottlenecked at the DRAM pin interface and not the DRAM row buffers.

TimeCube thus dynamically partitions the critical shared architectural resources

to achieve dynamic execution isolation, which allows it to remove resource interference

and exercise a fine-grained control over resources allocated to each application. Now, I

describe how to calculate Quality Tables inside TimeCube on-the-fly, which will allow

TimeCube to determine how much resource should be allocated to an application to

2 TimeCube could leave DRAM management to software given support for dynamic execution isolation
and shadow performance modeling.

75

guarantee a certain level of execution quality.

4.2 Quality Tables in TimeCube

TimeCube collects the Quality Time for a spectrum of shared resource allocations

for all applications, as shown in Figure 4.3. These collections of Quality Times are called

the Quality Tables, or qTables. We believe that qTables provide resource abstraction at

the right granularity, i.e. concise enough to be calculated by the microarchitecture during

program execution and rich enough to be used in high-order decisions, such as resource

management in TimeCube. TimeCube updates the qTables, which are stored in the

cores, in parallel with application execution, after regular execution intervals. TimeCube

calculates Quality Time using an analytical performance model, which is the same as the

one proposed in Section 3.2 except that it is extended to calculate Quality Time for all

possible resource allocations simultaneously. It uses shadow statistics collected through

enhanced shadow hardware structures, which track shadow statistics for all possible

resource partitions simultaneously, placed on every core.

0% 100%
Cache

50%

0%

100%

B
andw

idth

Quality Time
for app i, cache c
and bandwidth b

Figure 4.3. Quality Tables for TimeCube. TimeCube calculates Quality Times for all
possible allocations of last-level cache and the memory bandwidth for each application.
The bandwidth is binned and the cache-arrays are allocated in powers of two.

I now describe TimeCube’s analytical model to calculate Quality Time for applica-

76

tion i for an execution interval j, if it were allocated c cache-arrays and b bandwidth-bins.

ExecTime j[i,c] = const j +(L2Hit j[i,c]×L2HitLatency j[i,c])

+(Pre f Hit j[i,c]×Pre f HitLatency j[i,c])

+(PageHit j[i,c]×PageHitLatency j[i,c])

+(PageMiss j[i,c]×PageMissLatency j[i,c])

+(PageCn f l j[i,c]×PageCn f lLatency j[i,c])

(4.1)

TimeCube’s analytical model estimates the hypothetical execution time for the work done

by an application in the last interval, but for an arbitrary cache and bandwidth allocation,

by estimating the delays caused by the in-order L1 private cache misses in the shared L2

cache, prefetcher and the DRAM (Equation 4.1).

To find the time spent in L2 caches we use an enhanced shadow cache structure,

described below, to estimate the L2 cache hits for the cache size c. We use a shadow

prefetching structure, described previously, to estimate the number of prefetch hits and

prefetches issued and measure the DRAM page hit, miss and conflict rates calculated

using a shadow banking structure. We reuse the average L2 hit latency, prefetch hit

latency, and the DRAM page hit, miss and conflict latencies for the current cache and

bandwidth allocation.

ReqBWj[i,c] =
L2Misses j[i,c]+Pre f Rqs j[i,c]−Pre f Hits j[i,c]

ExecTime j[i,c]
(4.2)

77

Per f ormance j[i,c,b] =


Instructions j[i]
ExecTime j[i,c]

, i f ReqBWj[i,c]≤ b
Instructions j[i]×b

ExecTime j[c]×ReqBW j[i,c]
,otherwise

(4.3)

The hardware now estimates bandwidth stalls to estimate application performance for all

possible cache and bandwidth allocations. We use cache misses and prefetch statistics

to calculate the required bandwidth (Equation 4.2), and then the resulting performance

(Equation 4.3).

qTables j[i,c,b] =
Per f ormance j[i,ctotal,btotal]

Per f ormance j[i,c,b]
× IntervalTime (4.4)

Quality Timei = ∑
interval j

qTables j[i,calloc,balloc] (4.5)

Every cell in qTables stores the Quality Time for the corresponding cache and bandwidth

allocation by multiplying the interval-time with the ratio of the performance for this

allocation and the one with all the cache and memory bandwidth allocated (ctotal ,btotal),

as shown in Equation 4.4. TimeCube sums up an application’s Quality Times for all past

intervals, for the actual cache and bandwidth allocations (calloc,balloc), to get its total

Quality Time (Equation 4.5).

With this model we calculate Quality Time for all possible cache and bandwidth

allocations for all applications for next interval. Now we need to estimate certain shadow

L2 cache, prefetcher, and DRAM statistics to estimate the execution times for all possible

resource allocations. We use the following enhanced shadow hardware structures to

collect these shadow statistics:

• Shadow-Tags are enhanced to calculate cache miss rate for all possible power of

two cache allocations. In order to reduce the shadow cache overheads we use

LRU-stacking [MQ06].

• Shadow Prefetchers are the same as before, but now we need one instance per

78

cache allocation.

• Shadow Banking is the same as before, but now we need one instance per cache

allocation.

We use one shadow-tags structure per core, and one shadow prefetcher and shadow bank-

ing structure per cache configuration per core. 40B are required to store an application’s

qTables. Our experimental results show that these mechanisms do not have significant

area (2.46%) and energy (0.24%) overheads.

4.3 Dynamically Repartitionable Static NUCA (DR-
SNUCA)

Sharing the last level of cache allows higher cache utilization than statically parti-

tioned caches. TimeCube uses dynamic cache partitioning to provide dynamic execution

isolation and control the resulting interference. To have a scalable last-level shared cache,

TimeCube uses Non-Uniform Cache Access (NUCA) architecture [KBK02] that spatially

divide the cache into multiple cache-arrays, accessed through a network-on-chip, or NoC,

to provide energy-efficiency. For dynamic execution isolation, TimeCube requires a

dynamically partitionable NUCA architecture, which continues to provide scalability in

terms of the access energy.

In a NUCA cache, access energy depends heavily on the number of cache-arrays

accessed for each request. Static Non-Uniform Cache Access (SNUCA) architectures

use a fixed indexing function and accesses only one cache-array for every cache request,

which keeps the energy consumption low, as shown in Figure 4.4. By configuring these

index functions for each core, these SNUCA architectures can divide the cache into

independent partitions specific to a given workload, thus providing resource guarantees;

however, due to fixed hashing, the number of SNUCA cache sets cannot be dynamically

79

Number of Total Cache−Arrays (128KB/array)
2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

Way−predict,
Partial−tag,
Aggressive Migration

Way−predict,
Partial−tag,
No Migration

DNUCA

SNUCA

P
or

tio
n

of
 T

ot
al

 E
ne

rg
y

in
 L

2
C

ac
he

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 4.4. Associatively partitioned DNUCA caches are not energy scalable. The
portion of energy spent in L2 caches increases with cache size when using DNUCA,
even with XOR-based way-prediction [PAV+01], partial-tag match [KJLH89] and cache
migration [HKS+05]. For SNUCA, the portion of energy spent in caches remains low,
but SNUCA is not dynamically repartitionable.

changed. As a result, if we partition a shared cache into SNUCA components to keep

the associativity fixed, cache allocations cannot be dynamically changed, which leads to

reduced cache utilization due to changing application working sets.

The cache designs proposed by Nesbit et al. [NLS07], Hsu et al. [HRIM06], and

Guo et al. [GSZI07], use associative partitioning to create a dynamically partitioned

(DNUCA) cache. However, in DNUCA a cache line can be placed on any of the allocated

cache-arrays, so it may need to check multiple cache-arrays for every cache access.

Mechanisms such as XOR-based way-prediction [PAV+01], partial-tag match [KJLH89],

and cache-block migration [HKS+05] reduce the number of cache-arrays checked per

80

cache access. However, Figure 4.4 shows that, even with these mechanisms3, cache

accesses in an associatively partitioned DNUCA consume a progressively larger portion

of processor energy as cache size increases. This makes DNUCA based last-level caches

energy-inefficient as aggregate cache size grows.

Insight: While working sets change, necessitating dynamism in partition-

ing, they do not change rapidly. Thus, the frequency with which we can

repartition does not need to be high and we should optimize performance

and energy for the time between allocations.

I introduce Dynamically Repartitionable Static NUCA, or DR-SNUCA, a dynam-

ically repartitionable shared cache with static-mapping during steady-state. DR-SNUCA

provides energy efficiency and high cache utilization as well as fixed resource guaran-

tees, and it does not interrupt execution during reconfiguration. This chapter presents a

complete set of results for DR-SNUCA on a manycore processor, including architectural

mechanisms that make the decisions as to how to reconfigure the caches at runtime

without interrupting execution.

DR-SNUCA uses set partitioning i.e. growing or shrinking cache allocations

by changing the number of sets allocated to an application while keeping associativity

constant. DR-SNUCA uses indirect cache addressing to reduce reconfiguration overheads

introduced during changes to cache allocations, to enable online reconfiguration. I also

introduce Tag-Duplication to avoid execution stalls during the cache reconfiguration and

keep DR-SNUCA’s performance comparable to DNUCA.

81

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

C	
 C	
 T	
 T	
 D	
 D	
 D	
 D	
 D	
 D	
 D	
 D	

M
em

ory	
 Controller	

M
em

ory	
 Controller	

M
em

or
y	

Co

nt
ro
lle
r	

M
em

or
y	

Co

nt
ro
lle
r	

DIM
M
s	

DIM
M
s	

DI
M
M
s	

DI
M
M
s	

Figure 4.5. Layout of Dynamically Repartitionable Static NUCA Dynamically Repar-
titionable Static NUCA, or DR-SNUCA, spatially distributes the last-level cache shared
by the cores (C) into cache-arrays(T,D) connected using an on-chip network, or OCN. It
also physically separates the tag and data for each cache-array, consolidates them into
tag-arrays (T) and data-arrays (D) respectively, and uses indirect cache addressing for
cache accesses to reduce the online reconfiguration costs. The cache misses are sent to
DRAMs through memory controllers.

4.3.1 Dynamically Repartitionable Static NUCA Design

DR-SNUCA provides a last-level shared cache for manycore processors that

can be dynamically partitioned and is also energy-scalable. DR-SNUCA dynamically

partitions the shared cache between applications and each application’s cache portion op-

erates as an SNUCA, except during reconfiguration periods. DR-SNUCA has physically

separated cache-arrays connected through a point-to-point pipelined on-chip memory

network, as shown in Figure 4.5, which are dynamically allocated to applications. When

multiple cache-arrays are allocated to an application, they are merged by increasing the

number of cache sets allocated to the application while keeping the number of associative

3For every cache size, I chose the partial tag size that minimized the overall energy consumption.

82

ways constant. DR-SNUCA allocates cache-arrays to applications in powers of two.

Tag-Array
Index

T

C

D

Tag	
 dataLoc	

Tag

Address
tagLoc	
 Index	
 Tag	

Data-Array

Index,way

4

2

3

1

5

6

7

8 Cores
L2 Tags
Core

L2 Data

Figure 4.6. Cache access with Indirect Cache Addressing in DR-SNUCA. DR-
SNUCA uses indirect cache addressing by separating the tags and data, and maintains a
one-to-one correspondence between all tag and data locations by storing the correspond-
ing data location in each tag using dataLoc bits. On a cache request, DR-SNUCA finds
the tag array using tagLoc bits (1) in the address, sends a request to that array (2), and
then uses index bits to find the set within that cache-array (3). If some tag matches (4), it
uses the dataLoc in that tag to find the location of the data cache-array (5). A request is
sent to the data-array (6), and the cache line is fetched (7) and sent back to the core (8).

In DR-SNUCA, when the cache allocation changes for an application, its number

of cache sets are altered; as a result, its cache hashing changes as well. Naively moving

all cache lines to their corresponding new locations would consume excessive energy.

Instead, DR-SNUCA uses indirect cache addressing [AP93], shown in Figure 4.6, to

greatly reduce reconfiguration costs. Indirect cache addressing separates the tags and

data for each cache-array, maintaining them on physically separate locations in tag-arrays

(T) and data-arrays (D), as shown in Figure 4.5, and storing the location of data in each

tag using dataLoc bits. All these arrays are connected through a dynamic OCN. With this

indirect addressing, cache reconfiguration moves only the tag and not the data, which

83

significantly reduces the reconfiguration costs, since cache tags are significantly smaller

than lines.

For accessing a cache line under indirect cache addressing, the location of the tag-

array holding the cache line tag is determined based on the tagLoc bits in the address, but

the data can be placed on any of the data-arrays, as shown in Figure 4.6. An application’s

tagLoc width equals log2 of the number of cache-arrays allocated. The cache set for an

address in both tag-arrays and data-arrays is determined based on the index bits. The

associative way for both tag and data-arrays is also the same for every cache line present

in the cache, as shown in Figure 4.6. Thus, we only need to store the location of the

data-array in dataLoc bits. To find an address location, we use tagLoc bits from the

address, located just above the index bits, to determine the location of the cache-array

that can hold the data for the application. We then use the index bits to determine the

cache set within the cache-array, as shown in Figure 4.6. DR-SNUCA maintains a

one-to-one correspondence between all tag and data locations in the cache at all times.

This correspondence is useful in avoiding dead dataLoc references, or unreachable data

locations, as well as improving the indirect cache access and reconfiguration performance,

and can change only during cache reconfiguration.

Reconfiguration. Application cache allocations can dynamically change during

application execution on interval boundaries. During this online reconfiguration we

may have to shift some tags and evict some data while maintaining the one-to-one

correspondence between all tag and data locations. During reallocation, we find the new

tag locations for cache lines based on their tagLoc bits, and if it is not the same as their

current locations, due to a possible change in the hashing scheme, we move the tags to

their new blocks at the same index and way, as shown in Figure 4.7. The dataLoc bits

in the existing tags at these new locations are also copied back to the old locations to

maintain the tag and data location correspondence.

84

Cores
L2 Tag
Core

L2 Data

T

C

T

D
C. Data
 Evict

A. Tag
 Copy

B. Dual
 Lookup

Figure 4.7. DR-SNUCA Reconfiguration If an application’s cache allocation changes,
its tags are copied (A) to their new locations in the duplicate tag-arrays for the next
interval, while maintaining the tag to data location correspondence. Cache accesses are
sent to both the new and old tag-arrays (B) during this reconfiguration period. If the new
cache allocation is smaller, less recently used lines are evicted, and written back if dirty
(C).

If the cache allocation increases, no change is required in the data blocks. How-

ever, if the cache allocation shrinks, we must select which cache lines to preserve and

which to evict. To support this selection, in addition to the associative LRU within a set,

we also maintain an LRU vector for every equivalent location (same index, way) across

all cache-arrays currently owned by an application. On allocation reductions we evict the

LRU entries for each equivalent location, as shown in Figure 4.7. We have to pro-actively

evict these lines because if we fail to writeback all the dirty lines, the cache will become

incoherent. We writeback only the dirty lines to save bandwidth. For the cache lines

that are to be evicted, we still maintain the dataLoc bits in them in order to preserve the

correspondence between tag and data locations.

