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Dynamic Program Analysis 

  Runtime analysis of a program’s behavior. 
  Powerful: gives perfect knowledge of a program’s 

behavior with a specific input. 
–  Resolves all the memory addresses. 
–  Resolves all the control paths.  

  Challenges (Offline DPA) 
–  Memory overhead (> 5X is a serious problem) 

•  1GB -> 5GB 
–  Runtime overhead (> 250X is a serious problem) 

•  5 minutes -> 1 day 
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Motifs for  
Dynamic Program Analysis 

  Shadow Memory: associates analysis metadata  with 
program’s dynamic memory addresses. 

  Poly-Scopic Analysis: associates analysis metadata  with 
program’s dynamic scopes. 

3	




Motifs for  
Dynamic Program Analysis 

  Shadow Memory: associates analysis metadata  with 
program’s dynamic memory addresses. 

  Poly-Scopic Analysis: associates analysis metadata  with 
program’s dynamic scopes. 

  Vector Shadow Memory (this paper): associates analysis 
metadata with BOTH dynamic memory addresses AND 
dynamic scopes. 
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Motif #1 Shadow Memory:  
An Enabler for Dynamic Memory Analysis 

  Data structure that associates metadata (or tag) 
with each memory address.  

  Typically implemented with a multi-level table. 
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int value = *addr; 
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Dynamic Program Analyses 
Employing Shadow Memory 
  Critical Path Analysis [1988] 

–  Finds the longest dynamic dependence chain in a 
program. 

–  Employs shadow memory to propagate earliest 
completion time of memory operations. 

–  Useful for approximating the quantity of parallelism 
available in a program. 

  TaintCheck [2005] 
  Valgrind [2007] 
  Dr. Memory [2011] 
  … 
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Motif #2 Poly-Scopic Analysis 

  Analyzes multiple dynamic scopes (e.g. loops and 
functions on callstack) by recursively running a 
dynamic analysis. 

  Main benefit: provides scope-localized information. 

  Commonly found in performance optimization tools 
that focus programmer attention on specific, 
localized program regions. 



Poly-Scopic Analysis Example:  
Time Profiling (e.g. Intel VTune) 

for (j=0 to 32) 

for  (i=0 to 4) 

for (k=0 to 2) 

foo (); 

bar1(); 

bar2(); 

  Recursively measures each scope’s total-time. 
–  total-time (scope) = timeend(scope) – timebegin(scope) 

  Pinpoints important scopes to optimize by using self-time. 
–  self-time (scope) = total-time(scope) - total-time(children) 

Scope total-time 

Loop i 100% 
Loop j 50% 
foo() 50% 

Loop k 50% 
bar1() 25% 
bar2() 25% 

Poly-Scopic 
Analysis 

self-time 

0% 
0% 

50% 
0% 

25% 
25% 



Hierarchical Critical Path Analysis 
(HCPA): Converting CPA to Poly-Scopic	


  Recursively measures total-parallelism by running CPA. 
–  “How much parallelism is in each scope?” 

  Pinpoint important scopes to parallelize with self-parallelism.  
–  “What is the merit of parallelizing this loop? (e.g. outer, middle, inner)” 

  HCPA is useful. 
–  Provides a list of scopes that deserve parallelization [PLDI 2011]. 
–  Estimates the parallel speedup from a serial program [OOPSLA 2011].  

Beats 3rd 
party experts 

Wow!! 



Memory Overhead: Key Challenge of Using 
Shadow Memory in a Poly-Scopic Analysis 

  A conventional shadow memory already incurs high memory 
overhead (e.g. CPA). 

  Poly-scopic analysis requires an independent shadow 
memory space for each dynamic scope, causing 
multiplicative memory expansion (e.g. HCPA). 

loop i 

loop j loop k 

foo() bar1()	
 bar2() 

for (j=0 to 32) 

for  (i=0 to 4) 

for (k=0 to 2) 

foo (); 

bar1(); 

bar2(); 

Shadow Mem 

Shadow Mem 

Shadow Mem 



HCPA’s Outrageous Memory Overhead 

Suite Benchmark Native 
Memory (GB) 

w/ HCPA 
(GB) 

Mem. Exp. 
Factor 

Spec bzip2 0.19 28.2 149X 

mcf 0.15 16.0 105X 

gzip 0.20 21.7 109X 

NPB mg 0.45 13.0 29X 

cg 0.43 14.4 34X 

is 0.38 13.9 36X 

ft 1.68 66.0 39X 

Geomean 0.36 20.8 GB 59X 

11	

Before applying techniques in this paper… [PLDI 2011] 



This Paper’s Contribution 
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32-core NUMA w/ 512GB RAM 
@ supercomputer center 

Macbook Air w/ 4GB RAM 
@ student’s dorm room 

BEFORE AFTER 

Make shadow-memory based poly-scopic analysis
 practical by reducing memory overhead! 



