
Kismet: Parallel Speedup Estimates for Serial Programs

Donghwan Jeon Saturnino Garcia Chris Louie Michael Bedford Taylor

Department of Computer Science & Engineering

University of California, San Diego

La Jolla, CA, USA

{djeon,sat,cmlouie,mbtaylor}@cs.ucsd.edu

Abstract

Software engineers now face the difficult task of refactoring

serial programs for parallel execution on multicore proces-

sors. Currently, they are offered little guidance as to how

much benefit may come from this task, or how close they

are to the best possible parallelization.

This paper presents Kismet, a tool that creates paral-

lel speedup estimates for unparallelized serial programs.

Kismet differs from previous approaches in that it does not

require any manual analysis or modification of the program.

This difference allows quick analysis of many programs,

avoiding wasted engineering effort on those that are fun-

damentally limited. To accomplish this task, Kismet builds

upon the hierarchical critical path analysis (HCPA) tech-

nique, a recently developed dynamic analysis that localizes

parallelism to each of the potentially nested regions in the

target program. It then uses a parallel execution time model

to compute an approximate upper bound for performance,

modeling constraints that stem from both hardware parame-

ters and internal program structure.

Our evaluation applies Kismet to eight high-parallelism

NAS Parallel Benchmarks running on a 32-core AMD mul-

ticore system, five low-parallelism SpecInt benchmarks, and

six medium-parallelism benchmarks running on the fine-

grained MIT Raw processor. The results are compelling.

Kismet is able to significantly improve the accuracy of paral-

lel speedup estimates relative to prior work based on critical

path analysis.

Categories and Subject Descriptors D.2.2 [Software En-

gineering]: Design Tools and Techniques; D.1.3 [Program-

ming Techniques]: Concurrent Programming—Parallel Pro-

gramming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

$> make CC=kismet-cc

$> $(PROGRAM) $(INPUT)

$> kismet --openmp

Cores 1 2 4 8 16 32 64

Speedup 1 2 3.8 3.8 3.8 3.8 3.8

(est.)

Figure 1: Kismet’s User Interface. After compiling and

executing the program, Kismet produces estimated upper

bounds on parallel speedups for the program.

General Terms Measurement, Performance

Keywords Hierarchical Critical Path Analysis, Expressible

Self-Parallelism, Performance Estimation, Parallel Software

Engineering

1. Introduction

Software engineers currently face the enormous task of

refactoring their programs to take advantage of multi-core

processors. These multi-core processors provide extensive

parallel resources, providing the potential for greatly im-

proved performance. However, this improved parallel per-

formance is typically unlocked only after extensive engi-

neering efforts that rely on the individual engineer’s expe-

rience rather than automated tools. Frequently, the parallel-

ization process results in difficult-to-diagnose bugs and a

murky understanding of the connection between code modi-

fications and resulting performance.

The performance of refactored serial programs often falls

short of optimistic speedups derived from raw hardware re-

sources. Worse-than-expected performance can be caused by

several factors. First, the implementation may be poor—the

result of missed parallelism opportunities or poorly executed

parallelization attempts. Second, the program may have in-

herently low amount of parallelism—possibly the result of

choosing an algorithm without considering its parallelizabil-

ity. Finally, the target system may be a poor choice for that

program—the result of a mismatch between the structure of

the parallelism in the program and the ability of the system

to efficiently exploit it.

An assortment of tools have been developed to help in

the task of refactoring for parallelism. Some of these tools

[6, 18, 47] help the programmer debug performance prob-

lems in their parallel implementation. While these tools help

the programmer overcome poorly executed parallelization,

they fail to uncover missed parallelism opportunities or de-

termine if other factors in poor performance are the limiting

reagents. Other tools have looked into measuring the paral-

lelism available in a program [27, 30] but often look only at

abstract models of execution and do not provide realistic es-

timates on the speedup of the refactored program. Yet other

tools examine the scalability of a parallel program [10, 53]

but look only at an existing implementation and therefore

do not provide insight into the fundamental scalability of a

program. Furthermore, a vast majority of existing tools as-

sume that there is already a mature parallel implementation.

Relying on these tools greatly increases the probability of

undesirable sunk costs: programmers can waste significant

time and money in refactoring code only to determine a fun-

damental limitation to its performance.

Kismet’s Purpose In this paper we introduce Kismet, a

parallel speedup estimation tool. Kismet performs dynamic

program analysis on an unmodified, serial version of a pro-

gram to determine the amount of parallelism available in

each region (e.g. loop and function) of the program. Kismet

then incorporates system constraints to calculate an ap-

proximate upper bound on the program’s attainable parallel

speedup. These constraints include the number of cores, syn-

chronization overhead, cache effects, and expressible paral-

lelism types (i.e. loop and task parallelism for multicore

chips; instruction level parallelism for VLIW-style chips;

and data level parallelism for vector machines).

Kismet provides a simple usage model in the style of

gprof, as shown in Figure 1. The program is first compiled

with a drop-in compiler replacement called kismet-cc. The

program is run with a representative input, which produces

as a side-effect an output file containing profile information.

The user then runs kismet, which analyzes the output file

and generates a table of estimated speedup upper-bounds for

a spectrum of core counts.

Kismet’s Basic Structure In order to estimate the paral-

lel performance of a serial program, Kismet uses a paral-

lel execution time model. Kismet’s parallel execution time

model is based on the major components that affect parallel

performance, including the amount of parallelism available,

the serial execution time of the program, parallelization plat-

form overheads, synchronization and memory system effects

which contribute in some cases to super-linear speedups.

To determine available parallelism, Kismet extends the

recently developed hierarchical critical path analysis, or

HCPA [16, 21]. HCPA measures the critical path and work

across many nested regions of the program hierarchy [15] in

an efficient manner, which allows the average parallelism of

region (including its children) to be determined. The key to

leveraging HCPA is the self-parallelism metric [16], which

provides a mechanism for separating the parallelism of par-

ent regions from their children. With this metric, we can as-

sign an average parallelism quantity to each region in the

program, which quantifies the potential speedup if only that

region were targeted. This is useful, for instance, in deter-

mining which loop in a triply-nested loop is most promising

for parallelization.

HCPA is an extension of critical path analysis (CPA)

and therefore is able to identify many subtle forms of par-

allelism that potentially are available only after significant

code refactoring that spans many loops and independent

function calls. In cases where parallelism is exploitable only

after major refactoring across many region levels, HCPA re-

ports this parallelism at the highest level region. This self-

parallelism value results in a prediction which is consistent

with the major refactoring. Thus Kismet can postulate trans-

formations that greatly exceed the capabilities of today’s par-

allelizing compilers. Kismet’s optimistic view of speedup at-

tempts to take into account the programmer’s greater ability

to perform code transforms that would be unsafe in auto-

matic parallelizing compilers.

Kismet improves upon HCPA so that it can be used to es-

timate attainable parallel speedups from serial code. In par-

ticular, it employs a summarizing variant of HCPA called

summarizing hierarchical critical path analysis, or SHCPA,

which improves the scalability while maintaining the accu-

racy of the analysis by aggregating the data between sibling

nodes in the region graph in a context-sensitive manner.

Compelling Results To demonstrate the effectiveness of

Kismet in creating realistic upper bounds on parallel per-

formance, we evaluated Kismet in three contexts. First, we

looked at six medium-parallelism benchmarks running on

the MIT Raw processor [35, 36]. Second, we examined the

performance of 6 low-parallelism SpecInt benchmarks rel-

ative to results reported in the literature. Finally, we ex-

amined Kismet’s accuracy on high-parallelism benchmarks

from the NAS Parallel Bench [9] on a 32 core AMD system.

In all contexts, our results show that Kismet is able to cre-

ate strong approximate upper bounds on the actual parallel

performance.

The remainder of this paper proceeds as follows. Sec-

tion 2 overviews the architecture of the Kismet tool. Sec-

tion 3 continues with a description of the SHCPA imple-

mentation, including the extensions that Kismet implements

for speedup estimation. Section 4 examines how the SHCPA

data is processed to account for machine and parallelization

system properties. Section 5 overviews the Kismet-based

tools we built for the two platforms. Section 6 presents re-

sults, Section 7 presents related work, and Section 8 con-

cludes.

Cores:Speedup

1: 1.0

2: 1.9

4: 3.6

8: 7.1

…

kismet-

cc

Figure 2: Kismet System Architecture. Starting with a program’s source code, Kismet produces an instrumented binary by

inserting profiling code. Running the instrumented binary on the sample input outputs a trace file containing both program

structure and self-parallelism. Finally, the speedup predictor estimates the speedup upper bound based on the profile data. The

parallelism classifier filters unexpressible parallelism for realistic speedup estimates (via the expressible self-parallelism filter)

and the parallel execution time model incorporates hardware constraints and parallelization overhead for accurate performance

prediction.

2. Kismet Overview

In this section, we provide a high-level overview of the

Kismet system architecture, as shown in Figure 2.

To use Kismet, programmers need only supply the un-

modified serial source code and a sample input data for a

program. The output is the upper bounds on parallel pro-

gram speedup as the number of cores is varied, as shown in

Figure 1. Internally, Kismet also makes use of a set of in-

put files that describe the targeted machine. Since speedup

results are often quite machine-dependent, this serves to im-

prove Kismet’s accuracy.