Tag-Duplication. During cache reconfiguration, it is difficult to handle memory

requests for a cache line whose tag is in transit. There are three basic approaches

to handling this scenario. First, we could have a protocol to track the tag during its

85

A1	
 B1	
 D1	
 A2	
 B2	

A2	
 B2	
 D2	
 A3	
 B3	

A3	
 B3	
 D3	
 A1	
 B1	

Tag Duplicate Tag Data

	

	

	

	

	

App	
 0	

	

	

App	
 1	

	

	

	

	

	

App	
 1	

	

	

App	
 0	

Figure 4.8. Tag-Duplication in DR-SNUCA During cache reallocation, tags are copied
to their new locations in the duplicate tag-arrays for the next interval, while maintaining
the tag to data location correspondence. All cache accesses are sent to both the new and
old tag-arrays during this reconfiguration period.

transit and allow intermediate structures to respond, but this is complicated and can

cost additional time and energy. Second, we could stall the application execution until

the reconfiguration finishes, but this will reduce application performance. Third, Tag-

Duplication, which maintains two tag block arrays and copies the tags from the arrays

allocated for the current interval into the arrays allocated for the next interval, as shown

in Figure 4.8. While the reconfiguration is going on, all tag lookups for an application

are sent to the tag blocks allocated to the application for both the current and previous

intervals, which guarantees that the tag will be matched if present in the cache. DR-

SNUCA uses tag-duplication to prevent application stalling and handle memory requests

during cache reconfiguration. Our experiments show that the reconfiguration period is

relatively small compared to the interval length, which keeps the costs of dual-lookup

during reconfiguration low.

86

4.3.2 Flattened Partial LRU Vector

In order to create the qTables, TimeCube needs to find the cache miss rates

for all possible cache size allocations using an area and power-efficient mechanism.

Shadow-Tags [MQ06] have been proposed for this purpose for partitioned caches with

total-LRU-order. However, DR-SNUCA does not have total LRU-order, but a partial-

LRU-order, which we describe next.

For a four-way DR-SNUCA, four addresses in set i, say A1,A2,A3,A4, have a total-

LRU-order: A1→ A2→ A3→ A4. Similarly, four addresses in set j, say B1,B2,B3,B4,

have another total-LRU-order: B1→ B2→ B3→ B4. Merging these sets gives another

total-LRU-order, say: A1→ A2→ B1→ A3. These three total-LRU-orders together create

a partial-LRU-order. DR-SNUCA has one partial-LRU-order per cache-index to include

the sets with that index across all cache-arrays.

A1	
 A2	
 A3	
 A4	
 B1	
 B2	
 B3	
 B4	

LRU-order for sets i, j

A1	
 A2	
 B1	
 A3	
 B2	
 A4	
 B3	
 B4	

FPLV for sets i and j

A1	
 A2	
 A3	
 A4	
 B3	
 B1	
 B2	
 B4	

LRU-order for sets i, j

B3	
 A1	
 A2	
 B1	
 B2	
 A3	
 A4	
 B4	

FPLV for sets i and j

B3

Figure 4.9. Flattened Partial LRU Vector The FPLV stores the partial-LRU-orders for
DR-SNUCA using topological sorting; ordering is maintained using pointer-chains. For a
w way cache, the first w×c locations contain the addresses present in cache configuration
log2(c).

The Flattened Partial LRU Vector, or FPLV, stores a partial-LRU-order using

topological sorting, and records the ordering using pointers, as shown in Figure 4.9.

FPLV maintains another crucial property: For a w way cache, the first w× c locations

contain the addresses present in cache-configuration log2(c). TimeCube maintains one

FPLV per core.

87

FPLV efficiently determines cache statistics for all possible cache allocations4

in DR-SNUCA. For every cache access by an application, its corresponding FPLV does

tag-matching in only one cache set, the one where the cache line would have gone if the

application was allocated a single cache-array. This is sufficient to check if it is a cache

hit or a miss. If the address is indeed present, its location in FPLV will determine the

cache-configurations for which the access would have been a hit. For updating the LRU

ordering, in the worst case FPLV has to modify the position of tags within one cache

set for every possible cache-configuration. For example, on seeing address B3, which

maps to set j, we only need to match B1,B2,B3,B4, and the LRU update would shift only

the addresses B3,A1,A2,B1,A3, and A4, as shown in Figure 4.9. Thus, FPLV provides an

area and power-efficient mechanism for finding cache miss rates for all cache sizes, since

FPLV is accessed for only the requests going to the sampled sets.

4.4 Results

I now present the results for TimeCube’s mechanisms to control applications’ exe-

cution qualities. This includes the examples of the Quality Tables generated in TimeCube,

the evaluation of Dynamically Repartitionable Static NUCA, and the overheads of imple-

menting dynamic execution isolation in TimeCube. I use the evaluation methodology

described in Section 3.3.1.

4.4.1 Quality Tables Created in TimeCube

In this section I present examples of Quality Tables generated by TimeCube using

the enhanced shadow performance modeling with the enhanced shadow structures. As

can be seen from Figures 4.10, 4.11, 4.12, and 4.13, these Quality Tables are highly

variable across applications. I have normalized these Quality Tables so that they give the
4We use set-sampling [MQ06] to significantly reduce FPLV’s area and energy requirements with a

small loss in accuracy.

88

(a) Normalized Quality Tables for astar.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(b) Normalized Quality Tables for hmmer.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(c) Normalized Quality Tables for namd.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

Figure 4.10. Normalized Quality Tables for astar, hmmer, and namd. Normalized
Quality Tables provide the performance estimate for a spectrum of resource allocations,
relative to standalone performance. Red depicts full performance, while blue represents
zero performance.

89

(a) Normalized Quality Tables for bwaves.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(b) Normalized Quality Tables for lbm.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(c) Normalized Quality Tables for sjeng.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

Figure 4.11. Normalized Quality Tables for bwaves, lbm, and sjeng. Normalized
Quality Tables provide the performance estimate for a spectrum of resource allocations,
relative to standalone performance. Red depicts full performance, while blue represents
zero performance.

90

(a) Normalized Quality Tables for bzip2.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(b) Normalized Quality Tables for leslie3D.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(c) Normalized Quality Tables for soplex.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

Figure 4.12. Normalized Quality Tables for bzip2, leslie3D, and soplex. Normalized
Quality Tables provide the performance estimate for a spectrum of resource allocations,
relative to standalone performance. Red depicts full performance, while blue represents
zero performance.

91

(a) Normalized Quality Tables for h264ref.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(b) Normalized Quality Tables for mcf.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

(c) Normalized Quality Tables for specrand.

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75
Bandwidth (%)

64KB

256KB

1MB

4MB

16MB

C
ac

he

Figure 4.13. Normalized Quality Tables for h264ref, mcf, and specrand. Normalized
Quality Tables provide the performance estimate for a spectrum of resource allocations,
relative to standalone performance. Red depicts full performance, while blue represents
zero performance.

92

estimated performance of applications for all possible resource allocations relative to

the standalone performance with all the CPU resources. Red depicts full performance,

while blue represents zero performance. As evident from these tables, an application’s

performance doesn’t necessarily drop linearly with decreasing resource allocation. In

fact, the correspondence between performance and resource allocation varies widely

across applications.

Another observation is that the drop in performance with reducing resource

allocation depends on the type of resource. For example, lbm has almost no performance

drop with decreasing cache allocation, but sees a significant drop in performance with

reducing memory bandwidth, as shown in Figure 4.11b. This is typical of stream

applications. Another interesting observation is the behavior of cliff applications such

as mcf, as visible in Figure 4.13b. These applications see a sudden drop in performance

with reduction in cache allocation, when their working-set no longer fits inside the cache.

TimeCube is able to create these Quality Tables with very low errors (about 1%),

as shown in Chapter 3, and with very low energy and area overheads. These tables are

created in parallel with application execution and impart no performance penalty on

applications. Thus, TimeCube can reliably use these Quality Tables to determine the

exact amount of resources required for attaining different application performance levels,

and to provide guarantees about execution qualities for live applications.

4.4.2 DR-SNUCA Evaluation

DR-SNUCA is Energy-Scalable. Based on my experiments with 32 cores using

the DNUCA associative caches, we observe that a significant portion of energy is

consumed in L2 (20.01% on average). In contrast, with DR-SNUCA, average L2 energy

consumption is only 2.39%. Figure 4.14 shows that the greater energy-scalability of

DR-SNUCA results in an average overall energy reduction of 16.27% compared to

93

Compositions

�100%stream, 0% slope

�75% stream, 0% slope

�75% stream, 25% slope

�50% stream, 0% slope

�50% stream, 25% slope

�50% stream, 50% slope

�25% stream, 0% slope

�25% stream, 25% slope

�25% stream, 50% slope

�25% stream, 75% slope

�0% stream, 0% slope

�0% stream, 25% slope

�0% stream, 50% slope

�0% stream, 75% slope

�0% stream, 100% slope

AVERAGE

E
ne

rg
y

R
ed

uc
tio

n
(%

)

0

10

20

30

40
DR−SNUCA vs DNUCA w/o migration
DR−SNUCA vs DNUCA w migration

Figure 4.14. DR-SNUCA reduces overall execution energy DR-SNUCA reduces
overall execution energy by 16.27% on an average when compared to DNUCA even with
aggressive migration.

DNUCA.

Compositions

�100%
stream

, 0%
 slope

�75%
 stream

, 0%
 slope

�75%
 stream

, 25%
 slope

�50%
 stream

, 0%
 slope

�50%
 stream

, 25%
 slope

�50%
 stream

, 50%
 slope

�25%
 stream

, 0%
 slope

�25%
 stream

, 25%
 slope

�25%
 stream

, 50%
 slope

�25%
 stream

, 75%
 slope

�0%
 stream

, 0%
 slope

�0%
 stream

, 25%
 slope

�0%
 stream

, 50%
 slope

�0%
 stream

, 75%
 slope

�0%
 stream

, 100%
 slope

AVERAG
E

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

0

0.2

0.4

0.6

0.8

1

DR−SNUCA w/o TD DR−SNUCA w TD

Figure 4.15. DR-SNUCA performance is comparable to the baseline DNUCA. With-
out tag-duplication (TD), DR-SNUCA performs 10.3% worse in comparison to the base-
line due to reconfiguration stalls. However, after adding tag-duplication, DR-SNUCA is
able to perform within 0.5% of the baseline.

94

The execution times for DNUCA and DR-SNUCA are comparable, as shown in

Figure 4.15, due to similar cache hit rates. When running a mix of 32 applications on our

prototype architecture, the results show that without tag-duplication TimeCube can lose

10.3% of performance. However, with tag-duplication, reconfiguration for DR-SNUCA

can be done in parallel with execution with no timing overhead, and DR-SNUCA is able

to perform within 0.5% of the baseline DNUCA, which in turn performs 14.7% better

than SNUCA [KBK02], at the expense of just 6.42% of the overall chip area, as seen in

Figure 4.16. This small penalty is due to indirect cache addressing in DR-SNUCA.

Flattened Partial LRU Vectors are Efficient. Table 4.1 shows an analytical com-

parison of the shadow tag schemes for associative caches and FPLV, where W = ways,

C = cache configs, Ta = tag area, Pm = tag match energy, and Pl = tag LRU update

energy. We can see that area consumed for the two schemes is similar; however, en-

ergy consumption is much less for FPLV for tag matching as well as LRU updates.

Moreover, FPLV consumed just 1.23% area on our prototype TimeCube when using

set-sampling [MQ06], as seen in Figure 4.16. This makes FPLV efficient enough to

be employed for shadow-caching in manycore architectures, such as TimeCube, using

DR-SNUCA.

Table 4.1. FPLV has the same area as associative shadow tags but much lower energy
consumption; therefore, they provide efficient shadow-caching for dissociative caches.

Metric Associative FPLV
Area (per set) 2CWTa 2CWTa

Match Energy 2CWPm WPm

Update Energy 2CWPl WCPl

95

Core (18.85%)
Prefetcher (0.74%)
L2 Duplicate Tag (6.36%)

Networks (4.42%)
Memory Controller (0.28%)

L2 Tag (6.36%)

qTables Logic (1.03%)

L2 Data (54.19%)

Others (2.95%)
Shadow Prefetcher (3.53%)

Shadow Cache (1.30%)

Figure 4.16. Area distribution in TimeCube for calculating Quality Tables and pro-
viding Dynamic Execution Isolation. The area consumed by Shadow Tags, Shadow
Prefetchers, and Quality Tables is small (1.30%, 3.53%, and 1.03% respectively). For a
32 core TimeCube, the mechanisms added for Dynamic Execution Isolation consume
less than 7% of total chip area, the largest portion being the duplicate tags (6.36%).

4.4.3 Area and Energy Distribution in TimeCube

I now analyze the area and energy distribution for TimeCube when providing

Dynamic Execution Isolation and calculating Quality Tables. The microarchitectural

mechanisms required to generate Quality Tables consume less than 7% chip area. Dy-

namic Execution Isolation mechanisms consume less than 7% chip area as well. Quality

Tables consume only about 1.03% area, and L2 tag duplication for DR-SNUCA consumes

6.36% area, as shown in Figure 4.16. For an example 32 application mix, the energy

consumed by Quality Tables creation is low, 0.01%, because TimeCube is able to reuse

Quality Time calculations across the Quality Tables cells. Shadow structures consume

about 0.26% energy, the largest portion being the Shadow Tags. Overall, the mechanisms

for generating Quality Tables and supporting Dynamic Execution Isolation in TimeCube

are energy and area efficient.

96

4.5 Related Work

Dynamic Execution Isolation. Performance isolation has been proposed as a means

to reduce resource interference. Verghese et al. [VGR98] proposed mechanisms for

performance isolation for resources such as I/O bandwidth and storage, while Banga

et al. [BDM99] suggested resource containers to isolate and account for system-level

resource usage. However, since typical manycore architectures rely on shared processor

resources, this performance isolation (and not just resource isolation [NLS07]) should be

extended to the micro-architectural levels to account for application slowdowns due to

sharing of processor resources, since even state-of-the-art resource management schemes,

such as the ones proposed by Gohner et al. [GWG+] and Elmroth et al. [EMHF09], do

not account for application slowdowns due to sharing of processor resources.

Resource Partitioning. TimeCube dynamically partition the critical shared archi-

tectural resources to provide resource isolation. Dynamic resource partitioning has

been proposed previously, such as fair-caching [SK04]. Nesbit et al. [NLS07] improved

upon previous techniques by partitioning cache access bandwidth as well. Rafique

et al. [RLT07] proposed bandwidth partitioning to provide fair bandwidth distribution

between applications by adaptively changing the quota of an application based on the

observed DRAM latency. Liu et al. [LJS10] proposed partitioning bandwidth between

applications with the aim of increasing weighted system speedup. TimeCube reuses fair-

queueing arbiters [NLS07], but allocates bandwidth using Quality Time based resource

management.

Dynamically Repartitionable Static NUCA. TimeCube spatially distributes the

shared cache (NUCA), as proposed by Kim et al. [HKS+05], to reduce access energy

and time. However, the existing NUCA techniques proposed, such as s-NUCA and

97

d-NUCA, do not satisfy our requirements, since s-NUCA is not dynamically re-sizable

and d-NUCA is not energy-efficient for large cache sizes, even when we use optimization

techniques, such as way-prediction [PAV+01], partial-tag matching [KJLH89] and data

migration [HKS+05]. Thus, I extend s-NUCA with cache-indirection [AP93] to create

DR-SNUCA, which is both dynamically reconfigurable as well as energy-efficient for

large cache sizes. The cache partition sizes can be determined in hardware or left to the

OS, as proposed by Rafique et al. [RLT06]. Cache partitioning techniques at different

spatial granularities have been proposed, such as the page-level scheme by Cho et

al. [CJ06] and the memory-address-map based scheme proposed by Lin et al. [LLD+08];

however, DR-SNUCA partitions the cache at a finer spatial granularity without incurring

heavy reconfiguration and access costs.

