
Kremlin: Like gprof, but for Parallelization

Donghwan Jeon Saturnino Garcia Chris Louie Sravanthi Kota Venkata Michael Bedford Taylor

University of California, San Diego

{djeon, sat, cmlouie, skotavenkata, mbtaylor}@cs.ucsd.edu

Abstract

This paper overviews Kremlin, a software profiling tool designed to
assist the parallelization of serial programs. Kremlin accepts a se-
rial source code, profiles it, and provides a list of regions that should
be considered in parallelization. Unlike a typical profiler, Kremlin
profiles not only work but also parallelism, which is accomplished
via a novel technique called hierarchical critical path analysis. Our
evaluation demonstrates that Kremlin is highly effective, resulting
in a parallelized program whose performance sometimes outper-
forms, and is mostly comparable to, manual parallelization. At the
same time, Kremlin would require that the user parallelize signifi-
cantly fewer regions of the program. Finally, a user study suggests
Kremlin is effective in improving the productivity of programmers.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

General Terms Measurement, Performance

1. Introduction

As multicore processors dominate mainstream computing, more
programmers are forced to parallelize their serial programs. Al-
though tools such as OpenMP and Cilk++[4] have been proposed to
help programmers with this task, one important question has been
largely overlooked: “which parts of the program should I spend
time parallelizing?”

gprof and similar profilers provide a solution to a similar prob-
lem in serial optimization. A conventional profiler models a pro-
gram as a hierarchical region where a region typically represents
a loop or a function and possibly contains other subregions. The
profiler produces a list of regions ordered by their work coverage.
We call this ordered list a “plan” because it focuses the program-
mer’s efforts on the regions where optimization is likely the most
fertile: those regions with the largest percentage of work. Unfortu-
nately, traditional profilers have limited value during parallelization
because they do not profile parallelism, leaving the programmer to
manually determine if a region has any parallelism.
In this paper, we overview Kremlin, a profiling tool that is de-

signed to help during the parallelization of a serial program. Krem-
lin produces a plan based on not only work but also parallelism. In
accordance with Amdahl’s Law, Kremlin calculates the speedup

Copyright is held by the author/owner(s).

PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

$> make CC=kremlin-cc
$> ./tracking data
$> kremlin tracking --openmp

File (lines) Parallelism Cov.(%)
1 imageBlur.c (49-58) 145.3 9.7
2 imageBlur.c (37-45) 145.3 8.7
3 getIPatch.c (26-35) 25.3 8.86
...

c
ri
ti
c
a
l p
a
th

in
st
ru
m
e
n
ta
ti
o
n

re
g
io
n

in
st
ru
m
e
n
ta
ti
o
n

Static Instrumentor

Instrumented

Binary

Parallelism

Profile

Parallelization

Planner

Source

Code Ordered

Plan

region graph

KremLib

A

B
C

A: <p,w>
B: <p,w>
C: <p,w>

 ...
exec

w/ inputs

1: B
2: L
3: M

 ...

#: Region

Figure 1. (top) Kremlin Usage Model and (bottom) the
Overview of Kremlin System Architecture

from parallelizing a region by using both its parallelism and its
work, ordering regions by their calculated speedup.
The major challenge in a profiler for parallelization is to ex-

tract the region-localized parallelism for each region. The region-
localized parallelism represents the maximum speedup in a region
when only that region–not its subregions–are parallelized. Previ-
ous work in critical path analysis (CPA) [3] measured the amount
of parallelism in a program but did not localize parallelism to
specific regions. Kremlin overcomes this problem by employing
a novel technique called hierarchical critical path analysis, or
HCPA. Based on the program’s region hierarchy and CPA results
for each region, HCPA extracts region-localized parallelism.
From our preliminary evaluation with NAS Parallel Bench

(NPB) [2], Kremlin turns out to be very effective. Kremlin re-
duces the number of regions parallelized by 1.59X on average
compared to a third-party parallelization, while outperforming the
third-party’s performance by as high as 1.85X, with a geometric
mean of 1.08X. A user study shows that Kremlin greatly reduces
the amount of time that users waste on trying to parallelizing re-
gions that offer little-to-no benefit.

2. Kremlin Overview

Figure 1 illustrates the Kremlin system. Kremlin’s usage model is
similar to gprof (see Figure 1-top). The user compiles input code
with a drop-in replacement compiler called kremlin-cc to gener-
ate an instrumented binary. After the user executes the generated
binary, Kremlin outputs a plan consisting of the regions that should
be parallelized based on the parallelism profile gathered at runtime.
Internally, Kremlin consists of two major modules: the static instru-
mentor and the parallelization planner (see Figure 1-bottom).

Benchmark Total Third-Party Kremlin Reduction

bt 447 54 27 2.00x

cg 135 22 9 2.44x

ep 41 1 1 1.00x

ft 447 6 6 1.00x

is 59 1 1 1.00x

lu 509 28 11 2.55x

mg 653 10 8 1.25x

sp 1366 70 58 1.21x

Overall 3657 192 121 1.59x

(a) Plan Size Comparison

bt cg ep ft is lu mg sp geomean

R
e

la
ti
v
e

 S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3.96x 3.95x 25.89x 3.82x

5.1x

5.9x
2.75x

1.85x

6.65x

(b) Relative (bar) and Absolute (number) Speedup of Kremlin

Figure 2. Evaluation of Kremlin based Parallelization. Compared to a third-party manual parallelization [1], Kremlin-based paralleliza-
tion achieves comparable or better speedups with less regions parallelized.