Kismet operates in two phases; the first phase is a profiler

that collects the self-parallelism data and the second phase is

a speedup predictor which applies the machine and system

constraints.

Self-Parallelism Profiler Gathering of self-parallelism in-

formation in Kismet starts with a static instrumentation

phase which instruments the target program with code that

implements the SHCPA dynamic analysis, and ends with

running the instrumented program.

The static instrumentation phase transforms the input

code to support SHCPA during execution of the sample in-

put. The inserted instrumentation consists of calls to a spe-

cial SHCPA library, which will perform the dynamic analy-

sis during execution. In addition to adding instrumentation

for calculating critical paths, Kismet also inserts instrumen-

tation to clearly delineate the regions of the code. Three

types of regions—loops, functions, and sequence—are used,

allowing SHCPA to calculate each region’s self-parallelism

and to determine the type of parallelism in each region.

The Kismet code instrumentator utilizes LLVM’s [31]

static instrumentation infrastructure to perform a deeper

level of analysis than is available with dynamic instrumenta-

tion tools such as Valgrind [41]. This allows Kismet to easily

uncover the program structure and account for false depen-

dencies introduced by loop induction variables and reduc-

tion variables. Static instrumentation also provides greater

opportunity for optimizing the instrumented code in order to

reduce the overhead associated with profiling.

The dynamic analysis phase begins when the instru-

mented binary is run with the sample input to produce per-

region statistics. For each dynamic region that is executed,

the dynamic analysis computes three key pieces of data:

the critical path length, the amount of work done, and the

self-parallelism. Section 3 describes how this data is pro-

duced in more detail. The data produced for each region is

relatively small but the number of dynamic regions grows

quickly, leading to a possibly unmanageable amount of data.

Kismet improves the manageability of region data by sum-

marizing the data as it profiles, creating summarized region

profiles. The summarized region profiles reduce the number

of recorded regions by orders of magnitude, leading to much

smaller log sizes and allowing for more efficient processing

in later stages of Kismet. While the reduced log size from

summarization is desirable, summarization should not com-

promise the quality of self-parallelism information. Kismet’s

SHCPA provides rich call context-sensitive region informa-

tion, helping the speedup predictor not to underestimate the

potential speedup from parallelization. We’ll examine more

details about this context-sensitive approach in Section 3.

Speedup Predictor After running the instrumented binary

on the sample input, Kismet has captured the underlying

structure of the application in the form of the summarized

region profile. The next step is to combine this information

with machine and parallelization system properties in order

to make a prediction.

Performance strongly depends on the target system.

Kismet accepts a list of target-dependent parallelization con-

straints and utilizes this information to provide more accu-

rate predictions. Typically constraints include a simple hard-

ware specification (e.g. the number of available cores), the

types of expressible parallelism by that system, and func-

tions that quantify parallelization overheads such as syn-

chronization. We have found that only a small number of

for (i=1 to N) {

foo (1); // callsite A

foo(N); // callsite B

}

void foo(int size) {

for(i=1 to size) {

...

// loop body

...

}

}

Figure 3: Kismet’s Program Representation. (a) Kismet’s self-parallelism profiler builds a hierarchical region structure

from source code, consisting of three types of regions. At runtime, it forms a region tree consisting of dynamic regions.

(b) Kismet radically reduces the output file size by compressing runtime region tree into a call context-sensitive region tree.

The summarized tree preserves context-sensitive parallelism information, exposing more parallelization opportunities.

constraints are needed to accurately predict performance.

This simplifies the process of extending Kismet to new plat-

forms. We were surprised at the ease with which our model

could support two very different parallel systems—an MIT

Raw tiled processor and a 32-core AMD multicore system.

The speedup predictor contains three sub-components.

The first sub-component is a modified self-parallelism met-

ric called expressible self-parallelism, or ESP, which filters

out parallelism unexpressible by the specified target system.

The second sub-component is the parallel execution time

model. The parallel execution time model allows the speedup

predictor to estimate the parallel execution time of each pro-

gram region and the whole program based on a given paral-

lelism plan. This model incorporates self-parallelism, num-

ber of allocated cores, and parallelization overhead. Kismet

also provides an extended, cache-aware parallel execution

time model that considers the impact of caching on parallel

execution. The parallel execution time model is used by the

resource allocator to evaluate between completing parallel-

ization plans and determines the final speedup numbers re-

ported by Kismet. Section 4 describes these models further.

The final sub-component is the speedup planner. An ideal

parallel system will take advantage of all the expressible par-

allelism in a program. This desirable property is not avail-

able on most existing systems. These systems have other

constraints–such as limited hardware resources, synchro-

nization overhead, or poor support for nested parallelism –

that make expressible parallelism not be exploitable paral-

lelism. The speedup planner creates a mapping from regions

to parallel resources, modeling at a high-level what the ex-

ecution of the parallelized program would look like; we re-

fer to this mapping as the parallelization plan. In Section 5,

we describe how a parallelization plan is created, using two

widely different systems as case studies.

3. Self-Parallelism Profiler

Kismet extends the HCPA-based profiler introduced in [16]

to quantify the parallelism in each region of the program in a

summarized fashion. Additionally, it modifies the algorithm

in a number of ways to facilitate speedup prediction and

calculation of expressible self-parallelism. In this section,

we describe Kismet’s implementation of SHCPA and self-

parallelism.

3.1 Summarizing Hierarchical Critical Path Analysis

Summarizing hierarchical critical path analysis extends tra-

ditional critical path analysis to incorporate the hierarchical

region structure of a program. SHCPA calculates the criti-

cal path of each dynamic region of the program, unlike CPA

which looks only at the critical path of the whole program.

This per-region calculation provides the basis for improved

localization of parallelism information.

Types of Regions Kismet demarcates region boundaries at

static instrumentation time. Kismet includes all loops and

functions in the list of regions but introduces the concept of

a sequence region, an important extension of prior work in

HCPA. A sequence region can be any single-entry piece of

code but Kismet restricts sequences to two important cases:

loop bodies and self-work sequences. Loop body regions

form a child region for each iteration of a loop region, al-

lowing Kismet to identify loop-level parallelism. Self-work

sequence regions are sequences of code that are contained

in non-leaf regions and do not have any function calls or

loops. These regions may seem unintuitive but they address

a concern in prior work on HCPA: the separability of differ-

ent types of parallelism. Self-work sequences factor out the

instruction level parallelism in regions that would otherwise

contain a mix of task-level parallelism (from its other chil-

dren) and instruction level parallelism. Figure 3 (a) shows

how regions are dynamically formed from a sample piece of

code.

SHCPA Implementation SHCPA uses shadow memory to

track the earliest time that an instruction is available. When

each operation executes, it reads from shadow memory the

availability times of all of its dependencies. SHCPA adds

the maximum time amongst these dependencies to the la-

tency of the operation being performed and then stores this

value to the shadow memory location corresponding to the

operation. Dependencies that are not true dependencies are

filtered out using two main mechanisms. First, Kismet op-

erates on LLVM’s SSA form IR. This eliminates false out-

put (i.e. write-after-write) dependencies. Next, Kismet de-

tects induction and reduction variables then breaks the false

dependencies that result from them.

Kismet tracks control dependencies through the use of

control dependence analysis and a dynamic control depen-

dence stack. Control dependence times are pushed to and

popped from the control dependence stack whenever a con-

trol dependent region is entered and exited. This stack has

monotonically increasing values from the bottom to the top,

allowing Kismet to include only the topmost entry in the list

of dependencies for each instruction.

Each active region effectively has its own shadow mem-

ory, enabling Kismet to independently calculate the region’s

critical path length. All times in the region’s shadow mem-

ory are logically initialized to zero upon entry so that a ref-

erence to an instruction outside the region will be assumed

be available immediately at the beginning of the region (i.e.

time 0). Regions track the largest time that was written to

their view of shadow memory; this value is the critical path

length. Each region also records the combined latencies of

all operations performed in that region; this summation is

the amount of work in that region. The ratio of work to crit-

ical path length is the total parallelism of that region.

SHCPA can also record other useful runtime information.

For example, load and store counts are also included for

cache-aware performance estimation that will be explained

in Section 4.

Identifying Independent Children Kismet also determines

if all of the children of a non-leaf region are independent

and therefore can be executed in parallel. This information

is stored as the region’s “P bit” and is calculated according

to the following equation:

P = CP (parent) == MAX(CP (child1), ..., CP (childn))

where CP (parent) is the critical path length of the parent

and CP (childi) is the critical path length of the ith child.

If all children can be executed in parallel, then the length

of the critical path will simply be the length of longest

critical path of all of the children. In this case, the “P bit”

will be 1. Kismet uses the information in the “P bit” to help

identify expressible parallelism. Section 4 will describe this

in more detail.