Existing techniques partition the caches by dividing associative ways among the

applications which is not power-efficient. TimeCube’s dissociative cache partitioning

handles the cache traffic and reconfiguration efficiently for many applications. Kim et

al. [HKS+05] discuss using a hashing scheme similar to ours to determine the cache

block that can hold an address, and bound the cache associativity; however, their hashing

scheme is static and cannot handle dynamically changing cache allocations. They also

talk about the performance penalties of highly associative caches and propose using

partial tags. However, partial tag matching consumes energy proportional to the cache

size and is not as scalable as DR-SNUCA.

Memory Scheduling. TimeCube’s distributed memory controllers can utilize any

memory scheduling scheme which fairly distributes the available bandwidth between

applications. Several fair memory scheduling techniques have been proposed previ-

ously, such as stall-time fairness [MM07], batch-scheduling [MM08b], distributed-order

scheduling [MM08a], self-optimizing controllers [IMMC08], or prioritizing threads

98

receiving least service [KHMHB10]. However, TimeCube uses the fair queue ar-

biter [NLS07], since it does fair-scheduling while staying within allocated bandwidth

limits for each application.

4.6 Conclusion

IaaS computing systems as well as embedded systems need to tackle the challenge

of interference due to space-multiplexing, which can cause unevenness in slowdowns

to the order of 12× in a 32-core processor and prevents any kind of execution quality

guarantees, in order to fully capitalize on the benefits of manycore computing. Dynamic

Execution Isolation can reduce this resource interference. TimeCube generates Quality

Tables in hardware to determine the exact resource requirement for attaining different

performance levels, and then uses dynamic execution isolation, achieved through dynamic

resource partitioning, to enforce resource allocations to guarantee execution guarantees

for live applications. TimeCube uses DR-SNUCA, an energy-scalable dynamically

partitioned cache, to reduce the energy consumption for a 32-core system by 16.27%

compared to DNUCA caches, while performing within 0.5%.

The area and energy overheads of these dynamic partitioning mechanisms are

low; therefore, dynamic execution isolation can be used to provide interference-free

resource sharing for manycore processors, while Quality Tables can be used for enforcing

execution guarantees.

Acknowledgment

Parts of these chapters are reprinted from the following papers:

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “DR-SNUCA: An

Energy-Scalable Dynamically Partitioned Cache”, International Conference on

99

Computer Design, ICCD 2013.

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “TimeCube: A

Manycore Embedded Processor with Interference-agnostic Progress Tracking”, In-

ternational Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation, IC-SAMOS 2013.

Permission to use these contents has been obtained through signed letters from the

co-authors. Dissertation author was the primary investigator and author on these papers.

Chapter 5

SPOT: Improving Execution Quality in
Hardware

Manycore processors, such as TimeCube, pack a large amount of resources on a

single die to provide high compute-density. Even if they have large quantities of shared

resources, such as cache and memory bandwidth, the per core cache size and per core

bandwidth is low; moreover, these resources are usually insufficient to satisfy memory

requirements of all the applications. As a result, highly consolidated manycore systems,

such as TimeCube, are especially sensitive to the memory resource allocation making

resource management extremely crucial.

Existing processors manage these resources locally in the hardware, enabling

a finer-grained control while hiding the hardware complexity from the software stack.

However, the local control leads to interference. As mentioned in Chapter 4, we can

use dynamic execution isolation in manycore processors to reduce resource interference

and, in conjunction with Quality Tables, control execution qualities. TimeCube dynam-

ically partitions the shared resources to provide this isolation. However, for resource

management, TimeCube still needs to dynamically distribute these partitioned resources

between applications based on their requirements as well as system objectives, and it is a

challenge to find a good resource allocation for manycore processors with high resource

100

101

utilization, even in the presence of dynamic execution isolation.

In this chapter, I introduce a novel manycore resource management scheme,

which can lead to increased resource utilization, resulting in higher system performance.

The scheme is based on a novel hardware-generated data structure, called Simultaneous

Performance Optimization Table, or SPOT .

Simultaneous Performance Optimization Table, or SPOT, is a three-

dimensional structure with the three axes being applications, cache, and

bandwidth; each cell (i, j,k) of SPOT provides the maximum possible

mean Quality Time for i applications using j cache-arrays and k bandwidth

bins, and it also provides the corresponding resource allocation.

I use TimeCube as a demonstration vehicle for this scheme. TimeCube employs

a novel dynamic programming algorithm, based on the insight that we can reuse the

result of the sub problem - best allocation of a subset of cache and bandwidth between a

subset of applications, to periodically generate SPOT using the application Quality Tables.

TimeCube determines the resource allocation to satisfy multiple system objectives, i.e.,

high throughput and fairness, and addresses these conflicting objectives by maximizing

the Mean Quality Time. TimeCube then optimally allocates portions of the partitioned

last-level cache and memory bandwidth between active applications using SPOT’s last

cell. This allocation is done periodically to accommodate changing application phases.

Dynamic Execution Isolation leads to another problem on manycore processors:

How to tune mechanisms that use the shared resources, such as the DRAM prefetchers

using memory bandwidth, for all possible allocations? TimeCube dynamically tunes the

application DRAM prefetchers based on their bandwidth utilization in order to maximize

their bandwidth utilization at all possible allocations.

102

TimeCube allows programs to execute all the time without ever stalling them

to create Quality Tables, generate SPOT, or repartition resources. In every interval, it

collects the execution and shadow statistics using special hardware. At the end of the

interval, it uses those statistics to create Quality Tables and generate SPOT. This is done in

parallel with the program’s execution. Once the optimal allocation is calculated, the cache

and bandwidth partitions are reconfigured. This also is done in parallel with program

execution. The remaining interval proceeds with the new partitioning. Meanwhile the

statistics are being accumulated for this interval to determine partitioning for the next

interval.

I ran experiments to evaluate TimeCube’s resource allocation scheme using the ex-

perimental setup explained in Section 3.3.1. TimeCube’s SPOT-based resource allocation

increases throughput by 36% on average. Moreover, this algorithm provides increasingly

better utilization for larger systems, as well as systems running an increasingly large

number of applications. The low overheads of the mechanism as well as good results

make a compelling case for adding the requisite micro-architectural structures to do

SPOT-based optimal resource allocation and dynamic microarchitectural tuning in future

manycore processors.

In summary, this chapter describes the following novel contributions:

1. Progress-based dynamic resource management I propose a novel simultaneous

resource management scheme based on maximizing the Mean Quality Time for

manycore processors that provide dynamic execution isolation.

2. Simultaneous Performance Optimization Table I describe a novel dynamic pro-

gramming algorithm that uses Quality Tables to generate a data structure called

Simultaneous Performance Optimization Table, or SPOT, and determine an optimal

resource allocation to maximize the Mean Quality Time.

103

3. Dynamic prefetcher throttling I propose a novel prefetcher throttling mechanism

that tunes the prefetching intensity based on the dynamically allocated bandwidth.

4. Scalable resource allocation for higher throughput in manycore processors

I provide a detailed evaluation of the novel resource management mechanisms

using TimeCube. The mechanisms increase throughput by 36% on average when

compared to existing allocation schemes, and improve system scalability with

increasing number of cores as well as system load, or applications.

The remainder of the chapter proceeds as follows. Section 5.1 explains my

insights into resource management for concurrent systems. Section 5.2 describes the

implementation details of SPOT. Section 5.3 explains the design of the dynamic prefetcher

throttling mechanism. Section 5.4 presents the execution model for TimeCube when

using Quality Tables and SPOT for resource allocation. Section 5.5 presents a detailed

manycore evaluation of the mechanisms proposed in this chapter. Section 5.6 discusses

the related work and Section 5.7 concludes.

5.1 Maximizing Mean Quality Time: A Unified Re-
source Management Objective

At the microarchitectural level, even though manycore processors have large

quantities of shared resources such as cache and memory bandwidth, the per core cache

size and per core bandwidth is low. Thus, system performance is especially sensitive to

memory resource allocation. TimeCube has to allocate these resources between the many

applications running concurrently on the processor. A free-for-all resource management,

i.e. letting local independent mechanisms manage sharing of individual resources, can

lead to interference. This makes it difficult to control application performances as well as

improve global resource utilization.

104

I described Dynamic Execution Isolation in Chapter 4, which keeps resource

interference under check and, in combination with Quality Tables, lets TimeCube control

applications’ execution qualities. TimeCube can use dynamic execution isolation to

allocate equal resources to all applications, but this can lead to poor resource utilization

and system performance, since different applications have different resource utility, as

shown in Section 4.4.1. Thus, in order to maximize their utilization, resources should be

distributed between application’s based on their utility, which also leads to performance

improvement. Quality Tables provide application performance estimates for all possible

resource allocations with very high accuracy. TimeCube can use Quality Tables to

determine the utility of different resources to applications, which in turn can be used to

determine a good resource allocation between application that can be enforced through

dynamic execution isolation.

Now, in a system with multiple concurrent applications contending for shared

resources, such as TimeCube, an application’s progress depends on the amount of

resources allocated to it. In a fair system, the progress should be similar between the

applications, which means that even if there is a shortage of resources, they are distributed

such that the applications that provide lower performance are also given a fair share.

However, to attain a high overall system performance, more resources should be given to

the applications which provide higher performance. Thus, these two system objectives

require conflicting resource distribution strategies.

TimeCube attempts to address the two conflicting goals simultaneously by cre-

ating a single metric to summarize the performance of multiple applications that will

reflect both throughput as well as fairness. It takes the mean of application Quality Times

accumulated over their entire executions up to that point. For every application, Time-

Cube accumulates this running Quality Time by adding the incremental Quality Time

in every interval, provided by the last cell of its Quality Tables. Maximizing this metric

105

allows us to maximize the overall system performance, while also maintaining some

balance between slowdowns across applications. For the mean, we can use arithmetic,

geometric or harmonic means. These means provide varying degrees of fairness between

applications with the lowest fairness provided by arithmetic mean and the highest by

harmonic mean. For this work, we maximize the geometric mean of application speedups.

For every interval j, TimeCube finds a cache (ĉ) and bandwidth (b̂) distribution between

applications that maximizes the Mean Quality Time, to find a balance between throughput

and fairness.

Mean Quality Time j,ĉ,b̂ = ∏
i
(Quality Timei +qTables j[i,c,b]) (5.1)

After several time intervals, Mean Quality Time can be approximated to -

Mean Quality Time j,ĉ,b̂ = ∑
i

qTables j[i,c,b]
Quality Timei

(5.2)

This additive formulation enables TimeCube to do time-multiplexing, i.e. handle more

applications than the number of cores in the processor. Interestingly enough, this formu-

lation can be generalized to -

Mean Quality Time j,ĉ,b̂ = ∑
i

qTables j[i,c,b]
Quality Timeα

i
(5.3)

At α = 1, this formula approximates the geometric mean, but for α = 0, it is equal to the

arithmetic mean of application Quality Times. Moreover, for α = 2, this approximates

the harmonic mean of the application Quality Times. Thus, an increasing α value leads

to an increasing fairness of the metric, at the cost of performance. Thus, a system can

tune α in accordance with the policies to choose the right balance between fairness and

throughput. For this work, I choose α = 1.

106

C
y
c
le

s

0
10

00
00

00
0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

Allocated Bandwidth
(Words per Interval)

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

v
p
r

v
p
r

a
p
s
i

C
y
c
le

s

0
10

00
00

00
0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

Cache Blocks Allocated

0369

1
2

1
5

1
8

v
p

r

v
p

r

a
p

s
i

C
y
c
le

s

0
10

00
00

00
0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

Stacked Application IPC

0

0
.4

0
.8

1
.2

1
.62

v
p

r

v
p

r

a
p

s
i

C
y
c
le

s

0
10

00
00

00
0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

70
00

00
00

0
Stacked Application IPC

0

0
.4

0
.8

1
.2

1
.62

v
p

r

v
p

r

a
p

s
i

Fi
gu

re
5.

1.
Si

m
ul

ta
ne

ou
sr

es
ou

rc
e

al
lo

ca
tio

n
le

ad
st

o
be

tte
rr

es
ou

rc
e

ut
ili

za
tio

n
fo

rb
et

te
ro

ve
ra

ll
pe

rf
or

m
an

ce
.

I
ra

n
tw

o
in

st
an

ce
s

of
vp

r
an

d
an

ap
si

ap
pl

ic
at

io
n

on
a

4
co

re
ch

ip
.

T
he

re
qu

ir
ed

ba
nd

w
id

th
of

ap
si

ex
ce

ed
s

th
e

to
ta

l
av

ai
la

bl
e

ba
nd

w
id

th
.H

ow
ev

er
,o

ur
re

so
ur

ce
al

lo
ca

tio
n

al
go

rit
hm

pr
ev

en
ts

ap
si

fr
om

ho
gg

in
g

al
lt

he
ba

nd
w

id
th

(a
),

an
d

so
m

e
ca

ch
e

bl
oc

ks
(b

).
M

or
eo

ve
r,

w
e

ca
n

se
e

th
at

us
in

g
ge

om
et

ric
m

ea
n

fo
rfi

nd
in

g
th

e
be

st
al

lo
ca

tio
n

en
su

re
s

fa
irn

es
s

am
on

g
al

la
pp

lic
at

io
ns

(c
),

w
hi

ch
ca

nn
ot

be
gu

ar
an

te
ed

if
w

e
us

e
ar

ith
m

et
ic

m
ea

n
(c

).

107

To examine the effectiveness of Mean Quality Time based resource allocation, I

ran an experiment with three applications (vpr, vpr, apsi) running on a 4 core TimeCube

instance. Memory bandwidth requirement of apsi exceeds the total available bandwidth

in the system. However, apsi also has the lowest utility for bandwidth, i.e. the number of

instructions blocked on a single miss is lesser for apsi compared to vpr. Thus, to increase

the bandwidth utilization, TimeCube should allocate more bandwidth to vpr than the

ratio of the miss requests generated by the applications. As we can see, Mean Quality

Time based allocation divides the bandwidth amongst all applications and doesn’t let

apsi hog all the bandwidth, as shown in Figure 5.1(a). It also provides a small portion of

cache to apsi, as shown in Figure 5.1(b), since vpr has a higher utility for last-level cache

compared to apsi. In order to find the best allocation, I use the geometric mean for the

applications’ performances, shown in Figure 5.1(b), as this provides better fairness in

our allocation algorithm. On the other hand, arithmetic mean does not even guarantee

forward progress for all applications (non-zero IPC), as shown in Figure 5.1(c).

5.2 SPOT: Finding the Resource Allocation to Maxi-
mize the Mean Quality Time

TimeCube needs an efficient algorithm to maximize the Mean Quality Time for

the system every time slice. TimeCube can use the application Quality Tables to determine

a shared resource allocation between the applications based on their characteristics and

find the desired allocation. TimeCube can find this allocation even while satisfying SLAs

or real-time constraints, such as guarantees of forward progress, minimum execution rate,

or maximum slowdown, as discussed in Chapter 4.

Using the Quality Tables, TimeCube can calculate the metric for all possible

resource distributions and choose the best allocation; however, this brute force method is

inefficient. TimeCube employs a dynamic programming based algorithm to calculate the

108

cache and bandwidth allocation that maximizes Mean Quality Time. This algorithm is

based on the following insight: We can reuse the result of a sub problem, i.e. a subset

of cache and bandwidth partitioned between a subset of applications to maximize their

Mean Quality Time.