Outline 

  Introduction 
  Vector Shadow Memory 
  Lightweight Tag Validation 
  Efficient Storage Management 
  Experimental Results 
  Conclusion 
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What’s Wrong Using Conventional 
Shadow Memory Implementations? 
  Setup / clean-up overhead at scope boundaries 

incurs significant memory and runtime overhead. 
  For every memory access, all the scopes have to 

lookup a tag by traversing a multi-level table. 

loop i 

loop j loop k 

foo() 
bar1()	
 bar2() 

Shadow Mem 

Shadow Mem 

Shadow Mem 
… 

Segment 
Table 

Tag Table 

0 

3 

… 

P0 

P1 

… 

Multi-level Table 



The Scope Model of Poly-Scopic Analysis 

  What is a scope? 
–  Scope is an entity with a single-entry.  
–  Two scopes are either nested or do not overlap. 

  Properties 
–  Scopes form a hierarchical tree at runtime. 
–  Scopes at the same level never overlap. 

loop i 

loop j loop k 

foo() bar1()	
 bar2() 

for (j=0 to 32) 

for  (i=0 to 4) 

for (k=0 to 2) 

foo (); 

bar1(); 

bar2(); 



Vector Shadow Memory 
  Associates a tag vector to an address. 

–  Scopes in the same level share the same tag storage. 
–  Scope’s level is the index of a tag vector. 

  Benefits 
–  No storage setup / clean-up overhead. 
–  A single tag vector lookup allows access to all the tags. 
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loop i 

loop j loop k 

foo() bar1()	
 bar2() 

addr size Level 0 Level 1 Level 2 

0x4000 3 tag[0] tag[1] tag[2] 

0x4004 3 tag[0] tag[1] tag[2] 

0x4008 3 tag[0] tag[1] tag[2] 

Tag Vector 



Challenge: Tag Validation 

  A tag is valid only within a scope, but scopes in the 
same level share the same tag storage. 

  Need to check if each tag element is valid. 
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loop i 

loop j loop k 

foo() bar1()	
 bar2() 

2 1 1 

2 0 0 

Tag vector of 0x4000 
 written in foo() 

Tag vector of 0x4000 
read in bar2() 

Tag Validation 

Counting Memory Accesses in Each Scope 

How can we support a lightweight tag validation? 



Challenge: Storage Management 

  Tag vector size is determined by the level of the 
scope that accesses the address. 

  Need to adjust the storage allocation as the tag 
vector size changes. 
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How can we efficiently manage storage 
without significant runtime overhead? 

0 1 5 

Tag Vector of 0x4000 

Access from level 2 

Access from level 9 

Access from level 1 

1 2 6 … … 1 

Vector Size 

3 

10 

2 3 2 

Event Storage Op 

allocate 

expand 

shrink 
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  Experimental Results 
  Conclusion 
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Overview of Tag Validation Techniques 

  For tag validation, Skadu uses version that 
identifies active scopes (scopes on callstack) 
when a tag vector is written. 
–  Baseline: store a version for each tag element. 
–  SlimTV: store a version for each tag vector. 
–  BulkTV: share a version for a group of tag vectors. 
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Ver Tag [N] Ver [N] 

Tag [N] Ver [N] 

… … 

Tag [N] Ver [N] 

Tag [N] 

Tag [N] 

… 

Tag [N] 

Ver 

… 

Ver 

Tag [N] 

Tag [N] 

… 

Tag [N] 

Ver 

(a) Baseline (b) SlimTV (c) BulkTV 



Baseline Tag Validation 

  for each level 
  If (Ver [level] != Ver_active[level]) { 
        // invalidate the level 

 Tag[level]  Init_Val 
 Ver[level]  Ver_active[level] );   

} 
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Tag [N] Ver [N] 