SHCPA Optimizations Kismet’s implementation of shadow

memory is based on a two-level table that equally divides the

memory address space. Kismet contains several optimiza-

tions of shadow memory for increased performance and re-

duced memory usage, most notably shadow register tables

DOACROSS DOALL

CP

CP

CP

…

CP

CP

CP

…

(N/2) * CP CP

N * CP

(N/2) * CP
= 2.0

N * CP

CP

= N

CP CP CP…

Serial

N * CP

N * CP

N * CP

= 1.0

Type

CP (R)

SP (R)

Figure 4: Self-Parallelism Calculation on Regions with

Varying Parallelism. Self-parallelism computes the amount

of parallelism in a parent region that is attributable to that

region and not its children. The figure above shows that

Kismet’s self-parallelism calculation successfully quantifies

parallelism across a spectrum of loop types, ranging from

totally serial to partially parallel (DOACROSS) to totally

parallel (DOALL). The shaded boxes are child regions, cor-

responding to separate iterations of the loops. The relative

scheduling of child regions is indicated spatially, with time

running from left to right. The self-parallelism calculation

correctly quantifies parallelism in non-loop region hierar-

chies as well.

and dynamic allocation of shadow memory. Shadow register

tables optimize the common case of writing to local vari-

ables by creating a direct access shadow register table. This

avoids the overhead of indirectly accessing the two-level

page table. Dynamic allocation of shadow memory reduces

the overhead that would result from keeping all shadow en-

tries in memory.

3.2 Calculating Self-Parallelism

Although SHCPA produces a total parallelism value for each

region of the program, this alone is not enough to localize

parallelism to specific regions of the program. Total paral-

lelism is computed without knowledge of the region hier-

archy and thus incorporates parallelism that originates from

child regions. Kismet’s self-parallelism metric takes the next

step in localizing parallelism.

To determine the self-parallelism of a region R, SP (R),
Kismet employs the following equation:

SP (R) =



















∑
n

k=1
cp(child(R, k))
cp(R)

R is a non-leaf

work(R)
cp(R)

R is a leaf

Here n is the number of children of R, child(R, k) is the kth

child of R, cp(R) is the critical path length, and work(R) is

the amount of work in R.

In contrast to earlier work on self-parallelism [16], Kismet

treats leaf and non-leaf regions differently because they con-

tain different types of parallelism. Leaf regions contain no

children and therefore will contain only instruction level

parallelism (ILP). Non-leaf regions have children that may

provide opportunities for either loop-level or task-level par-

allelism. Prior work in HCPA [16] employed self-work in

the calculation of SP for non-leaf regions but this led to a

mixture of ILP and task-level parallelism inside of a single

region. Kismet includes the new self-work sequence region

to factor out the ILP in order to compute expressible self-

parallelism.

Figure 4 demonstrates the calculation of SP in three

non-leaf regions, one totally serial, one partially parallel

(DOACROSS), and the other totally parallel (DOALL).

For simplicity, in the example, each iteration’s critical path

length cp is the same. For the serial loop, the measured

cp(R) will be equal to n ∗ cp and the computed self-

parallelism will be n∗cp
n∗cp = 1, which is expected since serial

dependences prevent overlapped execution of regions. For

the DOACROSS loop shown, where half of an iteration can

overlap with the next iteration, cp(R) will be the half of the

cp(R) for the serial loop. Thus SP (R) is n∗cp
(n/2)∗cp = 2. For

the DOALL loop, cp(R) will be equal to cp, so SP (R) is
n∗cp
cp = n. Although we show three relatively simple cases

here, this method is a good approximation of self-parallelism

even with more sophisticated child region interaction.

3.3 Summarizing Hierarchical Critical Path Analysis

The number of dynamic regions quickly grows as nested

loops with many iterations are executed. This large amount

of regions poses practical challenges not only in the size

of the profile output but also in the runtime of algorithms

that need to analyze this data. Garcia et al [16] developed a

dictionary-based compression algorithm to reduce the pro-

file size. However, this type of compression performs poorly

on programs with loop iterations that vary in their work or

critical path length. In this section we will describe a new

technique that is used by Kismet for managing the number

of regions.

Region Summarization Kismet combines all dynamic re-

gions that have the same region context into a single summa-

rized region. Figure 3 depicts how the runtime region tree (a)

becomes a summarized region profile (b). In this method, all

loop iterations collapse to a single node, greatly reducing the

number of regions. Each node calculates weighted averages

for self-parallelism, work, and other profiled data across all

dynamic regions corresponding to that node.

Kismet maintains a ‘current’ pointer that tracks the sum-

mary node that corresponds to the current dynamic region.

When a new region is entered, it updates the ‘current’ pointer

to one of its children node based on statically assigned call-

site ID information. If there is no corresponding node, it cre-

ates a new summary node and updates the ‘current’ pointer.

When a region exits, the region’s profiled information is

added to the current node and the pointer returns to the par-

Figure 5: Parallelism Identification Logic. Kismet uses the

program structure and parallelism information provided by

SHCPA to help classify parallelism. This figure shows the

simple classification process. Kismet then uses the classi-

fication result to calculate the expressible self-parallelism

(ESP). ESP quantifies the amount of expressible parallelism

within a specific region of the program.

ent node. This process is similar to the call context tree de-

scribed in [5] but modified for Kismet’s region hierarchy.

Utilizing Context Sensitivity The example summarized re-

gion profile shown in Figure 3(b) contains two nodes for the

same function (foo) from what appears to be the same con-

text. This corresponds to two separate calls from the same

loop. While this increases the number of nodes in the sum-

marized profile, it allows Kismet to uncover new parallelism

opportunities.

To understand the merit of context-sensitive representa-

tion, consider the code in Figure 3. When the loop in func-

tion foo is parallel and N is large, the parallelism of this

loop significantly differs between callsites A and B. Callsite

A’s loop will always have a self-parallelism of 1, providing

no benefit to parallelism and likely causing slowdown due

to synchronization overhead. Callsite B’s loop will have a

self-parallelism of N and would likely be a good candidate

for parallel refactoring. Kismet can capitalize on the split

contexts, incorporating the speedup from callsite B into its

estimates while ignoring callsite A.

4. Speedup Predictor

Kismet’s speedup predictor attempts to find the upper bound

on parallel speedup of a program by examining a spec-

trum of candidate parallelizations of the program on the

target machine. Kismet’s self-parallelism profiling provides

the groundwork for calculating this speedup but it alone is

not enough to determine a tight bound on speedup. In this

section we will describe how Kismet processes the self-

parallelism data to predict the maximum parallel speedup.

4.1 Expressible Self-Parallelism (ESP)

While Kismet’s self-parallelism profile quantifies the paral-

lelism in each region of the program, there is no guaran-

tee that the parallelism will be expressible. Many systems

have limitations on the type of parallelism that can effec-

tively be expressed. Kismet transforms self-parallelism into

expressible self-parallelism (ESP) in two steps. First, it clas-

sifies the type of parallelism found in each region. Sec-

ond, it uses this classification to conditionally adjust self-

parallelism into ESP, as follows. Regions that have self-

parallelism that is unexpressible are assigned an ESP of 1.

Regions with self-parallelism that is expressible have an ESP

that is equivalent to their SP.

Figure 5 illustrates the Kismet’s decision process when

classifying parallelism. As described in Section 3, Kismet’s

region hierarchy has been designed to ensure that only leaf

regions have instruction level parallelism (ILP) and that ILP

is found only in leaf regions. The first step in Figure 5 is thus

to check if the region is a leaf. If the region is not a leaf then

the parallelism is either of the form of loop- or task-level

parallelism. Kismet checks the region type to determine if

there is a loop or a function.

Kismet further classifies loop parallelism based on whether

there are cross-iterations dependencies. Loops without cross-

iteration dependencies are classified as DOALL while those

with cross-iteration dependencies are classified as DOACROSS.

While Kismet’s profile output does not contain statistics on

the number of cross iteration dependencies, it does contain

the information needed to quickly distinguish DOALL and

DOACROSS loops. Namely, the “P bit” described in Sec-

tion 3 indicates if all iterations are independent. Kismet ex-

amines the “P bit” for the region, classifying the region as

DOALL if P == 1 and DOACROSS otherwise.

As with any dynamic analysis tool, Kismet’s identifica-

tion of parallelism is subject to differences across multiple

inputs. In practice we have found that while the amount of

speedup may vary slightly across multiple inputs, the Kismet

classification is consistent across these same inputs.

4.2 Parallel Execution Time Model

Although self-parallelism is a major factor that affects the

realizable speedup of a region, there are other major fac-

tors such as allocated core counts and parallelization over-

head. Kismet uses a parallel execution time model that cap-

tures major factors that affect parallel execution time. With

the parallel execution time model, Kismet’s speedup predic-

tor can evaluate the effectiveness of parallelization plan it

produces, and reports the plan that would bring the high-

est speedup. We also show a cache-aware parallel execution

time model that incorporates changed cache miss rates after

parallelization.