Bandwidth

C
ac

he

Applications

Mean Quality Time
i Apps, j Cache, k BW

Max Mean Quality Time

0
1

All

…

0
1

All
…

0

1

All

…

Simultaneous Performance
Optimization Table (SPOT)

Figure 5.2. TimeCube uses Simultaneous Performance Optimization Table, or SPOT,
to find the optimal resource allocation. TimeCube uses Simultaneous Performance
Optimization Table, or SPOT, a three-dimensional hardware generated data structure to
find the optimal resource allocation that maximizes the Mean Quality Time.

TimeCube creates a three-dimensional cube, Simultaneous Performance Opti-

mization Table, or SPOT , and use the algorithm, shown in Equation 5.4, to derive the

optimal allocation in the last cell of SPOT, i.e. SPOT c[N,$t ,Bt]. This calculation is done

in parallel with execution.

SPOT v[i,$,B] = Max possible mean progress− time

f or i apps, $ cache, and B bandwidth

SPOT c[i,$,B] = Cache and bandwidth distribution

f or SPOT v[i,$,B]

109

SPOT v[i,$,B] = max$′,B′{SPOT v[i−1,$−$′,B−B′]

+qTables[i,$′,B′]}

SPOT c[i,$,B] = SPOT c[i−1,$−$′,B−B′]

.append([$′,B′]max)

BestPartition = SPOT c[N,$t ,Bt] (5.4)

TimeCube creates the Quality Tables for all applications, and then runs the

dynamic programming algorithm to find the resource allocations that yields the highest

possible Mean Quality Time. It uses this allocation for the next interval, and thus

reconfigures the shared resource partitions accordingly. Details of execution flow are

present in Section 5.4. In my experiments, I give equal shares of cache and bandwidth to

all applications at the start of a run. In a real-world system, applications can be started

off with a predetermined fixed starting cache and bandwidth allocation.

For a 32-core TimeCube instance, the hardware allocation mechanism occupies

2.19% of the chip area and 0.23% of the total execution energy. This formulation

can handle I/O threads as well, since if a thread is blocked on I/O, the application’s

Quality Tables will show a low quality time for resources, which can then be allocated to

other threads. This also elegantly handles more applications than cores because of its

additive (rather than multiplicative) formulation. The Quality Tables for the suspended

applications are stored within their context.

5.3 Prefetcher Throttling

When applications are dynamically allocated the memory bandwidth, the prefetch-

ers need to be dynamically tuned to maximally utilize the available bandwidth. For

example, for a certain cache and bandwidth partition, an application might face a short-

110

age of bandwidth and the bandwidth loss due to incorrect prefetches might overshadow

the latency savings because of correct prefetches. I propose a new mechanism which

dynamically adjusts the prefetching aggressiveness to maximize the utilization of the

dynamically changing available memory bandwidth and can work in conjunction with

any existing prefetcher accuracy improvement mechanism. Prefetch throttler reduces

Stream
Tracker

Prefetch
Buffer

Prefetch
Aggression
Controller

Prefetch
Filter

Misses

Prefetches

Required BW
with and w/o
Prefetching

Allocated BW

Aggression
Level

Prefetcher

Throttler

L2

Memory

Shadow
Prefetcher

Figure 5.3. Prefetcher throttling in TimeCube The prefetcher throttling mechanism
changes the prefetcher aggression based on the bandwidth requirements and availability.
Prefetch aggression controller (PAC) finds the aggression level to best utilize the available
bandwidth, and the prefetch filter drops the corresponding ratio of prefetches.

the number of prefetches without affecting the internals of the prefetcher by dropping a

fixed ratio of prefetches issued by the prefetcher. This fixed ratio is called the prefetch

aggression level and it is determined by the prefetch aggression controller, or PAC, based

on the utility of prefetches to an application, as shown in Figure 5.3.

PAC takes in the allocated bandwidth for the application and the required band-

width for the application with and without prefetching, as calculated by the shadow

111

prefetchers. It uses them to determine the required bandwidth at different aggression

levels, for which it assumes that on dropping a fixed ratio of prefetches, a proportional

number of good and bad prefetches are dropped. Thus prefetcher accuracy remains almost

same leading to a proportional drop in prefetch hits. This provides the rough estimate

for the number of memory requests at an aggression level. To determine bandwidth for

that aggression level, PAC determines the overall latency by assuming that the average

prefetch hit latency savings remains the same at different aggression levels, and using

it to calculate the total latency savings by using the estimated number of prefetch hits.

Once PAC determines the required bandwidth for different aggression levels, it finds

the prefetch aggression level for which the required bandwidth is just higher than the

available bandwidth, and the prefetcher accordingly drops a fixed ratio of prefetches

during the next execution interval.

5.4 TimeCube Execution Model with SPOT

TimeCube allocates cache and bandwidth simultaneously between applications

based on their behaviors. However, an application’s behavior also changes over time.

An application’s working set size can change, average bandwidth utility can change etc.

Thus, one time allocation of resources is not sufficient. TimeCube checks the application

behavior from time to time and readjust the partitioning. In this work, I use a periodic

interval based reallocation, as shown in Figure 5.4, triggered using a periodic interrupt.

It might lead to some unnecessary checks, but this keeps it invisible to software, and

therefore allows TimeCube to use legacy code.

TimeCube allows programs to execute all the time, without ever stalling them to

collect statistics, calculate Quality Tables, generate SPOT, or reconfigure resources. In

every interval, TimeCube collects the statistics using special hardware. At the end of

the interval, it uses those statistics to create Quality Tables using shadow performance

112

Sh
ad
ow

	
 P
er
fo
rm

an
ce
	

M
od

el
in
g	

	
 	
 	
 	
 	
 	

Sh
ad
ow

	
 C
ac
he

	

E

xe
cu

tio
n

S
ta

ts

Re
so
ur
ce
	

M
an
ag
em

en
t	

Q
ua

lit
y

Ta
bl

es

R
es

ou
rc

e
A

llo
ca

tio
n

Dy
na
m
ic
	
 E
xe
cu
<o

n	

Is
ol
a<

on
	

	
 	
 	
 	
 	
 	

La
st
	
 L
ev
el
	
 C
ac
he

	

M
em

or
y	

Ba

nd
w
id
th
	

DR
AM

	
 B
an
ks
	

Sh
ad
ow

	
 P
re
fe
tc
he

r	

Sh
ad
ow

	
 B
an
ki
ng
	

In
te

rv
al

n

Ex
ec

ut
e

an
d

C
ol

le
ct

 S
ta

ts

R
es

ou
rc

e
A

llo
ca

tio
n

R
ec

on
fig

ur
at

io
n

C
re

at
e

qT
ab

le
s

tim
e

(a
)

(b
)

Fi
gu

re
5.

4.
Ti

m
eC

ub
e

ex
ec

ut
io

n
m

od
el

.
Ti

m
eC

ub
e

pa
rt

iti
on

s
th

e
cr

iti
ca

ls
ha

re
d

re
so

ur
ce

s
to

pr
ov

id
e

dy
na

m
ic

ex
ec

ut
io

n
is

ol
at

io
n,

us
es

Sh
ad

ow
Pe

rf
or

m
an

ce
M

od
el

in
g

to
ce

ra
te

Q
ua

lit
y

Ta
bl

es
fo

rl
iv

e
ap

pl
ic

at
io

ns
,a

nd
th

en
us

es
th

es
e

ta
bl

es
in

si
de

SP
O

T
to

fin
d

th
e

op
tim

al
re

so
ur

ce
al

lo
ca

tio
n

m
ax

im
iz

in
g

th
e

M
ea

n
Q

ua
lit

y
Ti

m
e

(a
).

T
hi

s
op

tim
al

al
lo

ca
tio

n
is

th
en

us
ed

to
re

pa
rt

iti
on

th
e

sh
ar

ed
re

so
ur

ce
s

fo
r

th
e

ne
xt

in
te

rv
al

.
E

ve
ry

in
te

rv
al

Ti
m

eC
ub

e
co

lle
ct

s
st

at
is

tic
s,

cr
ea

te
s

Q
ua

lit
y

Ta
bl

es
,

ge
ne

ra
te

s
SP

O
T,

fin
ds

th
e

op
tim

al
al

lo
ca

tio
n,

an
d

re
co

nfi
gu

re
s

sh
ar

ed
re

so
ur

ce
s

si
m

ul
ta

ne
ou

sl
y

fo
r

al
la

pp
lic

at
io

ns
,a

ll
in

pa
ra

lle
lw

ith
ex

ec
ut

io
n

(b
).

113

modeling, and characterize the application behavior. These Quality Tables are then used

to generate SPOT, and calculate an optimal allocation of cache and bandwidth between

applications by maximizing the Mean Quality Time. This is all done in parallel with the

program’s execution. Once the new allocation is calculated, the cache and bandwidth

partitions are reconfigured. This also is done in parallel with the program execution. The

remaining interval proceeds with the new resource allocations. Meanwhile, the statistics

are being accumulated for this interval to determine the optimal resource allocation for

the next interval.

5.5 Results

In this section we describe the results of our experimental evaluation of Time-

Cube’s simultaneous resource allocation using SPOT, and the dynamic prefetcher throt-

tling, along with several other scalability and sensitivity studies. We use the evaluation

methodology detailed in Section 3.3.1 unless explicitly specified.

5.5.1 Overall Results

Throughput is a first order concern for concurrent manycore systems. We quan-

titatively analyze the throughput obtained with quality time based resource allocation

and compare our scheme against a baseline in which we first partition the caches to

minimize the cache misses [MQ06], and then we partition the bandwidth to provide equal

slowdown between applications [NALS06]. Our baseline provides a higher performance

compared to existing commercial manycore system resource allocations, which provide

fair bandwidth sharing between applications, but do not minimize cache miss rates by

through demand-based dynamic cache allocation.

We observed that throughput improves by 36% on average for our scheme,

compared to the baseline, as shown in Figure 5.5(a). These gains are made possible due to

114

Compositions

�100%
stream

, 0%
 slope

�75%
 stream

, 0%
 slope

�75%
 stream

, 25%
 slope

�50%
 stream

, 0%
 slope

�50%
 stream

, 25%
 slope

�50%
 stream

, 50%
 slope

�25%
 stream

, 0%
 slope

�25%
 stream

, 25%
 slope

�25%
 stream

, 50%
 slope

�25%
 stream

, 75%
 slope

�0%
 stream

, 0%
 slope

�0%
 stream

, 25%
 slope

�0%
 stream

, 50%
 slope

�0%
 stream

, 75%
 slope

�0%
 stream

, 100%
 slope

AVERAG
E

N
o
rm

a
liz

e
d

 S
y
s
te

m
 T

h
ro

u
g
h
p
u
t

0.5

0.7

0.9

1.1

1.3

1.5

1.7
TimeCube

Baseline

(a)

Compositions

100%
 stream

, 0%
 slope

75%
 stream

, 0%
 slope

75%
 stream

, 25%
 slope

50%
 stream

, 0%
 slope

50%
 stream

, 25%
 slope

50%
 stream

, 50%
 slope

25%
 stream

, 0%
 slope

25%
 stream

, 25%
 slope

25%
 stream

, 50%
 slope

25%
 stream

, 75%
 slope

0%
 stream

, 0%
 slope

0%
 stream

, 25%
 slope

0%
 stream

, 50%
 slope

0%
 stream

, 75%
 slope

0%
 stream

, 100%
 slope

AVERAG
E

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

 f
o
r

s
lo

w
e
s
t
a
p
p
lic

a
ti
o
n

0.5

0.7

0.9

1.1

1.3

1.5
TimeCube

Baseline

(b)

Figure 5.5. TimeCube’s resource allocation leads to higher throughput. Time-
Cube’s Quality Time-based resource allocation leads to higher throughput (a) for the
system (36% on average), and higher performance (b) for the applications (19% on
average) due to better resource utilization.

115

simultaneously allocating different resources with a shared objective, leading to increased

resource utilization, as opposed to existing architectures that end up allocating different

resources (cache and bandwidth) with possibly conflicting objectives (throughput and

fairness respectively), due to the lack of system-wide online performance metrics, such

as the quality time. This higher resource utilization also leads to an improvement

in application performances by 19% on average, as shown in Figure 5.5(b). qTables

provide the required information that helps us allocate these resources simultaneously

and increase utilization.

Comparison Between Various Allocation Algorithms

We run different combinations of benchmarks with different mechanisms to see

the quantitative gains. Based on the classification provided earlier, we choose repre-

sentatives from the different categories to find the performance for different category

combinations. We run both four core (Figure 5.6a) and eight (Figure 5.6b) core exper-

iments. We compare the performance of our system against a baseline which has the

same number of cores, cache, bandwidth and prefetchers. Though the cache is equally

partitioned amongst the cores, the prefetcher is always ON and the memory controller

sends the requests to the off-chip pins in the ratio of the requests received.

For the first mechanism, we partition the cache using our performance estimation

but the bandwidth is not partitioned. We see on an average the performance drops by

2.66% and 0.01% for 4 and 8 cores respectively. In cases involving slope applications, we

see a decrease in performance as reconfiguration costs exceed miss-minimizing benefits

of cache allocation. When we add bandwidth partitioning to this, we see a significant

increase in performance with 4 core average going up by 52.78% and 8 core performance

going up by 70.97%. We see a further increase in performance to 65.17% and 81.09% for

4 and 8 cores on adding prefetcher throttling to the system. Finally, on adding variable

116

Workloads

m
grid_apsi_swim

_swim

vpr_apsi_swim
_swim

vpr_apsi_gzip_gzip

m
grid_m

grid_swim
_swim

vpr_vpr_swim
_swim

vpr_vpr_gzip_gzip

AVERAG
E

N
o

rm
a

liz
e

d
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

0

0.5

1

1.5

2

2.5

3
Equal

Sequential

Simultaneous(FullPrefetching)

Simultaneous

Simultaneous(VariableFrequency)

(a)

Workloads

m
grid_apsi_swim

_swim
(x2)

m
grid_m

grid_swim
_swim

(x2)

vpr_apsi_gzip_gzip(x2)

vpr_apsi_swim
_swim

(x2)

vpr_vpr_gzip_gzip(x2)

vpr_vpr_swim
_swim

(x2)

AVERAG
E

S
p

e
e

d
u

p

0

0.5

1

1.5

2

2.5

3
Equal

Sequential

Simultaneous(FullPrefetching)

Simultaneous

Simultaneous(VariableFrequency)

(b)

Figure 5.6. Performance improves when cache and bandwidth are allocated simul-
taneously. The performance drops by 2.66% and 0.01% on average for 4 and 8
cores respectively with miss-minimizing cache allocation compared to the baseline, i.e.
equal cache and bandwidth distribution. However, simultaneous cache and bandwidth
allocation increases performance by 52.78% and 70.97% for 4 and 8 cores respectively.
The performance further improves to 65.17% and 81.09% respectively with prefetcher
throttling and to 76.69% and 81.25% with variable cache partitioning.

117

cache switching frequency mechanism, which we explain later, we see a further increase

of 76.69% and 81.25% on 4 and 8 core average performances respectively.

