
1 •  2003 IEEE International Solid-State Circuits Conference 0-000-000-0/00/$10.00 ©2003 IEEE

ISSCC 2003 / SESSION 9 / TD: DIGITAL ARCHITECTURE AND SYSTEMS / PAPER 9.7

9.7 A 16-Issue Multiple-Program-Counter 
Microprocessor with Point-to-Point Scalar 
Operand Network

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,
Fae Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Walter
Lee, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Saman
Amarasinghe, Anant Agarwal

Massachusetts Institute of Technology, Cambridge, MA

The drive for performance in the face of increasing wire delay
blurs the line between microprocessors and multiprocessors.
Microprocessor designs such as the Alpha 21464 have multi-cycle
“network” latencies between ALUs [1], and come close to having
multiple, parallel fetch units, much as a multiprocessor. A recent
paper [2] identifies the existence of a scalar operand network as
a minimal criterion for a design to be a microprocessor.
Specifically, a scalar operand network is the operand transport
mechanism that joins the dynamic scalar operands and opera-
tions of a program to meet in space to enact the computation
specified by a program graph. Scalar operand networks have
grown more sophisticated  starting from accumulator-ALU pairs,
adding register files, bypassing networks, multiple ALUs,
renaming, out-of-order execution, and most recently transition-
ing to asymmetric designs where routing an operand from the
output of one ALU to the input of another takes multiple cycles.

The Raw microprocessor at MIT was implemented to explore
architectural solutions to scalability problems in scalar operand
networks [2,3]. Today's microprocessor designers are finding it
increasingly difficult to convert burgeoning silicon resources into
usable, general-purpose functional units. In particular, the use of
global, centralized structures to implement operand naming,
routing, scheduling, and other parts of the scalar operand net-
work makes it difficult to scale the issue-width without impact-
ing the frequency. 

The Raw design divides the silicon area into an array of 16 iden-
tical, programmable tiles. A tile contains an 8-stage in-order sin-
gle-issue MIPS-style compute processor, a 4-stage pipelined
FPU, a 32kB data cache, two types of communication routers ---
static and dynamic, and 96kB of instruction cache. These tiles
are interconnected to neighboring tiles using four full duplex 32b
networks, two static and two dynamic. The static router controls
the static networks, which are used as point-to-point scalar
transport for operands between the tiles. The dynamic routers
and networks are used for all other traffic such as memory, inter-
rupts, I/O, and message passing codes.

Each tile is sized so that a signal can travel through a small
amount of logic and across the tile in one clock cycle. All signals
are registered at tile boundaries, thereby allowing the clock fre-
quency to remain constant even as issue width increases (i.e., as
more tiles are instantiated). Larger Raw systems can be
designed simply by stamping out more tiles. Figure 9.7.1 shows
the array of Raw tiles, an individual Raw tile, and its registered-
on-input network wires.

The static router is the main component of Raw’s scalar operand
network. The static router routes the outputs of instructions on
one tile to the inputs of dependent instructions on other tiles. If
the output is required on the same tile, then the 0-cycle latency
internal compute processor bypass paths can be used. Live but
not active values can be stored in the switch register file, com-
pute-processor register file, or in the FIFOs of the network.

The 5-stage static router controls two routing crossbars and thus
two physical networks. Each crossbar routes values between
seven entities: the static router pipeline, north, east, south, west,
the com-pute processor, and the other crossbar. The static router
fetches 64b instruction words from an 8k-entry cache. Each word
simultaneously encodes a small command (branch and decre-
ment, local register file accesses), and 13 routes, one for each
crossbar output. For each operand sent between tiles on the sta-
tic network, there is a corresponding instruction in the instruc-
tion cache of each router through which the word will travel.
These instructions are programmed by the compiler. Thus, the
static routers collectively reconfigure the entire communication
pattern of the network on a cycle-by-cycle basis, and enable Raw
to handle both scalar and streaming data types.

The static router is flow-controlled, and does not proceed to the
next instruction until all of the routes in the current instruction
have completed. This ensures that destination tiles receive
incoming words in a known order, even when tiles suffer unpre-
dictable delays from cache misses, interrupts, or branch mispre-
dictions. The static router provides single-cycle-per-hop latencies
and can route two values in each direction per cycle. Because
Raw’s network is point-to-point, and because operands are rout-
ed only to those tiles that need them, the Raw design decimates
the bandwidth required for operand transport relative to a com-
parable broadcast-based superscalar.

As shown in Fig. 9.7.2, tile-to-tile communication latency is
reduced by integrating the networks directly into the bypass
paths of the compute processor. Registers 24..27 are mapped to
the four physical networks on the chip. For example, a read from
register 24 pulls an element from an input FIFO, while a write
to register 24 places data into an output FIFO. The output
FIFOs automatically pull the oldest value out of the pipeline as
soon as it is ready, rather than just at the writeback stage. This
decreases the ALU-to-network latency by as much as 4 cycles.
This logic is exactly like the standard bypass logic of a processor
pipeline except that it gives priority to older instructions rather
than newer instructions.

Unlike the 21464, where the assignment of operations to distrib-
uted ALUs is made at run-time, the assignment of operations to
tiles for Raw is done by a sophisticated compiler at compile time.
The compiler uses CAD-like algorithms to partition operations,
place the operations on tiles, and specify the static router’s route
instructions to transfer operands between tiles [4]. Figure 9.7.3
overviews this process and Fig. 9.7.4 shows some application
performance numbers.

The Raw chip 16-tile prototype is built in IBM’s SA-27E, a
0.15µm, 1.8 V, 6-level Cu ASIC process. Although the Raw array
is 256mm2, we used a 331mm2 die to allow a 1657 pin CCGA
package. These HSTL pins provide 14 full-duplex 32-bit chip-
speed channels that can be connected to either DRAM or stream
I/O devices. The chip taped out in August 2002 at a worst-case
frequency of 225 MHz. Figures 9.7.5 and 9.7.6 show details of the
Raw chip and of a single Raw tile, respectively.
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Figure 9.7.1: Raw tiles and networks. Figure 9.7.2: Network integrated into compute processor bypass paths.

Figure 9.7.3: The raw compiler.

Figure 9.7.5: Chip micograph. Figure 9.7.6: Raw tile layout.

Figure 9.7.4: Raw performance on various benchmarks.
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Ex: lb r25, 0x341(r26)

tmp0 = (seed*3+2)/2
tmp1 = seed*v1+2
tmp2 = seed*v2 + 2
tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
v3 = tmp3 - v2
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