Base Model The base parallel execution time model in-

corporates region structure, core count, and parallelization

overhead in addition to self-parallelism. This model uses the

following equation to determine the execution time of region

R:

ET (R) =



















∑n
k=1 ET (child(R, k))

min(SP (R), A(R))
+O(R) non-leaf

work(R)
min(SP (R), A(R))

+O(R) leaf

While there are different equations for leaf and non-leaf

regions, they follow the same general model. The first term

represents the time needed to execute the parallelized, as-

suming that A(R) cores are allocated to that region. The top

of the fraction represents the serialized execution time—the

work of a leaf region, or the sum of the children’s work of

a non-leaf region. This time is divided by the minimum of

the self-parallelism of the region (SP (R)) and A(R). Intu-

itively, this means that the speedup is either fundamentally

limited by the parallelism available—when SP (R) is the

limiting factor—or by the amount of parallel resources allo-

cated to the region—when A(R) is the limiting factor. Note

that the execution time of the non-leaf regions depend on

the execution time of their children; this forces a bottom-up

approach to calculating the execution time of the program.

The second term, O(R) models target-dependent parallel-

ization overhead. Parallel execution typically involves over-

head from several sources: thread management, synchro-

nization, communication, etc.. As a result, the overhead fac-

tor is highly target dependent. For example, the synchro-

nization operation takes less than 20 cycles in the MIT Raw

processor but takes several thousand cycles on shared mem-

ory multicore processors. As such, Kismet allows target-

dependent customization of O(R) by accepting paralleli-

zation constraints. This overhead function directly impacts

the parallelization granularity as the amount of work in a

region should offset parallelization overhead for a profitable

parallelization.

Cache-Aware Model While the base model is able to ac-

curately model benchmarks that have up to linear speedup,

our results showed that some benchmarks resulted in super-

linear speedup when parallelized. For example, the cg

benchmark from the NAS Parallel Bench [9] showed sig-

nificant super-linear speedup when using between 4 and 16

cores on 32-core AMD Opteron system. We found that this

was a result of increasing cache size with a larger number of

cores on this system, prompting us to include a cache-aware

model of parallel execution time.

Kismet’s cache-aware model extends the base model by

including the memory service time (MST) in the calculation

of ET (R). MST represents time spent in memory accesses

that resulted in a cache miss; it is calculated using the fol-

lowing equation:

MST (R) =























∑n
k=1 MST (child(R, k))

A(R)
non-leaf

∑depth
i=1 CMTi(R)

A(R)
leaf

For both leaf and non-leaf equations, MST sums the time

spent and for cache misses—either in that region for a leaf

region, or among all children of a non-leaf region—in the

level i cache, CMTi, and divides this by the number of cores

allocated to the region, A(R). This optimistically assumes

that the memory system of the target is scalable, distribut-

ing memory accesses evenly across cores so that they may

be simultaneously serviced without penalty. Although it is

possible to model more complicated behaviors of memory

systems, this simple cache model appears to do a reason-

able job of predicting superlinear speedup effects due to the

memory systems.

To calculate the cache miss time at level i, Kismet uses

the following equation:

CMTi(R) =
n
∑

i=1

MemCnt(R)∗Missi(R, conf)∗Penaltyi

where MemCnt(R) is the number of memory accesses in

region R, Missi(R, conf) is the cache miss rate for level

i, conf is a specific memory configuration, and Penaltyi
represents the penalty for a level i cache miss. As more

cores are allocated, the total cache size of conf increases,

potentially leading to a decrease in Missi(R, conf).

5. Case Studies - Raw and Multicore

In this section, we demonstrate how Kismet can be con-

figured to a specific platform by examining two very dif-

ferent platforms: the MIT Raw tiled multicore processor

(“Raw”) [14, 35, 36, 48] and a conventional multicore pro-

cessor (“Multicore”). Table 1 shows details of these two

targets. We also model specific software platform because

software platforms also create constraints in parallelization,

affecting the speedup even on the same hardware. Specif-

ically, we model the automatically parallelizing compiler

RawCC [4, 32] for Raw, and manual OpenMP parallelization

for Multicore. For each platform, we first introduce hardware

characteristics and parallelization constraints, and describe

how we model parallelization overhead in parallel execu-

tion time model, and then finally describe the target-specific

planning algorithm.

5.1 Targeting Raw in Kismet

Platform Description MIT Raw is an early tiled multi-

core processor [17, 46, 49] featuring a fast, 1-cycle per

hop, fine-grained scalar operand network [50]. Although

Platform Raw Multicore

Core Type Modified MIPS AMD Opteron

L1 Size 32KB / Core 64KB / Core

L2 Size - 512KB / Core

L3 Size - 6MB / Four Cores

SW Platform RawCC OpenMP

Expressible ILP DOALL

Parallelism

Non Reduction

Parallelization 2 + 2
√
N 250 * N

Overhead (cycles)

Reduction

Parallelization 2 + 2
√
N 500 * N

Overhead (cycles)

Table 1: Overview of Two Platforms - Raw and Multicore.

These two targets have different constraints in paralleli-

zation, expressible parallelism, and parallelization overhead.

many different forms of parallelism (ILP, TLP, DLP, etc) are

expressible on the Raw ISA, we model the RawCC [4, 32]

parallel compiler, for which only ILP is expressible.

RawCC finds ILP in each basic block and performs

space-time scheduling to exploit it. For each instruction, the

space-time scheduling determines which core executes the

instruction for minimum total execution time. Inter-core data

dependencies are resolved utilizing Raw’s low latency net-

work, and control flow information is broadcast across cores

to ensure all cores execute the same basic block. If needed,

RawCC performs loop unrolling to increase the amount of

exploitable ILP in a loop.

Modeling Parallelization Overhead Two sources can in-

cur parallelization overhead in Raw: control dependencies

and data dependencies.

To ensure control dependencies are respected, RawCC

broadcasts the control dependency information to all cores

via Raw’s static network. At the end of every basic block,

each core waits for the control dependence information and

branches to the specified basic block when the information

arrives. The broadcast cost is 2+2
√
N , where N is the num-

ber of cores. In our parallel execution time model for Raw,

we approximate this overhead based on [50]: an injection la-

tency of 2 cycles, a network diameter of 2
√
N , and a per-hop

latency of 1 cycle.

Data dependences between two instructions on differ-

ent cores also incur communication overhead. Unlike with

broadcasts, the cost can be hidden if the communication

is not on the critical path of the execution by RawCC.

As Kismet aims to bound the achievable highest speedup,

Kismet does not model this overhead.

Planner Algorithm The planner algorithm takes as input

the summarized region profile which includes a region tree

where each node is a summarized region and each edge rep-

resents “reachable” relationship between them. As RawCC

can express only ILP in a program, the planner first filters

nodes with non-ILP parallelism and sets their ESP value

to 1, effectively eliminating them from consideration. After

ILP regions are identified, producing the plan with highest

speedup is straightforward. For each ILP region R, decide

A(R) that minimizes ET(R) with the given parallel execution

time model. For non ILP regions, A(R) is simply set to one,

representing serial execution. When A(R) is determined, par-

allel execution time model calculates the estimated parallel

execution time of the root node with given A(R) function,

and will compute the speedup against serial execution time.

5.2 Targeting Multicore with OpenMP in Kismet

Platform Description The multicore platform represents

conventional multicore processor systems such as Intel’s

Nehalem or AMD’s Opteron line or processors. They use

shared memory for inter-core communication and as a re-

sult the latency is significantly higher compared to Raw’s

low-latency networks. For the software platform, we target

the popular OpenMP platform that exploits mainly DOALL

parallelism. In addition to the restricting expressible paral-

lelism to DOALL, we also disallow nested parallelization –

although OpenMP supports nested parallelization, the fea-

ture is rarely used in practice as synchronization overhead is

typically too large.

Modeling Parallelization Overhead OpenMP paralleli-

zation involves overhead in several aspects: thread creation,

thread scheduling, reduction operations, and barrier cost. We

found that thread creation cost is typically amortized with a

thread pool implementation and scheduling cost is negligible

when static scheduling is used. We model barrier and reduc-

tion costs since they significantly impact performance. The

values chosen in Table 1 was taken from running the EPCC

micro-benchmark [11] on 32-core AMD Opteron machine.

Planner Algorithm Once regions with unexpressible par-

allelism are filtered out, the main constraint in the Multicore

planner is prohibited nested parallelization. When nested

parallelization is disallowed, the planner cannot choose more

than one region among regions in the path from the root node

to any node in summarized region profile.

To find the optimal solution with the constraint, Kismet

uses a dynamic programming algorithm. The core intuition

of the algorithm is that a region should be parallelized only

when the benefit of parallelization is greater than the benefit

from parallelizing any set of descendant regions. The plan-

ner traverses the region profile in a bottom-up fashion, from

leaf nodes up to the root node, while saving the optimal plan

P(R) at each region R. When the planner processes a new

region, it compares the expected benefit of parallelizing the

region against the cumulative benefit of the optimal plans of

its child regions. If the benefit of parallelizing R exceeds the

cumulative benefit of child regions, P(R) is set to R; other-

wise P(R) is set to the union of child regions’ optimal plans.

5.3 Kismet Usage

In this case study, we also address four commonly asked

usability issues about the Kismet tool.

How Sensitive Is Kismet to Changing Inputs? Since

Kismet’s analysis is dynamic, it can take advantage of in-

formation that can only be extracted by observing the run-

time execution of the program. This allows Kismet to find

opportunities for speedup that would be undiscovered by the

more conservative analyses found in parallelizing compil-

ers. The sensitivity of a potential speedup of a program to

the input varies by the underlying algorithms in the program.