5.5.2 Prefetcher Throttling

We ran an experiment with varying workload mixes, as described before, to test

the usefulness of prefetcher throttling over varying amounts of allocated bandwidth

(Figure 5.7). We use nine aggression levels (0-8) in TimeCube. Our experiments show

that at lower bandwidths, it is beneficial to turn off prefetching as bandwidth is precious

and should not be wasted on bad prefetches while at higher bandwidths, we could afford

to spend some bandwidth on inaccurate prefetches in lieu of the latency savings of

prefetch hits. Prefetcher throttling mechanism figures out the right point at which it

changes the prefetcher aggression level. This leads to a performance better than both with

and without prefetching in the regime, where the available bandwidth lies in between the

bandwidths required with prefetcher ON and OFF. Hence, prefetcher throttling provides

a near optimal performance at all bandwidths by approximately tracking the Pareto curve

for different throttling levels. We can get a smoother Pareto optimal curve and better

performance by using more throttling levels, since in this work we limited ourselves to 9

levels.

Better Throughput with Prefetcher Throttling We ran experiments to see if

the qualitative gains of prefetcher throttling shown above translate into quantitative gains.

We run experiments with varying benchmark compositions with and without prefetcher

throttling. When not throttled, all prefetches are sent to the memory. As we can see in

Figure 5.8(a), while simultaneous resource allocation increases throughput by 38.02%

on average compared to sequential allocation. However, with prefetcher throttling this

increase jumps to 50.11%. Similarly, while the geometric mean of performance gains

increase by 30.92% without prefetcher throttling, it increases to 45.85% with prefetcher

118

L
o

w
 B

a
n

d
w

id
th

 R
e
g

im
e

B
a
n
d

w
id

th
 p

e
r

a
p

p
 (

G
b

p
s
)

0.
37

5

1.
12

5

1.
87

5

2.
62

5

3.
37

5

Throughput per app

0

0
.2

0
.4

0
.6

0
.8

N
o
 T

h
ro

tt
lin

g

T
h
ro

tt
lin

g

T
ra

n
s
it

io
n

 R
e
g

im
e

B
it
s
 p

e
r

c
y
c
le

 p
e
r

c
o
re

 (
B

W
)

1.
12

51.
5

1.
87

52.
25

2.
62

5

Throughput per app

0

0
.2

0
.4

0
.6

0
.8

N
o
 P

re
fe

tc
h
in

g

N
o
 T

h
ro

tt
lin

g

T
h
ro

tt
lin

g

H
ig

h
 B

a
n

d
w

id
th

 R
e

g
im

e

B
a
n
d
w

id
th

 p
e
r

a
p
p
 (

G
b
p
s
)

1.
50

0

2.
62

5

3.
75

0

4.
87

5

6.
00

0

7.
12

5

Throughput per app

0

0
.2

0
.4

0
.6

0
.8

N
o
 P

re
fe

tc
h
in

g

T
h
ro

tt
le

d
 P

re
fe

tc
h
in

g

(a
)

(b
)

(c
)

Fi
gu

re
5.

7.
Pr

ef
et

ch
er

Th
ro

ttl
in

g
m

ax
im

al
ly

ut
ili

ze
s

th
e

av
ai

la
bl

e
ba

nd
w

id
th

by
in

te
lli

ge
nt

ly
sw

itc
hi

ng
be

tw
ee

n
fu

ll
pr

ef
et

ch
in

g,
no

pr
ef

et
ch

in
g,

as
w

el
la

s
in

be
tw

ee
n

ag
gr

es
si

on
le

ve
ls

.
W

he
n

pr
ov

id
ed

w
ith

su
ffi

ci
en

tb
an

dw
id

th
,p

re
fe

tc
h

th
ro

ttl
er

se
nd

s
al

lr
eq

ue
st

s
to

m
em

or
y(

c)
,h

ow
ev

er
fo

rl
ow

er
ba

nd
w

id
th

re
gi

m
es

,p
re

fe
tc

h
th

ro
ttl

er
sw

itc
he

d
of

fp
re

fe
tc

hi
ng

co
m

pl
et

el
y

to
av

oi
d

w
as

tin
g

ba
nd

w
id

th
on

in
co

rr
ec

tp
re

fe
tc

he
s

(a
).

Pr
ef

et
ch

er
th

ro
ttl

in
g

m
ec

ha
ni

sm
ch

an
ge

s
th

e
ag

gr
es

si
on

le
ve

ls
at

th
e

ri
gh

tp
oi

nt
be

tw
ee

n
th

es
e

tw
o

re
gi

m
es

(b
).

M
or

eo
ve

r,
in

be
tw

ee
n

th
os

e
tw

o
re

gi
m

es
on

ly
a

po
rti

on
of

th
e

pr
ef

et
ch

es
ar

e
se

nt
,w

hi
ch

le
ad

s
to

a
be

tte
rp

er
fo

rm
an

ce
th

an
bo

th
no

pr
ef

et
ch

in
g

an
d

fu
ll

pr
ef

et
ch

in
g.

119

Compositions

stream
100%

 slope0%

stream
75%

 slope0%

stream
75%

 slope25%

stream
50%

 slope0%

stream
50%

 slope25%

stream
50%

 slope50%

stream
25%

 slope0%

stream
25%

 slope25%

stream
25%

 slope50%

stream
25%

 slope75%

stream
0%

 slope0%

stream
0%

 slope25%

stream
0%

 slope50%

stream
0%

 slope75%

stream
0%

 slope100%

AVERAG
E

T
h

ro
u

g
h

p
u

t
G

a
in

 o
v
e

r

S
e

q
u

e
n

ti
a

l
A

llo
c
a

ti
o

n

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1
FullPrefetcher

ThrottledPrefetcher

(a)

Compositions

stream
100%

 slope0%

stream
75%

 slope0%

stream
75%

 slope25%

stream
50%

 slope0%

stream
50%

 slope25%

stream
50%

 slope50%

stream
25%

 slope0%

stream
25%

 slope25%

stream
25%

 slope50%

stream
25%

 slope75%

stream
0%

 slope0%

stream
0%

 slope25%

stream
0%

 slope50%

stream
0%

 slope75%

stream
0%

 slope100%

AVERAG
E

G
e

o
m

e
tr

ic
 S

p
e

e
d

u
p

 G
a

in
 o

v
e

r

S
e

q
u

e
n

ti
a

l
A

llo
c
a

ti
o

n

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

FullPrefetcher

ThrottledPrefetcher

(b)

Figure 5.8. Prefetcher throttling further improves performance gains achieved by
simultaneous resource allocation. When partitioning cache and bandwidth simultane-
ously, we get a throughput improvement of 38.02% on average compared to sequential
resource management, but when using prefetcher throttling the performs improvement
jumps to 50.11% (a). The performance gains are similar when using other metrics, i.e.
geometric mean of speedups increase by 30.92% without prefetcher throttling and 45.85%
with prefetcher throttling.

120

throttling, as shown in Figure 5.8(b). Thus, dynamic microarchitectural tuning, such

as prefetcher throttling, can further increase resource utilization and performance when

using dynamically partitioned architectures, such as TimeCube.

5.5.3 Varying Workload Composition

In this section we try to understand the results for our system, mainly the reasons

for the gains in earnings of IaaS providers and fairness for IaaS customers. We run

different application mixes on our 32-core chip, but this time we vary the application

type compositions by 12.5%, resulting in 45 workload mixes. Different compositions of

workload can lead to different overall resource requirements, leading to variations in the

improvements in system earning rate and fairness over these mixes. The IaaS application

scheduler should take these variations into account to co-schedule symbiotic applications

to maximize system earnings and fairness.

In order to evaluate the impact on performance with varying workload composi-

tion, we conducted experiments in which we ran 32 applications on a 32 core TimeCube.

We find the application execution times for sequential as well as simultaneous allocation.

In order to analyze the effects of workload composition we draw two iso-contours, one

connecting compositions with equal earning gains and the other connecting compositions

with equal slowest application slowdowns, as shown in Figure 5.9.

The experiment results show that the highest system throughput is obtained when

all cliff applications are ran for both sequential and simultaneous resource allocation,

because both algorithms dynamically allocate the last-level cache partitions to fit the

working set sizes of a subset of the cliff applications, resulting in low bandwidth require-

ment and high IPC for these cliff applications, and the low bandwidth pressure leads to

similar performance between the two algorithms. As a result the relative speedup for si-

multaneous allocation is lowest at this configuration. On the other hand, the performance

121

S
tr

ea
m

s

Cliffs

0%
25

%
50

%
75

%
10

0%
0%25
%

50
%

75
%

10
0%

11.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

E
ar

ni
ng

s
G

ai
n

A
ll

C
lif

fs

A
ll

S
lo

pe
s

A
ll

S
tr

ea
m

s
S

tr
ea

m
s

Cliffs

0%
25

%
50

%
75

%
10

0%
0%25
%

50
%

75
%

10
0%

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

A
ll

C
lif

fs

A
ll

S
lo

pe
s

A
ll

S
tr

ea
m

s

W
ei

gh
te

d
W

or
st

ca
se

 P
er

fo
rm

an
ce

(a
)

(b
)

Fi
gu

re
5.

9.
Va

ri
at

io
n

in
Ia

aS
ea

rn
in

g
ga

in
s

an
d

fa
ir

ne
ss

w
ith

ch
an

gi
ng

w
or

kl
oa

d
co

m
po

si
tio

n.
T

he
ov

er
al

l
sy

st
em

ea
rn

in
g

ga
in

s
re

du
ce

s
(a

)a
nd

th
e

fa
irn

es
s

of
th

e
sy

st
em

,a
s

m
ea

su
re

d
in

te
rm

s
of

m
ax

im
um

sl
ow

do
w

n,
de

cr
ea

se
s

(b
)a

s
cl

iff
s

ar
e

re
pl

ac
ed

by
st

re
am

s.
T

hi
s

ca
n

be
us

ed
by

Ia
aS

sc
he

du
le

rt
o

de
ci

de
w

hi
ch

ap
pl

ic
at

io
ns

to
co

-l
oc

at
e

on
a

ch
ip

.

122

is very low when running only streams. This is because streams create a high bandwidth

pressure, while providing a lower IPC. Simultaneous cache and bandwidth partitioning

can better handle bandwidth pressures, and provide better performance (1.2×).

In case when only slopes are run, both the algorithms dynamically adjust the

cache partitions for the applications. However, they still can’t fit the entire working set

and there is some bandwidth pressure in the system. Therefore, simultaneous allocation

performs better than sequential allocation for this case. The performance decreases as

cliffs are gradually replaced by slopes, due to lower IPC provided by slopes compared to

cliffs. However, the decline in performance is faster for sequential allocation, due to the

gradually increasing bandwidth pressure.

In another case, when cliffs are replaced by streams, the performance drops

as cliffs provide higher IPC than streams. But the stream applications also increase

the bandwidth pressure. Cliffs are highly sensitive to the memory latencies as a lot of

operations depend on every cache miss. So, as the bandwidth pressure increases the

miss latencies increase and thus the cliffs start performing poorly. However, this latency

increase is much greater for cache only partitioning and thus the cache and bandwidth

partitioning performs much better (2.1×) in the case when there is an equal number of

cliffs and streams.

123

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

7

7.5

8

8.5

9

9.5

10

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

11

11.5

12

12.5

13

13.5

14

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

6

7

8

9

10

11

12

13

14

15

16

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

10

11

12

13

14

15

16

17

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

4

6

8

10

12

14

16

18

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

9

10

11

12

13

14

15

16

17

18

19

(a) (b)
Figure 5.10. IPC contours for varying compositions. IPC contours for simultaneous
and sequential allocation with different compositions.

124

5.5.4 System Scaling

Number of Cores
8 16 24 32 40 48 56

T
o

ta
l
IP

C

0

0.5

1

1.5

2

2.5

3

3.5

4

Equal

Sequential

Simultaneous

Figure 5.11. With TimeCube, performance improvement increases as we increase
the system size. As we increase the number of cores in the system and accordingly
the cache, bandwidth and applications, we see that the baseline system gives a linear
increase in performance. With smart cache partitioning, we see a further increase in the
performance and even more for simultaneous partitioning. However, we see an increase
in the rate of performance improvement with smart partitioning. This is because with
more resources, the partitioning algorithm has a higher number of possible configurations
to choose from and performs even better.

The mechanism for cache, bandwidth and prefetcher reconfiguration in TimeCube

is highly scalable. In fact, as the system size grows, there is an increase in the available

configurations, which a provides a greater degree of freedom to the mechanism which

translates to even better resource utilization and hence better system performance. We

ran an experiment in which we gradually increase the system size from 8 core system to

56 core system in steps of eight. At each step, we also add the same application-set with

which we started to the mix of applications running simultaneously.

For baseline, we see a linear improvement in system performance, since the

resources given to each application is the same, as shown in Figure 5.11. However, we

125

see a super-linear performance increase when using sequential allocation. But when we

allocate resources simultaneously, we see an even greater performance improvement.

Moreover, the rate of performance increase also increases gradually. Thus, we get a higher

performance gain with bigger system size. This trend continues on adding prefetcher

throttling and variable cache switching frequency.

5.5.5 Load characteristics

Elasticity, or the ability to quickly change the deployment size of a customer

workload, is highly desirable in IaaS clouds as it allows the customers to quickly scale

their services up and down, and this leads to rapid variations in the system load. To

understand the effect of changing load on TimeCube performance, we run an experiment

with 8, 16, 24 and 32 applications running concurrently on a chip, using two applications

per type for diversity.

Our evaluation shows that earning rate of system increases faster for simultaneous

partitioning than sequential partitioning, as the number of applications are increased, as

shown in Figure 5.12(a) In an IaaS system, there is a minimum chip running cost due

to factors such as cooling, rack space and storage, TimeCube provides more flexibility

for the IaaS cloud scheduler, as a smaller number of applications are required to meet

this minimum cost. With more applications, the earnings per application drop as shown

in Figure 5.12(b) due to increased pressure on resources leading to higher application

slowdowns. However, this drop is smaller when using simultaneous resource partitioning.

Thus, TimeCube can run more applications per chip, while still earning more than the

minimum running cost for an application, due to factors such as memory space. The

performance of the application with worst slowdown gets worse with increasing number

of applications, as shown in Figure 5.12(c). However, simultaneous resource partitioning

provides better worst case performance. Thus, TimeCube can run a higher number of

126

N
u
m

b
e
r

o
f
A

p
p
lic

a
ti
o
n
s

8
1

6
2

4
3

2

Earning Rate

468

1
0

1
2

1
4

1
6

1
8

S
im

u
lt
a

n
e

o
u

s

S
e

q
u

e
n

ti
a

l

m
in

 c
h
ip

ru
n
n
in

g
 c

o
s
t

N
u
m

b
e
r

o
f
A

p
p
lic

a
ti
o
n
s

8
1

6
2

4
3

2

Earning Rate per Application

0
.2

0
.4

0
.6

0
.81

S
im

u
lt
a

n
e

o
u

s

S
e

q
u

e
n

ti
a

l

m
in

 a
p
p

ru
n
n
in

g
 c

o
s
t

N
u
m

b
e
r

o
f
A

p
p
lic

a
ti
o
n
s

8
1
6

2
4

3
2

Weighted performance
 of slowest application

05

1
0

1
5

2
0

2
5

3
0

p
T

a
b
le

s

B
a
s
e
lin

e

(a
)

(b
)

(c
)

Fi
gu

re
5.

12
.

Ti
m

eC
ub

e
gi

ve
s

in
cr

ea
si

ng
ly

be
tte

r
pe

rf
or

m
an

ce
w

ith
in

cr
ea

si
ng

nu
m

be
r

of
ap

pl
ic

at
io

ns
pe

r
ch

ip
.