Static Instrumentor The instrumentor inserts function calls in the
source code so that Kremlin correctly captures the regions hierar-
chy and gathers parallelism-relevant information. The instrumented
code is linked to KremLib, which implements the instrumentation
functions. HCPA specially treats false dependences and easy-to-
break dependences as they can create a false impression of serial-
ity in the region. Although the overhead of HCPA instrumentation
could be high, the use of a compression technique significantly low-
ers the overhead. In NPB, the compression technique reduces the
average log file size from 17.9GB to 150KB.

Parallelization Planner The parallelization planner produces a
plan based on the information gathered from instrumentation. From
localized parallelism and work, the planner can calculate the impact
on application speedup when a region is parallelized. However, par-
allelizing a region could affect the potential parallelization benefit
in other regions, complicating the design of the planner. For ex-
ample, consider a doubly-nested loop where both inner and outer
loops are parallel. Parallelizing the outer loop directly impacts the
benefit of parallelizing the inner loop as the work coverage of the
loop nest in the program has already shrunk when the outer region
is parallelized. The planner iteratively selects the region with the
maximum application speedup, updating the speedup of other re-
gions based on the region hierarchy and the parallelization status
of each region. This greedy algorithm finishes when the calculated
speedup does not meet a minimum threshold value.

3. Preliminary Results

Our preliminary results examine three key aspects of Kremlin: its
plan size, the speedup gained from following it, and its impact on
a programmer’s productivity. We examined NPB because a third-
party OpenMP parallelization is available [1]. We ran Kremlin on
the serial run of each benchmark to get a parallelism plan, and
created a Kremlin-based parallel implementation. All results were
gathered on a 32-core system (8x AMD Opteron 8380 processors).

Kremlin Plan Size To determine Kremlin’s ability to reduce the
number of regions considered during parallelization, we measured
the number of parallelized regions in the third-party parallel ver-
sion and compared it to Kremlin’s plans. Figure 2(a) shows this in-
formation. Kremlin recommends 1.59X fewer regions on average
compared to the third-party version. Furthermore, Kremlin never
recommends more regions than the third-party version, suggesting
its value in reducing a programmer’s effort.

Kremlin Plan Performance While the smaller plan produced by
Kremlin can reduce the effort to parallelize a program, the plan
would be of limited utility if it leads to poor performance. To deter-
mine the performance of Kremlin based parallelization, we com-

pared it with the performance of the third-party parallel version.
Figure 2(b) shows Kremlin significantly outperforms the manual
parallelization in is (1.46X) and sp (1.85X) while offering com-
petitive performance in remaining benchmarks, resulting in 1.08X
geometric mean speedup against the third-party. The improved per-
formance in is and sp resulted fromKremlin uncovering parallelism
at a coarser-grain than was exploited by the third-party.

Impact on the Productivity of Programmers In order to see
Kremlin’s impact on the productivity of programmers, we per-
formed a user study involving seven students in a graduate–level
course at UCSD. Students were split into two groups (A and B)
and asked to parallelize two programs. For program 1, group A
had access to both gprof and Kremlin while group B had access
to only gprof. For program 2, the tool access was alternated to
normalize group differences in the study. We identified the critical
regions, those that bring a speedup over 5%, of the two programs
via extensive manual parallelization before the experiment. We
measured the time students spent in parallelizing these critical re-
gions as opposed to other regions. In both programs, the group who
had access to Kremlin spent a much larger percentage of time on
critical regions (84% vs 56% in program 1, 92% vs 49% in program
2). Although the sample size is admittedly small, this result sug-
gests that Kremlin improves programmer productivity by reducing
the time spent on regions that do not have a large benefit.

4. Conclusion and Future Work

Kremlin helps parallelization by providing a parallelism plan that
ranks regions in the order of importance in parallelization. From
our experiments with NPB, Kremlin was able to significantly re-
duce the number of regions parallelized compared to a manual
parallelization, without sacrificing the performance. Also, our user
study demonstrates a programmer with Kremlin tends to focus on
regions that actually bring a speedup from parallelization, suggest-
ing Kremlin would improve a programmer’s productivity. We are
currently striving to improve the quality of the parallelization plan-
ner by incorporating a wider range of information such as program
structure, parallelization platforms, and target machine parameters.
This work was funded in part by NSF Award 0725357.

References

[1] “NAS Parallel Benchmarks 2.3; OpenMP C.” www.hpcc.jp/Omni/.

[2] Bailey et al. “The NAS parallel benchmarks.” In SC, 1991.

[3] M. Kumar. “Measuring parallelism in computation-intensive scien-
tific/engineering applications.” IEEE TOC, Sep 1988.

[4] C. E. Leiserson. “The Cilk++ concurrency platform.” In DAC, 2009.