Although Kismet could mirror parallelizing compilers and

provide more “worst-case” speedup estimates, this fails to

expose the opportunities that might be available in taking

advantage of input-dependent parallelization strategies. As

a result, our recommended usage model is that the user run

Kismet on the application multiple times, across a spectrum

of representative inputs, in order to gain a deeper knowledge

of this issue.

What Tasks are Performed by the User from Program

to Program? Our expectation is that the maintainer of

Kismet would “ship” Kismet with a library of representative

machine models and planners. When the user runs Kismet,

they would select via commandline parameter the machine

model which most closely matches the target architecture.

Thus, from the user’s perspective, the tool is “push-button.”

Although this is clearly future work, we have also envi-

sioned the possibility of using auto-tuner techniques (i.e. as

in FFTW) to automatically calibrate these components to a

new architecture, which alleviates the Kismet maintainers

of the need to update the library. Finally, as last resort, the

user could extend the machine model and planner library

themselves.

What is Kismet’s Utility in Providing Refactoring Assis-

tance? To be clear, Kismet does not try to make specific

recommendations about how the programmer should refac-

tor the program. Rather, it provides advanced information

that helps the programmer decide a) whether it may not be

worth the effort to parallelize the piece of code and b) what

kind of speedup might be reasonable to aim for. The latter

item may also influence the programmer’s choice of transfor-

mations, but only in an indirect fashion. Although Kismet’s

speedup upperbounds are indeed approximate, our results

show that they are rarely exceeded by actual parallelized

code. A consistently low estimated speedup upperbound is

a strong signal to the user that attaining speedup of the ex-

isting serial program is likely to be very challenging.

What is Kismet’s Benefit Over Parallelizing Compilers?

Kismet derives its key advantages over parallelizing com-

pilers through an extension of CPA, which is a dynamic

analysis not commonly used in today’s parallelizing compil-

ers. Speedup estimates provided by Kismet are likely to be

higher than those attainable by a parallelizing compiler, be-

cause they are determined by empirical measurements about

program parallelism rather than the ability of an automatic

tool to prove properties about the program. Kismet’s opti-

mistic view of speedup attempts to take into account the pro-

grammer’s greater ability to perform code transforms that

would be unsafe in automatic parallelizing compilers.

6. Experimental Results

This section evaluates Kismet as follows. We first outline our

evaluation methodology, including our selection of bench-

marks and target machines. Using this methodology, we then

quantify Kismet’s accuracy by comparing both predicted and

measured speedups from parallelization of three benchmark

suites on three machine classes. Finally, we analyze the im-

pact of novel techniques featured in Kismet: expressible self-

parallelism, cache-aware prediction, and summarization.

6.1 Methodology

Kismet’s goal is to provide realistic upper bounds on the

parallel performance of serial programs. Our results will

therefore focus on examining the tightness of these upper

bounds on a wide range of benchmarks on several different

platforms, both real and theoretical.

In our evaluation, we worked hard to address threats to

validity by evaluating Kismet’s performance across three

very different architectures and by comparing against third-

party parallelized codes from three benchmark suites, in-

cluding both low and high parallelism applications.

We selected benchmarks using two primary criteria. First,

the set of benchmarks needed to display a range of par-

allelism: from super-linear speedup down to very limited

speedup. Second, the benchmarks needed to have either 1)

a parallel implementation that could be used to gather real

results or 2) published performance results from a variety

of sources. Programs that are highly parallel tend to have

a parallel implementation available while those with low

amount of parallelism tend not to have parallel implemen-

tations available, possibly for reasons of vanity.

The selected benchmarks came from three benchmark

suites, each targeting a different platform. Here we overview

these suites, describing the amount and types of parallelism

available and describing the steps necessary to obtain our

results.

• Raw. We modeled RawCC’s ILP exploitation on Raw as

described in Section 5. Kismet’s estimates are compared

against speedup numbers reported in [35]. These bench-

marks range from non-scalable to scalable.

As mentioned before, RawCC utilizes loop unrolling to

increase the amount of ILP. Unrolling also enables serial

optimizations such as constant propagation and common

sub-expression elimination. To control for these factors

during profiling, Kismet uses LLVM to unroll the loops

before static instrumentation.

• SpecInt2000. SpecInt2000 benchmarks are widely known

to have extremely limited parallelism. Luckily, a wide

range of proposed parallelization systems—especially

those using speculative parallelization—have attempted

to parallelize these benchmarks, providing a fertile source

of published results. We chose to examine the bench-

marks from this suite that have most frequently been the

target of parallelization, namely bzip2, gzip, mcf, twolf,

and vpr.

In general, these benchmarks are hard to parallelize due

to complex dependence patterns in DOACROSS loops.

The speedup numbers reported in literature typically re-

quired heroic code transformations, and often involved

special speculative hardware support or simulation-only

experiments [24, 43, 44, 59, 60]. To approximate the ma-

chine models in those aggressive scenarios, we modi-

fied the Multicore-OpenMP model described in Section 5

so that it allows the exploitation of both DOALL and

DOACROSS with zero parallelization overhead. Even

with these permissive settings, Kismet is able to create

strong bounds.

• NAS Parallel Bench (NPB). In contrast to SpecInt2000,

NPB [9] generally consists of benchmarks with large

amounts of easy-to-exploit parallelism. We use the Multicore-

OpenMP predictor targeting only DOALL parallelism

with parameters for a 64-core system. We measured

speedup with third-party parallelized version [2] of NPB,

running these parallel versions on the 32-core AMD sys-

tem described in Table 1. For all NPB benchmarks, we

used the ’A’ input data set during both profiling and exe-

cution of the parallel versions.

What are “Correct” Speedup Predictions? In our evalua-

tion, we employ benchmarks that were parallelized by third-

party experts. To the extent that the benchmarks have been

widely used in the research community, we have a reason-

able expectation that these parallelization efforts are not too

far off from optimal. To us, “correctly predict” means 1)

that the actual speedup did not exceed the predicted speedup

upperbound (i.e., Kismet’s results correspond to actual em-

pirical upperbounds) and 2) that the speedup experienced

is close to Kismet’s predictions (i.e. Kismet provides rela-

tive tight bounds.) To the extent that Kismet’s bounds are

not tight, it could be either due to insufficient modeling of

machine constraints, or that there is remaining attainable

speedup in the application.

6.2 Prediction Results

Raw Figure 6 shows predicted and measured speedup

on RAW. In all benchmarks, Kismet correctly predicts the

speedup trend in both high parallelism benchmarks [8]

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
aespredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
fpppppredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
jacobipredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
lifepredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
shapredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
unstructpredicted

measured

Figure 6: Predicted and Measured Speedup for RAW Benchmarks on RAW hardware. Kismet models the MIT Raw pro-

cessor and RawCC, targeting the exploitation of ILP. From low- to high-parallelism benchmarks, Kismet provided appropriate

upper bounds. This successful speedup prediction results from Kismet’s ability to isolate ILP from other forms of parallelism

based on summarizing hierarchical critical path analysis.

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
bzip2predicted

hpca08
micro10

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
gzippredicted

hpca08
micro10

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
mcfpredicted

hpca08
tpds09
ppopp05

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
twolfpredicted

hpca08
cgo08
ppopp05

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
vprpredicted

hpca08
tpds09
ppopp05

Figure 7: Predicted and Reported Speedup in Low-Parallelism SpecInt2000 Benchmarks using third-party published

results. Kismet correctly captures the low parallelism in SpecInt2000 benchmarks, providing tight speedup upper bounds. Re-

ported speedup numbers are from multiple sources that applied aggressive hardware/software techniques to extract parallelism

from these benchmarks [24, 43, 44, 59, 60]. To model those experimental systems, Kismet is configured to exploit loop-level

parallelism (DOALL and DOACROSS) with zero overhead. Kismet’s expressible self-parallelism (ESP) and parallel execution

time model enables similar modeling for a wide range of systems.

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
btpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
cgpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
eppredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
ftpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
ispredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
lupredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
mgpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
sppredicted

measured

Figure 8: Estimated and Measured Speedup of NAS Parallel Bench on 32-core AMD Multi-core System. The NAS

benchmarks are generally much higher parallelism than the other benchmarks considered in the paper. Kismet’s cache-

aware prediction is able to bound the speedup of the benchmarks reasonably well, including for the cg benchmark which

observed superlinear speedup due to cache effects. The limited scalability of memory system becomes the bottleneck in several

benchmarks when using 16+ cores.

(jacobi, life) and low parallelism benchmarks (aes, fpppp,

sha, unstruct).

Super-linear speedup is predicted and measured in both

jacobi and life but only the former had actual super-linear

speedup. These benchmarks consist mainly of DOALL

loops, allowing unrolling to linearly increase the amount

of ILP. In contrast, unstruct also benefits from unrolling and

serial optimizations, but its loops are DOACROSS, limiting

unrolling’s effects and limiting scalability. For the remaining

benchmarks, aes, fpppp, and sha, unrolling was ineffective

as the parallelized regions were functions rather than loops.