A
s

th
e

nu
m

be
r

of
ap

pl
ic

at
io

ns
in

cr
ea

se
on

a
ch

ip
,

th
e

to
ta

l
ea

rn
in

gs
in

cr
ea

se
(a

)
ev

en
as

pe
r

ap
pl

ic
at

io
n

pe
rf

or
m

an
ce

re
du

ce
s

(b
).

Ti
m

eC
ub

e
pr

ov
id

es
an

in
cr

ea
si

ng
ly

be
tte

rp
er

fo
rm

an
ce

co
m

pa
re

d
to

ba
se

lin
e.

T
he

re
is

a
m

in
im

um
ru

nn
in

g
co

st
fo

ra
ch

ip
,w

hi
ch

m
ig

ht
pu

ta
lo

w
er

bo
un

d
on

ap
pl

ic
at

io
ns

on
a

ch
ip

.T
hi

s
bo

un
d

is
be

tte
rf

or
si

m
ul

ta
ne

ou
s

re
so

ur
ce

m
an

ag
em

en
t(

a)
,w

hi
ch

pr
ov

id
es

a
gr

ea
te

rs
ch

ed
ul

in
g

fle
xi

bi
lit

y
in

th
e

cl
ou

d.
M

or
eo

ve
r,

th
er

e
is

a
m

in
im

um
co

st
of

ru
nn

in
g

an
ap

pl
ic

at
io

n
on

th
e

cl
ou

d
al

on
g

w
ith

an
ex

pe
ct

ed
Q

oS
.T

hi
s

pr
ov

id
es

an
up

pe
r-

bo
un

d
on

th
e

nu
m

be
ro

fa
pp

lic
at

io
ns

th
at

ca
n

be
ru

n
on

a
ch

ip
.A

ga
in

,s
im

ul
ta

ne
ou

s
re

so
ur

ce
m

an
ag

em
en

tp
ro

vi
de

s
a

be
tte

ru
pp

er
bo

un
d

(b
).

Th
is

w
ill

re
du

ce
th

e
ov

er
al

lr
eq

ui
re

d
cl

ou
d

si
ze

.F
in

al
ly

,T
im

eC
ub

e
gi

ve
s

be
tte

rf
ai

rn
es

s
du

e
to

lo
w

er
sl

ow
do

w
ns

in
th

e
w

or
st

pe
rf

or
m

in
g

ap
pl

ic
at

io
n

(c
).

127

applications, while still providing the quality of service guaranteed by IaaS vendor in the

SLAs.

Compositions

stream
100%

 slope0%

stream
75%

 slope0%

stream
75%

 slope25%

stream
50%

 slope0%

stream
50%

 slope25%

stream
50%

 slope50%

stream
25%

 slope0%

stream
25%

 slope25%

stream
25%

 slope50%

stream
25%

 slope75%

stream
0%

 slope0%

stream
0%

 slope25%

stream
0%

 slope50%

stream
0%

 slope75%

stream
0%

 slope100%

T
o

ta
l
T

h
ro

u
g

h
p

u
t

N
o

rm
a

liz
e

d
 t

o
S

e
q

u
e

n
ti
a

l
A

llo
c
a

ti
o

n

0

0.4

0.8

1.2

1.6

2

2.4

8

16

24

32

Figure 5.13. Simultaneous Resource Allocation performs better under increasing
system load. For various application compositions, we see that simultaneous resource
allocation performs better than sequential allocation and the gains increase as the system
load increases, since the resource management becomes increasingly crucial.

We ran experiments to see if different application compositions have different

performance impacts for changing system loads. We start with 15 possible compositions

and ran 8, 16, 24, and 32 applications by repeatedly adding the same set of applications

to the workload. As shown in Figure 5.13, we observed that the performance benefits

of simultaneous allocation increases with the increase in system load for almost all the

compositions.

In order to understand the impact of system load on varying system compositions,

we draw iso-contours for system throughput with sequential as well as simultaneous

allocation, as well as the performance improvements, as shown in Figure 5.14. We

observe that while the throughput increases with increasing system load, the performance

gains with simultaneous allocation also improve with increasing system load, except

when using slopes in the system. In particular, compositions with mostly streams and

cliffs have a higher performance gains due to higher resource pressure, even at lower

128

Lo
ad

configs

8
16

24
32

sl
op

es

cl
iff

s

st
re

am
s

sl
op

es

34567891011121314

Lo
ad

Configs

8
16

24
32

sl
op

es

cl
iff

s

st
re

am
s

sl
op

es

46810121416

Lo
ad

Configs

8
16

24
32

sl
op

es

cl
iff

s

st
re

am
s

sl
op

es

00.
2

0.
4

0.
6

0.
8

11.
2

(a
)

(b
)

(c
)

Fi
gu

re
5.

14
.

IP
C

an
d

sp
ee

du
p

w
ra

p-
co

nt
ou

rs
fo

r
ch

an
gi

ng
lo

ad
.

W
ra

p-
co

nt
ou

rs
de

pi
ct

in
g

IP
C

ch
an

ge
s

fo
r

se
qu

en
tia

la
nd

si
m

ul
ta

ne
ou

s
re

so
ur

ce
al

lo
ca

tio
ns

,a
lo

ng
w

ith
sp

ee
du

ps
,a

nd
th

e
ch

an
ge

s
in

th
es

e
m

et
ri

cs
w

ith
in

cr
ea

si
ng

ap
pl

ic
at

io
n

lo
ad

on
th

e
pr

oc
es

so
rs

.

129

system loads. We present more detailed iso-contours in Figure 5.15.

130

Sequential

Throughput

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

2.
8

33.
2

3.
4

3.
6

3.
8

44.
2

4.
4

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

33.
5

44.
5

55.
5

66.
5

77.
5

8

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

3456789101112

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

34567891011121314

Simultaneous

Throughput

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

2.
8

33.
2

3.
4

3.
6

3.
8

44.
2

4.
4

4.
6

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

44.
5

55.
5

66.
5

77.
5

8

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

56789101112

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

5678910111213141516

Throughput

Improvement

S
tr

ea
m

s

cliffs

0
1

2
3

4
01234

00.
05

0.
1

0.
15

0.
2

0.
25

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

00.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
35

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

00.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

11.
1

8
A

pp
lic

at
io

ns
16

A
pp

lic
at

io
ns

24
A

pp
lic

at
io

ns
32

A
pp

lic
at

io
ns

Fi
gu

re
5.

15
.I

PC
an

d
sp

ee
du

p
co

nt
ou

rs
fo

rc
ha

ng
in

g
lo

ad
.

C
on

to
ur

s
fo

ri
pc

fo
rs

eq
ue

nt
ia

la
nd

si
m

ul
ta

ne
ou

s
al

lo
ca

tio
n,

as
w

el
la

s
th

e
re

su
lti

ng
sp

ee
du

ps
fo

rc
ha

ng
in

g
ap

pl
ic

at
io

n
lo

ad
.

131

5.5.6 Varying Workload Diversity

Total earnings Slowest application

 performance

Im
p

ro
v
e

m
e

n
t

o
v
e

r
B

a
s
e

lin
e

 (
%

)

0

10

20

30

40

50

60

70

1

2

3

4

AVERAGE

Diversity

Figure 5.16. The performance improvements of TimeCube are impervious to chang-
ing diversity of applications within types. On changing the numbers of diverse
applications representing an application type, we see that the earning rate gains are not
diminished. The fairness, weighted performance of application with maximum slowdown
is also better for TimeCube.

Varying Workload Diversity Resource partitioning distributes the cache and

bandwidth between applications based on their varying requirements. In our experimental

evaluation we use application classification into streams, slopes, and cliffs, and even if

two applications belong to the same class, they might have slightly different resource

requirement, which can have performance impact on a resource limited system like

manycore processors. Therefore, an important variable in our experiments is the number

of unique applications within a class, which we call diversity of the workload. To

study the impact of varying diversity on TimeCube, we run an experiment with varying

diversity (1 to 4) of applications within each type. Our experiment results show that the

132

Compositions

stream
100%

 slope0%

stream
75%

 slope0%

stream
75%

 slope25%

stream
50%

 slope0%

stream
50%

 slope25%

stream
50%

 slope50%

stream
25%

 slope0%

stream
25%

 slope25%

stream
25%

 slope50%

stream
25%

 slope75%

stream
0%

 slope0%

stream
0%

 slope25%

stream
0%

 slope50%

stream
0%

 slope75%

stream
0%

 slope100%

S
y
s
te

m
 T

h
ro

u
g
h
p
u
t
N

o
rm

a
liz

e
d
 t
o

S
e
q
u
e
n
ti
a
l
R

e
s
o
u
rc

e
 A

llo
c
a
ti
o
n

0

0.4

0.8

1.2

1.6

2

2.4

2.8

1

2

3

4

Figure 5.17. System throughput improvement remains high with changing appli-
cation diversity. We ran experiments with different application compositions and
changing application diversities (1-4). We found that simultaneous resource allocation
consistently gives higher throughput compared to sequential resource allocation.

improvements in IaaS earning rates remains unaffected by the diversity in the workload

mix (Figure 5.16). We also measured the system fairness, for varying diversity using

the performance of application with worst case slowdown and TimeCube gives a better

performance compared to baseline, and thus the customers can expect faster turn-around

times.

133

Sequential

Throughput

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

22.
5

33.
5

44.
5

55.
5

6

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

34567891011121314

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

46810121416

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

6810121416182022
Simultaneous

Throughput

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

01234567

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

0246810121416

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

67891011121314151617

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

0246810121416182022

Throughput

Improvement

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

0.
2

0.
4

0.
6

0.
8

11.
2

1.
4

1.
6

1.
8

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

11.
1

1.
2

S
tr

ea
m

s
Cliffs

0
1

2
3

4
01234

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

S
tr

ea
m

s

Cliffs

0
1

2
3

4
01234

00.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

D
iv

er
si

ty
1

D
iv

er
si

ty
2

D
iv

er
si

ty
3

D
iv

er
si

ty
4

Fi
gu

re
5.

18
.

Th
ro

ug
hp

ut
an

d
sp

ee
du

p
co

nt
ou

rs
fo

r
ch

an
gi

ng
ap

pl
ic

at
io

n
di

ve
rs

ity
.

C
on

to
ur

s
fo

r
ab

so
lu

te
sy

st
em

th
ro

ug
hp

ut
w

he
n

us
in

g
se

qu
en

tia
la

s
w

el
la

s
si

m
ul

ta
ne

ou
s

al
lo

ca
tio

n,
an

d
th

e
th

ro
ug

hp
ut

ga
in

s
fo

rs
im

ul
ta

ne
ou

s
al

lo
ca

tio
n

w
hi

le
ch

an
gi

ng
th

e
di

ve
rs

ity
in

ap
pl

ic
at

io
ns

us
ed

pe
r

ty
pe

sh
ow

th
at

Ti
m

eC
ub

e’
s

re
so

ur
ce

al
lo

ca
tio

n
pr

ov
id

es
hi

gh
er

th
ro

ug
hp

ut
w

he
n

us
in

g
ap

pl
ic

at
io

n
w

ith
va

ry
in

g
di

ve
rs

iti
es

.

134

5.5.7 Variable Cache Switching Frequency

Interval Size

100000

200000

500000

1000000

2000000

5000000

10000000

S
y
s
te

m
 T

h
ro

u
g
h
p
u
t

0.5

0.75

1

1.25

1.5

1.75

2
00000

00001

00011

00111

01111

10000

11000

11100

11110

11111

Figure 5.19. Different mappings between cache size and reconfiguration interval have
varying benefits. On changing cache configuration, the reconfiguration penalty is
higher for bigger cache sizes. To counteract that, we should reconfigure the larger cache
sizes at a slower frequency. Thus, we change the cache reconfiguration interval based
on the cache size. However, their can be different monotonic mappings between cache
sizes and interval lengths. As we increase the interval size we see an improvement in
performance for all mappings. This is because the switching costs exceed the fine grained
tracking benefits. However, for smaller intervals we see that the variable cache switching
frequency gives better performance due to less switching.

In order to amortize the cost of changing cache size, we reconfigure the larger

cache sizes after longer intervals. In order to simplify the system, we vary the interval

sizes by powers of two. However, this variation can be done in different steps, i.e. we

can change the interval length at every cache size change or we can skip some cache

size changes and keep the interval length unchanged between those two cache sizes. We

encode this using a binary string in which 1 means the interval length changes and 0

means it remains unchanged. Thus, 11111 means we change the interval length with

every cache size change, whereas 00000 means the interval length remains constant

135

always. We fix the interval length for the smallest cache size, i.e. 1 cache block and then

follow the Frequency Change Encoding (FCE), to determine the interval length for larger

cache sizes.

We ran an experiment by running 4 applications (apsi, swim, vpr, vpr) on a 4

core system (Fig 5.19). We vary both the base interval length as well as the FCE. The

performance is lower at lower base interval lengths, since the cache switching happens

at higher frequency and their costs outweigh the benefits of finer grained partitioning.

We notice that for smaller base interval lengths, variable cache switching frequency is

beneficial, as it reduces the switching frequency for larger cache sizes. As we increase

the base interval length, we see that the performance improves since the switching

penalty reduces. However, for larger base interval lengths, around 1 million cycles, the

performance remains the same, since the switching happens rarely. As a result, the

constant switching frequency performs as well as variable switching frequency. Thus, for

the remaining results, we choose 1 million cycles as base interval length.

5.5.8 Cache and Bandwidth Sensitivity Study

An increasing cache size leads to a better application performance. Similarly, an

increasing amount of total shared cache in the system should lead to an improvement in

overall system performance. We ran an experiment with four applications (apsi, swim,

mgrid, mgrid) running simultaneously on a 4 core system (Fig 5.20a). However, we vary

the total amount of shared cache in the system.

For the baseline system (equal resource allocation), we see a very small increase

in system performance with increasing cache size. With sequential allocation, we see

a small improvement but as the total cache area increases, the cache size switching

penalties increase and eventually the performance drops. When allocating cache and

bandwidth simultaneously, we get a much better performance compared to baseline and

136

Total Cache Blocks

4 8 12 16 20 24 28 32 36 40 44 48 52

T
o
ta

l
T

h
ro

u
g
h
p
u
t

0.8

1

1.2

1.4

1.6

Equal

Sequential

Simultaneous

Simultaneous(VariableFrequency)

(a)

Pins Per Core

1 1.5 2 2.5 3 3.5 4 4.5

T
o
ta

l
T

h
ro

u
g
h
p
u
t

0

0.5

1

1.5

2

2.5

3

Equal

Sequential

Simultaneous

Simultaneous(ThrottledPrefetcher)

Simultaneous(VariableFrequency)

(b)

Figure 5.20. Simultaneous cache and bandwidth allocation provides higher resource
utilization for a range of total cache and memory bandwidths. With a large enough
cache size, the equal cache allocation performs as well as Sequential allocation (a).
However, the simultaneous cache and bandwidth allocation provides a much better
performance. On reducing the available cache size, we see a graceful degradation in
performance with simultaneous allocation, unlike equal allocation, which shows a steep
drop in performance. Even at smaller cache size, simultaneous allocation performs
better. As we look at different bandwidth regimes (b), we see that at low bandwidths,
simultaneous allocation performs significantly better. As we increase the bandwidth, the
performance gradually increases for all algorithms. Eventually, at high enough bandwidth
regimes, we see that simultaneous allocation and prefetcher throttling provide no gains
on top of sequential allocation. Though sequential allocation has some performance
benefit over equal allocation due to the presence of some cliff applications.