Tag [N] Ver [N] 

… … 

Tag [N] Ver [N] 

(a) Baseline 



Slim Tag Validation: 
Store Only a Single Version 

// find max valid level 
j = find ( Ver, Ver_active[]); 

// scrub invalid tags from level j+1 
memset ( & Tag[j+1], N-j-1, init_val); 

// update total-ordered version number 
Ver = Ver_active[current_level] 22	


Ver Tag [N] 

Tag [N] 

… 

Tag [N] 

Ver 

… 

Ver 

  Clever trick: create a total ordering between all  
   versions in all dynamic scopes (timestamp).  
  Tag Validation:  

(b) SlimTV 



Bulk Tag Validation: Share a Version 
Across Multiple Tag Vectors 
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  Clever trick: Exploit memory locality and validate  
   multiple tag vectors together.  
  Benefit: Reduced memory footprint and more efficient  
   per-tag vector invalidation. 
  Downside: Some tag vectors might be never accessed 

after tag validation, wasting the validation effort.  
Tag [N] 

Tag [N] 

… 

Tag [N] 

Ver 

(c) BulkTV 
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Baseline:  
Array-Based VSM Organization 

  A tag vector is stored 
contiguously in an array. 

  Efficient tag vector operations 
–  loop through each array element.  

  Expensive resizing 
–  Resizing would require expensive 

array reallocation. 
–  Unclear when to shrink a tag 

vector to reclaim memory. 
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T0-0 

T1-0 

T2-0 

… 

T0-1 

T1-1 

T2-1 

… 

T0-… 

T1-… 

T2-… 

… 

Tag Vector 

Addr / Level L1 … L0 

0x4000 

0x4004 

0x4008 

Array-Based VSM 



Alternative: 
Level-Based VSM Organization 
  Idea: reorganize tag storage by 

scope level so that like-
invalidated tags are contiguous 

  Efficient tag vector resizing 
–  Resizing is part of tag validation. 
–  Simply update a pointer in level 

table. 
–  Dirty tag tables added to a free 

list and asynchronously scrubbed. 
  Inefficient tag vector operations 

–  Tag vectors are no longer stored 
contiguously. 26	


T0-1 

T1-1 

… 

L0 

L1 

… 

Tag Table Level Table 
T0-0 

T1-0 

… 

…… 

NULL 

Scrubbed 

Level-Based VSM 



Use Best of Both: Dual Representation 
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Fast Execution 
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Efficient Storage 
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Implement Tag Vector Cache 
Using Arrays 

Implement Tag Vector Store 
Using Levels 

Fill 

Evict 



Triple Representation: Add 
Compressed Store for Very 
Infrequently Used Tag Vectors 
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Experimental Setup 
  Measure the peak memory usage. 

–  Compare to our baseline implementation [PLDI 2011]. 
–  Target Spec and NAS Parallel Benchmarks. 

  HCPA 
–  Tag: 64-bit timestamp, Version: 64-bit integer 
–  Tag Vector Cache: covers 4MB of address space. 
–  Tag Vector Store: 4 KB units. 

  Memory Footprint Profiler 
–  Please see the paper for details. 
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HCPA  
Memory Expansion Factor Reduction 

art vpr mesa
equake

lu cg is mcf
bzip2

gzip
ft mg geomean

top6

M
em

. E
xp

. F
ac

to
r R

ed
uc

tio
n 

(X
)

1

4

16

64

37.9X 25.5X 8.7X 4.3X 6.6X 3.5X 4.0X 3.9X 3.1X 1.9X 2.3X 2.1X 5.2X 2.8X

SlimTV Dual Representation 
(includes BulkTV) Triple (+ Compression) 

Final Memory Expansion Factors 

Native execution’s memory usage. 



Conclusion 

  Conventional shadow memory does not work with 
poly-scopic analysis due to excessive memory 
overhead. 

  Skadu is an efficient vector shadow memory 
implementation designed for poly-scopic analysis. 
–  Shares storage across all the scopes in the same level. 
–  SlimTV and BulkTV: reduce overhead tag validation. 
–  Novel Triple Representation for performance / storage.  

 (Tag Vector Cache, Tag Vector Store, Compressed Store) 

  Impressive Results 
–  HCPA: 11.4X memory reduction from baseline 

implementation with only 1.2X runtime overhead. 32	
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HCPA Speedup 
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