Kismet correctly bounded the speedup for all benchmarks

except jacobi, which slightly outperformed Kismet’s esti-

mates. This anomaly can be attributed to the fact that in-

cluding more cores from the Raw processor increases the

number of registers, leading to decreased memory system

delays; Kismet did not incorporate this effect into its basic

estimation model as its effect is generally negligible.

SpecInt2000 Figure 7 shows Kismet’s speedup estimates

and speedup numbers gathered from third-party efforts run-

ning on aggressive hypothetical hardware [24, 43, 44, 59,

60]. These results confirm the generally-held belief that

SpecInt benchmarks are fundamentally limited in their par-

allelism. Kismet predicted low speedups, plateauing at a

speedup of 2 to 4 for all benchmarks except mcf. The re-

ported results conform to Kismet’s upper bounds.

NAS Parallel Bench (NPB) Figure 8 shows predicted

and measured speedups for the benchmarks in NPB. As

expected,—based on the abundant, easily-exploitable DOALL

parallelism of these benchmarks—Kismet estimated rela-

tively high speedups in all benchmarks except is. The lower

amount of speedup in is results from it having only a limited

amount of execution spent in parallel regions.

For ep and lu, measured speedup was very close to pre-

dicted speedup. Even though the communication cost on

multicore processors typically limit the scalability of bench-

Benchmark Estimated Speedup

Suite Name Without With Ratio

ESP ESP

RAW jacobi 8649 53.81 160.7X

life 26840 153.73 174.6X

sha 4.81 4.71 1.0X

fpppp 1190 98.74 12.1X

aes 39547 150.95 262.0X

unstruct 4416 8.22 537.2X

SpecInt2000 bzip2 17.4 3.39 5.1X

gzip 4.27 1.37 3.1X

mcf 67.12 5.92 11.3X

twolf 11.35 1.68 6.8X

vpr 15.77 3.1 5.1X

NPB bt 161650 64.46 2507.8X

cg 275 171.06 1.6X

ep 93.69 38.67 2.4X

ft 10709 151.92 70.5X

is 565 37.53 15.1X

lu 43845 52.98 827.6X

mg 2478 87.35 28.4X

sp 147873 65.18 2268.7X

Total mean 23592 61 363.2X

geomean 878 25 34.5X

Table 2: Estimated Speedup with and without Express-

ible Self-Parallelism. ESP helps the tightening of speedup

estimates by providing only expressible parallelism to

Kismet. In these benchmarks, ESP successfully reduced the

speedup estimates by 363.2X, showing that it is indeed a

central component in speedup estimation.

marks, these benchmarks’ speedup continued to scale as they

do not rely on inter-core communication.

cg is an interesting benchmark that exhibits super-linear

speedup in both predicted and measured speedup, thanks to

Kismet’s cache-aware performance model. We will examine

cg in more detail later in the results section.

mg and sp scale up to 8 cores, but their speedup starts

to decrease from that point. The drop in performance can

be attributed to shared-memory related overhead that is not

captured by Kismet’s parallel execution time model. These

benchmarks share data across cores and a data location is

written by multiple cores, greatly increasing the sharing

overhead. The gap between predicted and measured per-

formance in these benchmarks might be closed when in-

novations in parallel computer architecture reduce the cost

of shared-memory based communication. Alternately, more

advanced modeling of coherence traffic in Kismet could be

of assistance.

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
cgbaseline

cache−aware
measured

Core Count

1 2 4 8 16 32 64

%
 o

f
E

x
e

c
 T

im
e

0

20

40

60

80

100

cg
Memory
Cache
Computation

Figure 9: Impact of Cache-aware Estimation in cg Bench-

mark. The baseline estimation fails to predict the super-

linear speedup of cg. By incorporating potentially reduced

cache miss rates in a parallel execution, cache-aware esti-

mation successfully predicts the super-linear speedup. Exe-

cution time breakdown clearly shows the time spent in cache

and memory is considerably reduced from two-core to four-

core execution.

6.3 Impact of Expressible Self-Parallelism (ESP)

One of HCPA’s major advantages over traditional CPA is its

ability to localize parallelism using the self-parallelism met-

ric. Kismet further improves the utility of self-parallelism

by introducing the concept of expressible self-parallelism

(ESP), a filtering step that removes self-parallelism that is

unexpressible by the target system. To quantify the impact

of ESP, we compared the estimated speedup with and with-

out ESP in all benchmarks. We assumed zero overhead and

infinite cores in the speedup estimation, in order to isolate

the impact from ESP from other speedup limiting factors.

Table 2 shows the estimated speedup number with and

without ESP. By honoring only unexpressible parallelism,

Kismet tightens the speedup upper bound by up to 2508X,

with an average reduction in speedup of 363.2X. The results

confirm that ESP is an essential part in speedup estimation

system.

6.4 Impact of Cache-aware Speedup Estimation

Cache-aware time estimation model incorporates potentially

reduced cache service time caused by increased cache sizes

when additional cores are used in execution. The top part

of Figure 9 demonstrates the effectiveness of cache-aware

estimation shown on the cg benchmark. Without cache-

awareness Kismet predicts linear speedup, but measured

speedup exhibits super-linear speedup. In cache-aware pre-

diction, Kismet incorporates varying cache miss rates gath-

ered from Cachegrind [41] for each core configuration, cor-

rectly predicting super-linear speedup of cg.

The lower part of Figure 9 shows the breakdown of exe-

cution time on different number of cores. As the core count

switches from one to two and from two to four, the portion

of cache and memory service time is significantly reduced.

When the cache miss rate does not change, the portion for

cache and memory should remain the same. Indeed, switch-

ing from 1 to 4 cores, L1 cache miss rate drops from 23.3%

to 6.5%, and the last level cache miss rate drops from 6% to

0.1%.

6.5 Effectiveness of the Summarization Technique

To examine the effectiveness of Kismet’s summarization

technique, we ran NPB and SpecInt2000 benchmarks 1 with

two different input sizes (’S’ and ’A’ for NPB, ’test’ and

’ref’ for SpecInt2000) and examined dynamic region counts

as well as output file sizes. Figure 3 shows the results.

The results show that Kismet’s summarization technique

scales well with increasing input sizes and is effective at re-

ducing the output file size. As expected, the dynamic region

count significantly increases when we switch from small in-

put to larger input – 463X on average. With the larger input

sets, dynamic region profile data runs as large as several ter-

abytes, clearly too large to be conveniently stored to disk.

With SHCPA, there is virtually no difference in the output

file size between small and large input sets. Moreover, the

summarization technique results in very modest file sizes –

only 85KB on average.

7. Related Work

This section examines Kismet’s related work according to

four themes: parallelism profiling, performance prediction,

parallel performance debugging, and optimizations for re-

ducing memory and execution overheads of dynamic pro-

gram analyses.

Parallelism Profiling Approaches for parallelism-related

profiling have generally fallen into two categories: critical

path analysis and dependence testing.

Critical path analysis (CPA) dates back several decades,

with early important works including Kumar and Austin [7,

28]. CPA approaches seek to measure the number of concur-

rent operations at each time step along the critical path of

1 Raw benchmarks have only a single input set.

Bench Dynamic Region Count Output File Size

(Mega Regions) (Kilo Byte)

Input S L Ratio S L Ratio

bt 4 2665 666× 102 102 1.0×
cg 38 830 22× 15 15 1.0×
ep 50 805 16× 4 4 1.0×
ft 40 1526 38× 50 50 1.0×
is 0.7 104 149× 3 3 1.0×
lu 2 2208 1104× 45 45 1.0×
mg 2 969 485× 79 79 1.0×
sp 10 7452 745× 166 167 1.0×
bzip2 846 4086 5× 62 63 1.0×
gzip 141 4477 32× 96 137 1.4×
mcf 7.8 4758 595× 19 20 1.1×
twolf 11.4 23023 2093× 260 309 1.2×
vpr 42.1 3020 72× 104 107 1.0×
mean 92 4302 463× 77 85 1.1×

Table 3: Impact of Summarization Technique on File Size

in NPB. Switching from the small (S) to large (L) inputs

causes 463× more dynamic regions to execute on average,

but the output file size increases only 1.1× on average, from

77KB to 85 KB. Thus, the summarization technique is very

effective in keeping output file size manageable even with

large inputs.

the program. In contrast to these approaches, Kismet’s hier-

archical critical path analysis is able to localize parallelism

within nested program regions, and provide concrete guid-

ance on which program regions to target. Recently, Kulka-

rni et al [27] used a critical path based analysis to bring

insight into the parallelism inherent in the execution of ir-

regular algorithms. In contrast to Kismet’s focus on esti-

mating speedup in concrete code regions via HCPA, Kulka-

rni’s approach attempts to transcend the details of the im-

plementation and to quantify the amount of latent paral-

lelism in irregular programs that exhibit amorphous data par-

allelism. Other works have used CPA to perform limit stud-

ies for processors that target instruction-level parallelism

(ILP) [29, 52].