137

sequential allocation. Moreover, as the cache size increases, this benefit increases as

well and at no point do we see a drop in performance due to cache switching penalties.

On adding prefetcher throttling to the system, we see an even better performance by the

system.

In a bandwidth limited system, increasing bandwidth will lead to a better per-

formance. However, it is important to utilize the bandwidth most judiciously when it is

scarce. We run the same experiment as we did for cache sensitivity, but this time we vary

the overall system bandwidth (Fig 5.20b). At lower bandwidths, simultaneous cache and

bandwidth allocation performs much better than baseline and the sequential allocation.

As we increase the bandwidth, we see a gradual and steady increase in performance

for all the algorithms. At high enough bandwidths, the system is no longer bandwidth

limited and we see no performance improvement with bandwidth increase. But even in

those regimes, the techniques using demand-based resource allocation perform better

than the baseline by 5.4%.

We did a design space exploration to determine the impact of total last-level cache

and memory bandwidth in a 32-core TimeCube instance. We ran different application

compositions with varying total last-level cache and memory bandwidth, and drew iso-

contours to connect the configurations with the same total IPC, or throughput, as shown

in Figure 5.21. These iso-contours can be highly useful for architects trying to determine

the amount of cache and DRAM pins required in a manycore chip when targeting a

specific workload, such as in embedded systems or datacenters.

5.5.9 Area and Energy Distribution in TimeCube

I now analyze the energy and area distribution for TimeCube. For an example 32

application mix, we observe that the portion of total energy consumed in L2 access is

low (0.50%), as shown in Figure 5.22. Most of the energy is consumed in core execution

138

IP
C

 p
lo

ts
 f

o
r

c
a

c
h

e
-b

w
-p

re
f

p
a

rt
it
io

n
in

g
 f

o
r

0
.0

.8

1
0

 9
.5

 9

 8
.5

 8

 7
.5

 7

 6
.5

 6

 2
0

 4
0

 6
0

 8
0

 1
0

0
 1

2
0

 1
4

0
 1

6
0

C
a

c
h

e

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

BW

IP
C

 p
lo

ts
 f

o
r

c
a

c
h

e
-b

w
-p

re
f

p
a

rt
it
io

n
in

g
 f

o
r

0
.4

.4

1
4

1
3

.5

1
3

1
2

.5

1
2

1
1

.5

1
1

1
0

.5

1
0

 9
.5

 2
0

 4
0

 6
0

 8
0

 1
0

0
 1

2
0

 1
4

0
 1

6
0

C
a

c
h

e

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

BW

0%
st

re
am

s
0%

sl
op

es
0%

st
re

am
s

50
%

sl
op

es

IP
C

 p
lo

ts
 f

o
r

c
a

c
h

e
-b

w
-p

re
f

p
a

rt
it
io

n
in

g
 f

o
r

2
.4

.2

1
6

1
5

.5

1
5

1
4

.5

1
4

1
3

.5

1
3

1
2

.5

1
2

1
1

.5

1
1

1
0

.5

1
0

 9
.5

 9

 8
.5

 8

 7
.5

 7

 6
.5

 6

 5
.5

 2
0

 4
0

 6
0

 8
0

 1
0

0
 1

2
0

 1
4

0
 1

6
0

C
a

c
h

e

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

BW

IP
C

 p
lo

ts
 f

o
r

c
a

c
h

e
-b

w
-p

re
f

p
a

rt
it
io

n
in

g
 f

o
r

4
.0

.4

1
5

1
4

.5

1
4

1
3

.5

1
3

1
2

.5

1
2

1
1

.5

1
1

1
0

.5

1
0

 9
.5

 9

 8
.5

 8

 7
.5

 7

 6
.5

 6

 5
.5

 5

 4
.5

 4

 3
.5

 2
0

 4
0

 6
0

 8
0

 1
0

0
 1

2
0

 1
4

0
 1

6
0

C
a

c
h

e

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

BW
25

%
st

re
am

s
50

%
sl

op
es

50
%

st
re

am
s

0%
sl

op
es

Fi
gu

re
5.

21
.

Sy
st

em
IP

C
is

o-
co

nt
ou

rs
sh

ow
in

g
th

e
ca

ch
e

an
d

ba
nd

w
id

th
se

ns
iti

vi
ty

of
Ti

m
eC

ub
e.

O
n

a
32

co
re

Ti
m

eC
ub

e,
w

e
ch

an
ge

th
e

to
ta

lc
ac

he
an

d
m

em
or

y
ba

nd
w

id
th

av
ai

la
bl

e
in

th
e

sy
st

em
,a

nd
cr

ea
te

is
o-

co
nt

ou
rs

co
nn

ec
tin

g
th

e
ha

rd
w

ar
e

co
nfi

gu
ra

tio
ns

w
ith

sa
m

e
IP

C
.H

ar
dw

ar
e

m
an

uf
ac

tu
re

s
ca

n
ut

ili
ze

th
es

e
is

o-
co

nt
ou

rs
to

de
te

rm
in

e
th

e
ca

ch
e

an
d

ba
nd

w
id

th
re

qu
ir

em
en

ts
fo

rS
PE

C
-l

ik
e

w
or

kl
oa

ds
.

139

Pipeline (34.51%)

L2 Evict (26.84%)

L1 Evict (1.06%)

Prefetcher (12.52%)

qTables (0.01%)

L1 Access (12.96%)

L2 Access (0.50%)
Memory Access (11.16%) Others (0.45%)

Figure 5.22. Overall energy distribution in TimeCube. Energy consumed by Quality
Tables (0.01%) is very small. The energy consumed by shadow structures is small
(0.23%), and the reconfiguration (0.06%) costs are also low.

Core (18.49%)
Networks (4.33%)
qTables Logic (1.01%)
L2 Tag (6.24%)

Prefetcher (0.72%)

L2 Duplicate Tag (6.24%)

Memory Controller (0.27%)

L2 Data (53.14%)

SPOT Calc (1.93%)
Others (2.89%)

Shadow Cache (1.27%)
Shadow Prefetcher (3.47%)

Figure 5.23. Overall area distribution in TimeCube. The area consumed by shadow-
tags and Quality Tables is small (1.27% and 1.01%, respectively). Area consumed
by resource allocation is 1.93%. For a 32 core TimeCube, the mechanisms added for
Dynamic Execution Isolation consume less than 7% of total chip area. Overall the
TimeCube augmentations consume less than 14% of the chip area.

(47.47% including L1 access) and main memory operations (45.36% for access and

writeback). Energy consumed for supporting Quality Time is low, i.e. 0.01%, while

the energy consumed in using Quality Time to allocate resources was 0.23%. The

microarchitectural mechanisms required to estimate Quality Time consume less than

6% chip area. Shadow-Tags consumes 1.27%, Shadow Prefetcher consumes 3.47%, and

140

Quality Tables 1.11%, as shown in Figure 5.23. Area consumed by hardware resource

allocation (1.93%) is small as well. Overall, the mechanisms for measuring and using

Quality Time in TimeCube are energy and area efficient.

5.6 Related Work

Simultaneous Shared Resource Management. TimeCube allocates multiple re-

sources simultaneously, and the algorithm can be used with existing resource partitioning

mechanisms. In another simultaneous allocation technique proposed by Bitirgen et

al. [BIM08], the cache and bandwidth are simultaneously allocated using machine

learning; however; it requires a training phase and provides no transparency regarding

slowdowns, which makes decisions such as metering the customers in a IaaS computing

environment difficult or erroneous. Srikantaiah et al. [SK10] also propose simultaneous

resource partitioning; however, they assume a simple exponentially decaying miss rate

with increasing cache size, which is an oversimplification as seen in Figure 3.4. Time-

Cube allocation scheme is online as opposed to offline profiling based allocation schemes

proposed by Liu et al. [Chu04] and Suh et al. [SDR02a]. Federova et al. [FSSN05]

examined OS-level management to optimize CMT (multi-thread CMPs) performance;

however, TimeCube is able to provide a finer grained control over application execution

rates.

Sequential Resource Allocation. Previous work has also proposed individual

resource partitioning such as cache partitioning based on marginal utilities by Qureshi

et al. [MQ06]. Guo et al. [GSZI07] propose cache providing quality of service by

controlling cache partitions though strict, elastic, and opportunistic allocation. Hsu et

al. [HRIM06] evaluates various cache partitioning policies such as providing fairness

and maximizing throughput. Independent bandwidth partitioning has been previously

141

proposed by Rafique et al. [RLT07] which aims to provide fair bandwidth distribution

between application by adaptively changing the quota of an application based on the

observed DRAM latency. Liu et al. [LJS10] propose an algorithm to partition bandwidth

between applications with the aim of increasing weighted speedup of system. These

mechanisms can be used in serial resource distribution, and as I demonstrated, they

perform poorly compared to simultaneous partitioning in a bandwidth limited system.

Liu et al. [LSK04], Iyer et al. [IZG+07], Moreto et al. [MCRV08], Stone et

al. [STW92a] and Chiou et al. [CJDR00] examined allocation of cache ways in a way-

based partitioned cache. Stone et al. [STW92b] studied models for optimal allocation

of cache across multiple streams. Suh et al. [SRD04] proposes a way-based cache

partitioning scheme, which gives cache based on marginal gains. Zhou et al. [Pin04]

examine page allocation based on miss ratio curves. Chandra et al [CGKS] examined

inter-thread cache contention to prevent thrashing. Kim et al [SK04] examine multiple

online metrics for dynamic cache allocation. Iyer et al. [Iye03] employed classification

methods and a variety of allocation mechanisms to assign thread priorities. Suh et

al. [SDR02a] proposed an offline-profiling based cache partitioning scheme.

Prefetcher Throttling. Prefetchers consume memory bandwidth and reduce memory

latency. A number of previous projects discuss ways to control prefetching for through-

put and performance reasons, such as Ebrahimi et al. [EMP09] [EMLP09], Srinath et

al. [SMKP07], and Lee et al. [LMNP08]. TimeCube’s proposed dynamic prefetcher throt-

tling mechanism can be used in conjunction with mechanisms that improve prefetcher

accuracy or timeliness such as Ebrahimi et al. [ELMP11] and Lee et al. [LMNP08]. The

motivation for prefetcher throttling is to reduce bandwidth pressure which cannot be

significantly reduced by existing mechanisms, such as changing prefetching distance as

in FDP [SMKP07], which also can be used in conjunction with the prefetcher throttling

142

mechanism. Ebrahimi et al. [ELMP10] examines how fairness can be enhanced by

throttling programs as opposed to trying to find more optimal allocations of resources

between threads.

Symbiotic Job Scheduling. When sharing scarce resources between multiple appli-

cations, co-scheduling can reduce pressure on the resources and increase performance.

Amongst previous works, Cazorla et al. [CKS+05], Jiang et al. [JSCT08], El-Moursy et

al. [EMGAD06] and Snavely et al. [ST00] discuss mechanisms for application schedul-

ing.

5.7 Conclusion

Manycore processors provide an increasing number of compute elements per

processor, as well as increasing number of resources to enable faster computation on

these elements, such as larger on-chip caches, and memory bandwidth etc. TimeCube

proposes simultaneous allocation of these resources to application based on the progress

made by applications, which provides significantly better performance compared to

architectures that allocate resources either equally or disjointly. Thus, progress-based

resource allocation can efficiently manage a large quantity of microarchitectural resources

while satisfying system objectives such as high throughput, fairness, or Quality of Service

guarantees.

Acknowledgment

Parts of these chapters are reprinted from the following papers:

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “DR-SNUCA: An

Energy-Scalable Dynamically Partitioned Cache”, International Conference on

Computer Design, ICCD 2013.

143

• Gupta, Anshuman; Sampson, Jack; Taylor, Michael Bedford. “TimeCube: A

Manycore Embedded Processor with Interference-agnostic Progress Tracking”, In-

ternational Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation, IC-SAMOS 2013.

Permission to use these contents has been obtained through signed letters from the

co-authors. Dissertation author was the primary investigator and author on these papers.

Chapter 6

Conclusion

Multicore architectures are the microprocessor industry standard today and are

expected to remain so in the near future with the number of cores continuing to in-

crease. They are commonplace in most computing domains, such as the datacenters

and embedded systems, as they provide high energy-efficiency and compute-density.

These multicore processors share their resources to increase utilization, which causes

interference, i.e. massive (as much as 12× for a 32-core processor) unpredictable appli-

cation slowdowns during concurrent executions. This interference can lead to three key

problems for highly concurrent systems using these multicore processors:

• How to measure execution quality of an application?

• How to provide guarantees about execution quality?

• How to determine resource allocation for the good of many, but without punishing

anyone?

These problems are indeed hindering the widespread adoption of the newly introduced

manycore processors in these domains, in spite of their benefits.

Through this dissertation, I have presented three novel solutions to these chal-

lenges:

144

145

• Quality Time, amount of time the application would have taken with all CPU

resources, can be used to measure execution quality.

• Dynamic Execution Isolation can be used in combination with Quality Tables, data

structures providing application Quality Times for all possible resource allocations,

to provide guarantees about execution qualities.

• Simultaneous Performance Optimization Table, or SPOT, can be used to deter-

mine an optimal resource allocation to maximize the Mean Quality Time, which

improves the system performance while maintaining fairness.

I demonstrate in this work that using these techniques we can not only measure

the affects of interference, i.e. reduction in execution quality, but we can also precisely

control as well as reduce this interference. I presented a user-space software package,

called Qtoolkit, as well as a manycore processor, called TimeCube, which implement

these ideas in run-time for live systems using novel scalable mechanisms with very low

overheads. I presented a detailed evaluation of these implementations, and show that

they provide high accuracy in measurements, a fine-grained and precise quality control,

and large throughput improvements, in order to demonstrate the practicality of these

solutions.

To summarize, I show that using these mechanisms leads to higher system trans-

parency, QoS control, resource utilization, and system performance. My evaluation of

Qtoolkit and TimeCube shows that these solutions can be implemented in software as

well as hardware with low overheads and high benefits, making a strong case in favor of

including these solutions in consolidated multicore systems of today as well as the future.

Bibliography

[AB04] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic
real-time systems. Real-Time Syst., July 2004.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling. In PLDI,
1997.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A view of cloud computing. Commun.
ACM, 53, April 2010.

[AP93] Anant Agarwal and Stephen D. Pudar. Column-associative caches: a
technique for reducing the miss rate of direct-mapped caches. In ISCA,
1993.

[arm] The arm cortex-a9 processors. http://goo.gl/7pclOC.

[Bai] Anderson Bailey. Barcelona’s innovative architecture is driven by a new
shared cache. http://goo.gl/R2t2uy.

[BB02] Guillem Bernat and Alan Burns. Multiple servers and capacity sharing
for implementing flexible scheduling. Real-Time Syst., January 2002.

[BCZ05] G. Beccari, S. Caselli, and F. Zanichelli. A technique for adaptive schedul-
ing of soft real-time tasks. Real-Time Syst., July 2005.

[BDM99] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers:
a new facility for resource management in server systems. In OSDI, 1999.

[BFPS11] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core
key-value store. In International Green Computing Conference and Work-
shops, 2011.

146

147

[BIM08] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated manage-
ment of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO, 2008.

[But06] Giorgio Buttazzo. Research trends in real-time computing for embedded
systems. SIGBED Rev., 2006.

[Cas] Jeff Casazza. First the tick, now the tock: Intel microarchitecture (ne-
halem). http://goo.gl/1PYYWx.

[CGKS] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In HPCA ’05:
International Symposium on High-Performance Computer Architecture.

[CGKS05] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting
inter-thread cache contention on a chip multi-processor architecture. In
HPCA, 2005.

[Chu04] Chun Liu, Anand Sivasubramaniam, Mahmut Kandemir. Organizing the
last line of defense before hitting the memory wall for CMPs. In HPCA,
2004.

[CJ06] Sangyeun Cho and Lei Jin. Managing distributed, shared l2 caches through
os-level page allocation. In MICRO, 2006.

[CJDR00] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache partitioning
via columnization. In Design Automation Conference, 2000.

[CKS+05] Francisco J. Cazorla, Peter M. W. Knijnenburg, Rizos Sakellariou, Enrique
Fernández, Alex Ramirez, and Mateo Valero. Architectural support for
real-time task scheduling in smt processors. In Proceedings of the 2005
international conference on Compilers, architectures and synthesis for
embedded systems, CASES ’05, pages 166–176, New York, NY, USA,
2005. ACM.

[EC2] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[EHE11] S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-empirical processor
performance modeling for constructing cpi stacks on real hardware. In
ISPASS, 2011.

148

[ELMP10] Eiman Eibrahimi, Chang Joo Lee, Onur Mutlu, and Yale Patt. Fairness
via Source Throttling: A Configurable and High-Performance Fairness
Substrate for Multi-Core Memory Systems. In Architecture Support for
Programming Languages and Operating Systems, 2010.

[ELMP11] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Prefetch-
Aware Shared-Resource Management for Multi-Core Systems. In ISCA,
2011.

[EMGAD06] Ali El-Moursy, Rajeev Garg, David H. Albonesi, and Sandhya Dwarkadas.
Compatible phase co-scheduling on a cmp of multi-threaded processors.
In Proceedings of the 20th international conference on Parallel and dis-
tributed processing, IPDPS’06, pages 141–141, Washington, DC, USA,
2006. IEEE Computer Society.

[EMHF09] Erik Elmroth, Fermin Galan Marquez, Daniel Henriksson, and
David Perales Ferrera. Accounting and billing for federated cloud in-
frastructures. In International Conference on Grid and Cooperative Com-
puting, 2009.

[EMLP09] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. Coordi-
nated control of multiple prefetchers in multi-core systems. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 42, pages 316–326, New York, NY, USA, 2009. ACM.

[Emm97] P. G. Emma. Understanding some simple processor-performance limits.
IBM J. Res. Dev., 41:215–232, May 1997.

[EMP09] E. Ebrahimi, O. Mutlu, and Y.N. Patt. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching systems. In
High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 7 –17, 2009.

[FSSN05] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of
multithreaded chip multiprocessors and implications for operating system
design. In Proceedings 2005 USENIX Technical Conference, 2005.

[GLKS11] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam.
Cuanta: quantifying effects of shared on-chip resource interference for
consolidated virtual machines. In SOCC, 2011.

[GST70] J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage

149

hierarchies. IBM Syst. J., 9:78–117, June 1970.

[GST13] Anshuman Gupta, Jack Sampson, and Michael Bedford Taylor. Timecube:
A manycore embedded processor with interference-agnostic progress
tracking. In International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, 2013.

[GSZI07] Fei Guo, Yan Solihin, Li Zhao, and Ravishankar Iyer. A framework for
providing quality of service in chip multi-processors. In MICRO, 2007.

[GWG+] M. Gohner, M. Waldburger, F. Gubler, G.D. Rodosek, and B. Stiller. An
accounting model for dynamic virtual organizations. In International
Symposium on Cluster Computing and the Grid, 2007.

[HDH+10] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David
Finan, Shekhar Borkar, Vivek De, Rob Can Der Wijngaart, and Timothy
Mattson. A 48-Core IA-32 Message-Passing Processor with DVFS in 45
nm CMOS. In ISSCC, 2010.

[Hen00] J.L. Henning. Spec cpu2000: measuring cpu performance in the new
millennium. Computer, 2000.

[Hil87] Mark Donald Hill. Aspects of cache memory and instruction buffer per-
formance. PhD thesis, 1987.

[HKS+05] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger,
and Stephen W. Keckler. A NUCA substrate for flexible CMP cache
sharing. In ICS, 2005.

[HLL10] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The
cilkview scalability analyzer. In SPAA, 2010.

[HRIM06] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni.
Communist, utilitarian, and capitalist cache policies on cmps: caches as a
shared resource. In PACT, 2006.

[IBM] IBM SmartClouds. http://www.ibm.com/cloud-computing/us/en/.

[IMMC08] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caruana. Self-
optimizing memory controllers: A reinforcement learning approach. In
ISCA, 2008.

150

[Iye03] R Iyer. On modeling and analyzing cache hierarchies using CASPER.
In International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2003.

[IZG+07] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don
Newell, Yan Solihin, Lisa Hsu, and Steve Reinhardt. Qos policies and
architecture for cache/memory in cmp platforms. In Proceedings of the
2007 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, SIGMETRICS ’07, pages 25–36, New
York, NY, USA, 2007. ACM.

[Jal] Aamer Jaleel. Memory characterization of workloads using
instrumentation-driven simulation.

[JSCT08] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis
and approximation of optimal co-scheduling on chip multiprocessors. In
Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, PACT ’08, pages 220–229, New York, NY,
USA, 2008. ACM.

[KBK02] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated on-chip caches. In
ASPLOS, 2002.

[KHMHB10] Yoongu Kim, Dongsu Han, O. Mutlu, and M. Harchol-Balter. Atlas: A
scalable and high-performance scheduling algorithm for multiple memory
controllers. In HPCA, 2010.

[KJLH89] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive imple-
mentations of set-associativity. 1989.

[KMHK12] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A. Kim. Mea-
suring interference between live datacenter applications. In SC, 2012.

[KSCJ10] Dimitris Kaseridis, Jeffrey Stuecheli, Jian Chen, and Lizy Kurian John.
A bandwidth-aware memory-subsystem resource management using non-
invasive resource profilers for large cmp systems. In HPCA, 2010.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. Mcpat: an integrated power, area, and
timing modeling framework for multicore and manycore architectures. In
MICRO, 2009.

151

[LB00] Giuseppe Lipari and Sanjoy K. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In Real Time Technology and
Applications Symposium, 2000.

[LB06] Benjamin C. Lee and David M. Brooks. Accurate and efficient regres-
sion modeling for microarchitectural performance and power prediction.
SIGARCH Comput. Archit. News, 2006.

[LCX+12] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and
Chengyong Wu. A software memory partition approach for eliminating
bank-level interference in multicore systems. In PACT, 2012.

[LDM+01] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer.
End-user tools for application performance analysis using hardware coun-
ters. In International Conference on Parallel and Distributed Computing
Systems, 2001.

[LJS10] Fang Liu, Xiaowei Jiang, and Yan Solihin. Understanding how off-chip
memory bandwidth partitioning in chip multiprocessors affects system
performance. In HPCA, 2010.

[LLD+08] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems. In HPCA, 2008.

[LLW+98] Yong Luo, Olaf M. Lubeck, Harvey Wasserman, Federico Bassetti, and
Kirk W. Cameron. Development and validation of a hierarchical mem-
ory model incorporating cpu- and memory-operation overlap model. In
International Workshop on Software and Performance, WOSP, 1998.

[LMNP08] Chang Joo Lee, O. Mutlu, V. Narasiman, and Y.N. Patt. Prefetch-aware
dram controllers. In MICRO, 2008.

[LSK04] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing
the last line of defense before hitting the memory wall for cmps. In
Proceedings of the 10th International Symposium on High Performance
Computer Architecture, HPCA ’04, pages 176–, Washington, DC, USA,
2004. IEEE Computer Society.

[MBT04] Jason Miller David Wentzlaff Ian Bratt Ben Greenwald Henry Hoffmann
Paul Johnson Jason Kim James Psota Arvind Saraf Nathan Shnidman
Volker Strumpen Matt Frank Saman Amarasinghe Anant Agarwal Michael

152

Bedford Taylor, Walter Lee. Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In ISCA, 2004.

[MCRV] M. Moreto, F.J. Cazorla, A. Ramirez, and M. Valero. Online prediction of
applications cache utility. In Embedded Computer Systems: Architectures,
Modeling and Simulation, IC-SAMOS 2007.

[MCRV08] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero.
Mlp-aware dynamic cache partitioning. In Proceedings of the 3rd in-
ternational conference on High performance embedded architectures
and compilers, HiPEAC’08, pages 337–352, Berlin, Heidelberg, 2008.
Springer-Verlag.

[MM07] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO, 2007.

[MM08a] Thomas Moscibroda and Onur Mutlu. Distributed order scheduling and its
application to multi-core dram controllers. In Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing, PODC
’08, pages 365–374, New York, NY, USA, 2008. ACM.

[MM08b] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems. ISCA,
2008.

[MQ06] Yale Patt Moinuddin Qureshi. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO, 2006.

[NALS06] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E. Smith. Fair
queuing memory systems. In MICRO, 2006.

[NLS07] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private caches.
In ISCA, 2007.

[PAV+01] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and
Kaushik Roy. Reducing set-associative cache energy via way-prediction
and selective direct-mapping. In MICRO, 2001.

[Pin04] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ratio
curve for memory management. In Architecture Support For Programming

153

Languages and Operating Systems, 2004.

[RDK+00] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. Memory access scheduling. In ISCA, 2000.

[Rei05] J. Reinders. Vtune performance analyzer essentials. In Intel Press, 2005.

[RLT06] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural
support for operating system-driven cmp cache management. In PACT,
2006.

[RLT07] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Effective
management of dram bandwidth in multicore processors. In PACT, 2007.

[RTM+10] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-wide profiling: A continuous profiling infrastructure for
data centers. IEEE Micro, 2010.

[SAWJ+96] I. Stoica, H. Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, and C.G.
Plaxton. A proportional share resource allocation algorithm for real-time,
time-shared systems. In Real-Time Systems Symposium, 1996.

[SB08] J. Amann R. Conlin K. Joyce V. Leung J. MacKay M. Reif S. Bell,
B. Edwards. TILE64 Processor: A 64-Core SoC with Mesh Interconnect.
In ISSCC, 2008.

[Sch10] Richard Schooler. The processor: Many-core for embedded and cloud
computing. In Workshop on High Performance Embedded Computing,
2010.

[SDR01] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical cache
models with applications to cache partitioning. In Proceedings of the 15th
international conference on Supercomputing, ICS ’01, 2001.

[SDR02a] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with
applications to cache partitioning. In HPCA, 2002.

[SDR02b] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A new memory
monitoring scheme for memory-aware scheduling and partitioning. In
HPCA, 2002.

[SK04] Y. Solihin S. Kim, D. Chandra. Fair caching in a chip multiprocessor

154

architecture. In PACT, 2004.

[SK10] Shekhar Srikantaiah and Mahmut T. Kandemir. Srp: Symbiotic resource
partitioning of the memory hierarchy in cmps. In HiPEAC, 2010.

[SLT99] Yan Solihin, Vinh Lam, and Josep Torrellas. Scal-tool: pinpointing and
quantifying scalability bottlenecks in dsm multiprocessors. In SC, 1999.

[SMKP07] S. Srinath, O. Mutlu, Hyesoon Kim, and Y.N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In HPCA, 2007.

[SPHC02] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In ASPLOS,
2002.

[SRD04] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. J. Supercomput., April 2004.

[SSVC09a] Mark Stillwell, David Schanzenbach, Frederic Vivien, and Henri Casanova.
Resource allocation using virtual clusters. In International Symposium on
Cluster Computing and the Grid, 2009.

[SSVC09b] Mark Stillwell, David Schanzenbach, Frederic Vivien, and Henri Casanova.
Resource allocation using virtual clusters. In International Symposium on
Cluster Computing and the Grid, 2009.

[ST00] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simul-
taneous multithreaded processor. In Proceedings of the ninth international
conference on Architectural support for programming languages and op-
erating systems, ASPLOS-IX, pages 234–244, New York, NY, USA, 2000.
ACM.

[STW92a] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of
cache memory. IEEE Trans. Comput., 41:1054–1068, September 1992.

[STW92b] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of
cache memory. IEEE Trans. Comput., 41(9):1054–1068, 1992.

[teg] Nvidia tegra 4 family cpu architecture: 4-plus-1 quad core.
http://goo.gl/Ta30K2.

155

[TJYD09] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance
data with papi-c. 2009.

[TMV+11] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. The impact of memory subsystem resource sharing on datacenter
applications. In ISCA, 2011.

[VGR98] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Performance
isolation: sharing and isolation in shared-memory multiprocessors. In
ASPLOS, 1998.

[Wal] Carl A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev.

[WGT+] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes,
Aamer Jaleel, and Bruce Jacob. Dramsim: A memory-system simulator.
In SIGARCH Computer Architecture News, September 2005.

[You07] Matt T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchi-
tectural simulator. In ISPASS, 2007.

[ZDFS07] Xiao Zhang, Sandhya Dwarkadas, Girts Folkmanis, and Kai Shen. Pro-
cessor hardware counter statistics as a first-class system resource. In
Workshop on Hot Topics in Operating Systems, 2007.

[ZLTI96] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis
using the mips r10000 performance counters. In SC, 1996.

[ZPS+04] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ratio
curve for memory management. In ASPLOS, 2004.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract
	Introduction
	Qtime: Measuring Execution Quality in Software
	Architectural Interference and Performance Measurement
	Qtime: A Tool to Measure Online Application Execution Quality
	Qtop: A Dashboard for Monitoring and Controlling Execution Qualities of Other Applications
	Results
	Evaluation Methodology
	Quality Time Estimation Results

	Related Work
	Conclusion

	Qplacer: Improving Execution Quality in Software
	Qplacer: A Quality Time based Affinity Mapping Tool
	Simulated Annealing

	Results
	Evaluation Methodology
	Affinity Results

	Related Work
	Conclusion

	TimeCube: Measuring Execution Quality in Hardware
	TimeCube Overview
	Shadow Performance Modeling in TimeCube
	Results
	Evaluation Methodology
	TimeCube's Quality Time Estimation is Highly Accurate
	Area and Energy Distribution in TimeCube

	Related Work
	Conclusion

	Quality Tables: Controlling Execution Quality in Hardware
	Dynamic Execution Isolation in TimeCube
	Quality Tables in TimeCube
	Dynamically Repartitionable Static NUCA (DR-SNUCA)
	Dynamically Repartitionable Static NUCA Design
	Flattened Partial LRU Vector

	Results
	Quality Tables Created in TimeCube
	DR-SNUCA Evaluation
	Area and Energy Distribution in TimeCube

	Related Work
	Conclusion

	SPOT: Improving Execution Quality in Hardware
	Maximizing Mean Quality Time: A Unified Resource Management Objective
	SPOT: Finding the Resource Allocation to Maximize the Mean Quality Time
	Prefetcher Throttling
	TimeCube Execution Model with SPOT
	Results
	Overall Results
	Prefetcher Throttling
	Varying Workload Composition
	System Scaling
	Load characteristics
	Varying Workload Diversity
	Variable Cache Switching Frequency
	Cache and Bandwidth Sensitivity Study
	Area and Energy Distribution in TimeCube

	Related Work
	Conclusion

	Conclusion
	Bibliography