Dependence testing is another parallelism profiling ap-

proach that strives to uncover the dependencies between

different regions in the program. pp [30] is an early im-

portant work that proposed hierarchical dependence test-

ing to estimate the parallelism in loop nests. Similar tech-

niques are used in Alchemist [54] and Prospector [25]. Al-

though dependence testing and Kismet’s HCPA share simi-

lar goals, HCPA focuses on localizing and quantifying paral-

lelism across many different, nested program regions rather

than establishing independence of pre-existing regions. As

a result, it can identify more nuanced forms of parallelism

even if significant code transformation would be required to

exploit it. Dependence testing is generally more pessimistic

and sensitive to existing program structure.

Performance Prediction CilkView [18] and Intel Parallel

Advisor’s Suitability Tool [1] are recent tools whose motiva-

tion is similar to Kismet. Like Kismet, they also predict par-

allel performance on a target with arbitrary number of cores.

Unlike Kismet, however, CilkView and Parallel Advisor rely

on the user’s parallelized code—or annotations—to predict

speedup. Kismet minimizes user’s efforts in prediction by

automatically detecting parallelism in the serial program.

Simulation has been used to predict the performance of

processors and systems that are still in development. In this

case, a parallel version of the program exists, but the ma-

chine itself is not available to run it. ManySim [56] is one

such simulator that was designed to evaluate the perfor-

mance potential and scalability of large-scale multicore pro-

cessors. GEMS [37] is a full-system functional simulator for

multiprocessors. It separates the simulation from the tim-

ing models, allowing them build a detailed memory system

timing simulator rather than focus on basic functional sim-

ulation. However, simulators still require code that has been

parallelized for these systems, unlike Kismet.

A number of works have looked at the limits of paral-

lelism and their impact on performance. Theobald et al [51]

examined the “smoothability” of a program’s parallelism,

i.e. the ability to which a program’s parallelism could be

equally spread throughout the program’s entire execution

to ensure high utilization on a constrained multiprocessor.

Rauchwerger et al [45] also looked at the ability to map

ideal parallelism to a constrained processor, introducing the

concept of slack to describe the ability of parallelism to be

pushed to later parts of the program. Kismet improves upon

these works by using HCPA’s ability to localize parallelism;

Kismet can examine the effect of parallelizing specific re-

gions of the program in order to gain a better estimate of the

program’s parallel performance.

There have been several efforts to predict serial perfor-

mance [20, 23, 34, 42]. In theory, these predictions could be

combined with Kismet’s speedup predictions to predict the

parallel execution time of a program.

Several works have looked at predicting the scalability

of parallel programs based on their performance on a small

number of processors [10, 53]. Barnes et al [10] looked

at several techniques for extrapolating performance of MPI

programs, including one that measured the global critical

path. Zhai et al [53] avoid performance extrapolation to

predict performance; instead, they use deterministic replay

to measure sequential time of each process using only a

single node. Again, these systems differ from Kismet in

that they predict performance based on an existing parallel

implementation.

Hill and Marty [19] recently proposed a simple perfor-

mance analytical model, extending Amdahl’s law. Their

model assumes future processors include different types of

cores and each program region can choose the more appro-

priate core based on its workload. Chung and Mai [12] fur-

ther improved Hill and Marty’s model with heterogeneous

chip including ASIC, FPGA, and GPU. Although we kept

Kismet’s analytical model relatively simple, Kismet can eas-

ily incorporate these sophisticated models if needed.

Parallel Performance Debugging Tools Several systems

have been developed in order to help debug the performance

of pre-existing parallel programs [3, 13, 39]. SvPablo pro-

vided an integrated viewing and instrumentation environ-

ment that allowed performance debugging of MPI programs.

Adve et al [3] performed similar analysis on data parallel

FORTRAN. Paradyn [39] automatically searches for perfor-

mance problems in long running programs by dynamically

instrumenting the program. Martonosi et al [38] were able

to examine the performance of the cache system with very

little overhead by integrating performance monitoring into

existing cache-coherence mechanisms. These systems could

be used in concert with Kismet to help determine why actual

performance does not match the predicted bound on program

performance. SUIF Explorer [33] uses static and dynamic

analyses to understand parallel-execution related properties,

much like Kismet; however, Kismet does not require user in-

teraction, and uses a simplify hardware specifications to give

reasonable speedup predictions of post-parallelized code.

Reducing Dynamic Program Analysis Overheads Dy-

namic program analyses often have huge memory and stor-

age requirements as they can produce data for each dynamic

instruction in a program that easily could run billions or

trillions of instructions. To alleviate the severe memory re-

quirements of dynamic program analysis, compression tech-

niques have been used in whole program analysis [55], de-

pendence analysis [26], and HCPA [16]. Initially Kismet

used a compression technique similar to [16], but we found

that handling more irregular programs like SpecInt necessi-

tated the creation of Kismet’s summarization-based HCPA

variant, SHCPA.

In addition to memory overhead, runtime overhead is

also important for practical use. Specifically for program

analysis that uses shadow memory, the implementation of

shadow memory significantly impacts the overall runtime

as each load and store instruction will access the shadow

memory. Valgrind [41]’s shadow memory implementation is

described in [40]. Umbra [58] and EMS64 [57] proposed

efficient shadow memory implementation for 64-bit address

space, exploiting the sparse usage of memory space in 64-bit

systems and cached shadow memory. Although techniques

introduced in these papers can be incorporated in Kismet,

Kismet’s shadow memory implementation differs from other

tools as it needs to efficiently store and retrieve multiple

timestamps for each memory address to track the critical

path of multiple region levels.

Prior HCPA-Based Work Kismet extends the HCPA re-

gion hierarchy proposed in [22] and [16] to include sequence

regions. Sequence regions allow HCPA-based planners to

separate ILP from other classes of parallelism. This is im-

portant for modeling performance of both superscalar-based

out-of-order systems, where the ILP is likely already ex-

ploited by the base core (and thus is paradoxically unex-

pressible as far as the parallel programming is concerned),

and also Raw-like systems with ILP compilers, where ILP

is the primary source of parallelism. Sequence regions en-

able the implement of Kismet’s expressible self-parallelism

(ESP) metric, which allows Kismet to filter regions that

have parallelism unexpressible by the target platform, which

greatly enhances accuracy. Kismet also adds a cache-aware

execution time model and models the effects of loop un-

rolling; both of these enhancements enable prediction of

super-linear speedup. Kismet introduces a new HCPA vari-

ant with region summarization, SHCPA, which is important

for handling irregular applications for which trace compres-

sion is not effective.

8. Conclusion

This paper presents Kismet, a tool that estimates the par-

allel speedup of serial programs. Kismet automatically lo-

calizes the parallelism available throughout nested program

regions and combines this with user-specified constraints to

provide approximate upper bounds for the parallel speedup

attainable on a specified system. Our preliminary results on

19 benchmarks and two classes of machines (AMD Opteron

and a tiled processor) demonstrate Kismet’s effectiveness at

providing accurate upper bounds across diverse programs

and machine architectures.

Acknowledgment

This research was funded by the US National Science Foun-

dation under CAREER Award 0846152, Awards 0725357

and 1018850, and by a gift from Advanced Micro Devices.

References

[1] “Intel Parallel Advisor 2011.” http://software.intel.

com/en-us/articles/intel-parallel-advisor.

[2] “NAS Parallel Benchmarks 2.3; OpenMP C.” www.hpcc.jp/

Omni/.

[3] V. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. A.

Reed, and K. Kennedy. “An integrated compilation and per-

formance analysis environment for data parallel programs.” In

SC ’95: Proceedings of the ACM/IEEE conference on Super-

computing, 1995.

[4] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee,

V. Sarkar, D. Srikrishna, and M. Taylor. “The RAW compiler

project.” In Proceedings of the Second SUIF Compiler Work-

shop, 1997.

[5] G. Ammons, T. Ball, and J. R. Larus. “Exploiting hardware

performance counters with flow and context sensitive profil-

ing.” In PLDI ’97: Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation,

1997.

[6] T. E. Anderson, and E. D. Lazowska. “Quartz: A tool for tun-

ing parallel program performance.” In SIGMETRICS, vol. 18,

1990.

[7] T. Austin, and G. S. Sohi. “Dynamic dependency analysis

of ordinary programs.” In ISCA ’92: Proceedings of the

International Symposium on Computer Architecture, 1992.

[8] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor,

J. Kim, S. Devabhaktuni, and A. Agarwal. “The raw bench-

mark suite: computation structures for general purpose com-

puting.” In FCCM ’97: Proceedings of the IEEE Symposium

on FPGA-Based Custom Computing Machines, 1997.

[9] Bailey et al. “The NAS parallel benchmarks.” In SC ’91:

Proceedings of the Conference on Supercomputing, 1991.

[10] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves,

B. de Supinski, and M. Schulz. “A regression-based approach

to scalability prediction.” In ICS ’08: Proceedings of the In-

ternational Conference on Supercomputing, 2008.

[11] J. M. Bull, and D. O’Neill. “A microbenchmark suite for

OpenMP 2.0.” SIGARCH Computer Architecture News, Dec

2001.

[12] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. “Single-chip

heterogeneous computing: Does the future include custom

logic, fpgas, and gpgpus?” In MICRO ’10: Proceedings of the

IEEE/ACM International Symposium on Microarchitecture,

2010.

[13] L. De Rose, and D. Reed. “Svpablo: A multi-language

architecture-independent performance analysis system.” In

ICPP ’99:International Conference on Parallel Processing,

1999.

[14] E. Waingold et al. “Baring It All to Software: Raw Machines.”

IEEE Computer, Sept 1997.

[15] S. Garcia, D. Jeon, C. Louie, S. Kota Venkata, and M. B. Tay-

lor. “Bridging the parallelization gap: Automating parallelism

discovery and planning.” In HotPar ’10: Proceedings of the

USENIX workshop on Hot Topics in Parallelism, 2010.

[16] S. Garcia, D. Jeon, C. Louie, and M. B. Taylor. “Kremlin:

Rethinking and rebooting gprof for the multicore age.” In

PLDI ’11: Proceedings of the Conference on Programming

Language Design and Implementation, 2011.

[17] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia, J. Auric-

chio, J. Babb, M. Taylor, and S. Swanson. “GreenDroid: A

Mobile Application Processor for a Future of Dark Silicon.”

In Hotchips, 2010.

[18] Y. He, C. Leiserson, and W. Leiserson. “The Cilkview Scala-

bility Analyzer.” In SPAA ’10: Proceedings of the Symposium

on Parallelism in Algorithms and Architectures, 2010.

[19] M. D. Hill, and M. R. Marty. “Amdahl’s law in the multicore

era.” IEEE Computer, July 2008.

[20] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John,

and K. De Bosschere. “Performance prediction based on in-

herent program similarity.” In PACT ’06: Parallel Architec-

tures and Compilation Techniques, 2006.

[21] D. Jeon, S. Garcia, C. Louie, S. Kota Venkata, and M. B.

Taylor. “Kremlin: Like gprof, but for Parallelization.” In

PPoPP ’11: Principles and Practice of Parallel Programming,

2011.

[22] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor. “Parkour:

Parallel speedup estimates for serial programs.” In HotPar

’11: Proceedings of the USENIX workshop on Hot Topics in

Parallelism, May 2011.

[23] T. S. Karkhanis, and J. E. Smith. “A first-order superscalar

processor model.” In ISCA ’04: Proceedings of the Interna-

tional Symposium on Computer Architecture.

[24] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August.

“Scalable speculative parallelization on commodity clusters.”

In MICRO ’10: Proceedings of the IEEE/ACM International

Symposium on Microarchitecture, 2010.

[25] M. Kim, H. Kim, and C. Luk. “Prospector: A dynamic data-

dependence profiler to help parallel programming.” In HotPar

’10: Proceedings of the USENIX workshop on Hot Topics in

parallelism, 2010.

[26] M. Kim, H. Kim, and C.-K. Luk. “SD3: A scalable approach

to dynamic data-dependence profiling.” MICRO ’10: Pro-

ceedings of the International Symposium on Microarchitec-

ture, 2010.

[27] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and

C. Casçaval. “How much parallelism is there in irregular ap-

plications?” In PPoPP ’09: Proceedings of the ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Pro-

gramming, 2009.

[28] M. Kumar. “Measuring parallelism in computation-intensive

scientific/engineering applications.” IEEE TOC, Sep 1988.

[29] M. S. Lam, and R. P. Wilson. “Limits of control flow on

parallelism.” In ISCA, 1992.

[30] J. R. Larus. “Loop-level parallelism in numeric and symbolic

programs.” IEEE Trans. Parallel Distrib. Syst., 1993.

[31] C. Lattner, and V. Adve. “LLVM: A compilation framework

for lifelong program analysis & transformation.” In CGO

’04: Proceedings of the International Symposium on Code

Generation and Optimization, 2004.

[32] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,

and S. Amarasinghe. “Space-time scheduling of instruction-

level parallelism on a Raw machine.” In ASPLOS ’98: Inter-

national Conference on Architectural Support for Program-

ming Languages and Operating Systems, Oct 1998.

[33] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S.

Lam. “SUIF Explorer: an interactive and interprocedural par-

allelizer.” In PPoPP ’99: Proceedings of the ACM SIGPLAN

symposium on Principles and Practice of Parallel Program-

ming.

[34] G. Loh. “A time-stamping algorithm for efficient performance

estimation of superscalar processors.” In SIGMETRICS, 2001.

[35] M. B. Taylor et al. “Evaluation of the raw microprocessor:

An exposed-wire-delay architecture for ilp and streams.” In

ISCA ’04: Proceedings of the International Symposium on

Computer Architecture, Jun 2004.

[36] M. B. Taylor et al. “The Raw Microprocessor: A Computation

Fabric for Software Circuits and General-Purpose Programs.”

In IEEE Micro, Mar/Apr 2002.

[37] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. R.

Alameldeen, K. Moore, M. Hill, and D. Wood. “Multifacet’s

general execution-driven multiprocessor simulator (GEMS)

toolset.” SIGARCH Comput. Archit. News, Nov 2005.

[38] M. Martonosi, D. Felt, and M. Heinrich. “Integrating perfor-

mance monitoring and communication in parallel computers.”

In SIGMETRICS, 1996.

[39] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.

Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-

padam, and T. Newhall. “The Paradyn Parallel Performance

Measurement Tool.” IEEE Computer, 1995.

[40] N. Nethercote, and J. Seward. “How to shadow every byte

of memory used by a program.” In VEE ’07: Proceedings of

the 3rd international conference on Virtual Execution Envi-

ronments, 2007.

[41] N. Nethercote, and J. Seward. “Valgrind: A framework for

heavyweight dynamic binary instrumentation.” In PLDI ’07:

Proceedings of the Conference on Programming Language

Design and Implementation, 2007.

[42] D. Ofelt, and J. L. Hennessy. “Efficient performance predic-

tion for modern microprocessors.” In SIGMETRICS, 2000.

[43] M. K. Prabhu, and K. Olukotun. “Exposing speculative thread

parallelism in spec2000.” In PPoPP ’05: Proceedings of

the ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming, 2005.

[44] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I.

August. “Parallel-stage decoupled software pipelining.” In

CGO ’08: Proceedings of the International Symposium on

Code Generation and Optimization, 2008.

[45] L. Rauchwerger, P. K. Dubey, and R. Nair. “Measuring limits

of parallelism and characterizing its vulnerability to resource

constraints.” In MICRO ’93: Proceedings of the international

symposium on Microarchitecture, 1993.

[46] S. Bell et al. “TILE64 - Processor: A 64-Core SoC with

Mesh Interconnect.” In ISSCC ’08: IEEE Solid-State Circuits

Conference, 2008.

[47] N. R. Tallent, and J. M. Mellor Crummey. “Effective per-

formance measurement and analysis of multithreaded appli-

cations.” In PPoPP ’09: Proceedings of the ACM SIGPLAN

symposium on Principles and practice of parallel program-

ming, 2009.

[48] M. B. Taylor. Design Decisions in the Implementation of a

Raw Architecture Workstation. Master’s thesis, Massachusetts

Institute of Technology, Sept 1999.

[49] M. B. Taylor. Tiled Microprocessors. Ph.D. thesis, Mas-

sachusetts Institute of Technology, 2007.

[50] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.

“Scalar operand networks.” IEEE Transactions on Parallel

and Distributed Systems, Feb 2005.

[51] K. B. Theobald, G. R. Gao, and L. J. Hendren. “On the limits

of program parallelism and its smoothability.” In MICRO ’92:

Proceedings of the International Symposium on Microarchi-

tecture, 1992.

[52] D. W. Wall. “Limits of instruction-level parallelism.” In

Proceedings of the Conference on Architectural Support for

Programming Languages and Operating Systems, 1991.

[53] J. Zhai, W. Chen, and W. Zheng. “Phantom: predicting per-

formance of parallel applications on large-scale parallel ma-

chines using a single node.” In PPoPP ’10: Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2010.

[54] X. Zhang, A. Navabi, and S. Jagannathan. “Alchemist: A

transparent dependence distance profiling infrastructure.” In

CGO ’09: Proceedings of the International Symposium on

Code Generation and Optimization, 2009.

[55] Y. Zhang, and R. Gupta. “Timestamped whole program path

representation and its applications.” In PLDI ’01: Proceedings

of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2001.

[56] L. Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and

D. Newell. “Exploring Large-Scale CMP Architectures Using

ManySim.” IEEE Micro, July 2007.

[57] Q. Zhao, D. Bruening, and S. Amarasinghe. “Efficient mem-

ory shadowing for 64-bit architectures.” In ISMM ’10: Pro-

ceedings of the International Symposium on Memory Man-

agement, Jun 2010.

[58] Q. Zhao, D. Bruening, and S. Amarasinghe. “Umbra: Efficient

and scalable memory shadowing.” In CGO ’10: Proceedings

of the IEEE/ACM international symposium on Code Genera-

tion and Optimization, 2010.

[59] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. “Un-

covering hidden loop level parallelism in sequential applica-

tions.” In HPCA ’08: Proceedings of the International Sym-

posium on High Performance Computer Architecture, 2008.

[60] D. A. Zier, and B. Lee. “Performance evaluation of dy-

namic speculative multithreading with the cascadia architec-

ture.” IEEE Transactions on Parallel and Distributed Systems,

Jan 2010.

