
Skadu:
Efficient Vector Shadow Memories
for Poly-Scopic Program Analysis	

Donghwan Jeon*, Saturnino Garcia+, and Michael Bedford Taylor
UC San Diego

1	

* Now at Google, Inc.
+ Now at University of San Diego Skadu means ‘Shadow’ in Afrikaans.

Dynamic Program Analysis

  Runtime analysis of a program’s behavior.
  Powerful: gives perfect knowledge of a program’s

behavior with a specific input.
–  Resolves all the memory addresses.
–  Resolves all the control paths.

  Challenges (Offline DPA)
–  Memory overhead (> 5X is a serious problem)

•  1GB -> 5GB
–  Runtime overhead (> 250X is a serious problem)

•  5 minutes -> 1 day

2	

Motifs for
Dynamic Program Analysis

  Shadow Memory: associates analysis metadata with
program’s dynamic memory addresses.

  Poly-Scopic Analysis: associates analysis metadata with
program’s dynamic scopes.

3	

Motifs for
Dynamic Program Analysis

  Shadow Memory: associates analysis metadata with
program’s dynamic memory addresses.

  Poly-Scopic Analysis: associates analysis metadata with
program’s dynamic scopes.

  Vector Shadow Memory (this paper): associates analysis
metadata with BOTH dynamic memory addresses AND
dynamic scopes.

4	

Motif #1 Shadow Memory:
An Enabler for Dynamic Memory Analysis

  Data structure that associates metadata (or tag)
with each memory address.

  Typically implemented with a multi-level table.

5	

…

Ptr
Tag Table

Two-level Shadow Memory

0

3

…

P0

P1

int *addr = 0x4000;
0x4000
0x4004
0x4008

…

int value = *addr;
*(addr+1) = value;

Sample C Code

1

4 0x4000

0x0000

0x8000

Example: Counting Memory Accesses of Each Address

P1 P1

Dynamic Program Analyses
Employing Shadow Memory
  Critical Path Analysis [1988]

–  Finds the longest dynamic dependence chain in a
program.

–  Employs shadow memory to propagate earliest
completion time of memory operations.

–  Useful for approximating the quantity of parallelism
available in a program.

  TaintCheck [2005]
  Valgrind [2007]
  Dr. Memory [2011]
  …

6	

Motif #2 Poly-Scopic Analysis

  Analyzes multiple dynamic scopes (e.g. loops and
functions on callstack) by recursively running a
dynamic analysis.

  Main benefit: provides scope-localized information.

  Commonly found in performance optimization tools
that focus programmer attention on specific,
localized program regions.

Poly-Scopic Analysis Example:
Time Profiling (e.g. Intel VTune)

for (j=0 to 32)

for (i=0 to 4)

for (k=0 to 2)

foo ();

bar1();

bar2();

  Recursively measures each scope’s total-time.
–  total-time (scope) = timeend(scope) – timebegin(scope)

  Pinpoints important scopes to optimize by using self-time.
–  self-time (scope) = total-time(scope) - total-time(children)

Scope total-time

Loop i 100%
Loop j 50%
foo() 50%

Loop k 50%
bar1() 25%
bar2() 25%

Poly-Scopic
Analysis

self-time

0%
0%

50%
0%

25%
25%

Hierarchical Critical Path Analysis
(HCPA): Converting CPA to Poly-Scopic	

  Recursively measures total-parallelism by running CPA.
–  “How much parallelism is in each scope?”

  Pinpoint important scopes to parallelize with self-parallelism.
–  “What is the merit of parallelizing this loop? (e.g. outer, middle, inner)”

  HCPA is useful.
–  Provides a list of scopes that deserve parallelization [PLDI 2011].
–  Estimates the parallel speedup from a serial program [OOPSLA 2011].

Beats 3rd
party experts

Wow!!

Memory Overhead: Key Challenge of Using
Shadow Memory in a Poly-Scopic Analysis

  A conventional shadow memory already incurs high memory
overhead (e.g. CPA).

  Poly-scopic analysis requires an independent shadow
memory space for each dynamic scope, causing
multiplicative memory expansion (e.g. HCPA).

loop i

loop j loop k

foo() bar1()	
 bar2()

for (j=0 to 32)

for (i=0 to 4)

for (k=0 to 2)

foo ();

bar1();

bar2();

Shadow Mem

Shadow Mem

Shadow Mem

HCPA’s Outrageous Memory Overhead

Suite Benchmark Native
Memory (GB)

w/ HCPA
(GB)

Mem. Exp.
Factor

Spec bzip2 0.19 28.2 149X

mcf 0.15 16.0 105X

gzip 0.20 21.7 109X

NPB mg 0.45 13.0 29X

cg 0.43 14.4 34X

is 0.38 13.9 36X

ft 1.68 66.0 39X

Geomean 0.36 20.8 GB 59X

11	

Before applying techniques in this paper… [PLDI 2011]

This Paper’s Contribution

12	

32-core NUMA w/ 512GB RAM
@ supercomputer center

Macbook Air w/ 4GB RAM
@ student’s dorm room

BEFORE AFTER

Make shadow-memory based poly-scopic analysis
 practical by reducing memory overhead!

Outline

  Introduction
  Vector Shadow Memory
  Lightweight Tag Validation
  Efficient Storage Management
  Experimental Results
  Conclusion

13	

What’s Wrong Using Conventional
Shadow Memory Implementations?
  Setup / clean-up overhead at scope boundaries

incurs significant memory and runtime overhead.
  For every memory access, all the scopes have to

lookup a tag by traversing a multi-level table.

loop i

loop j loop k

foo()
bar1()	
 bar2()

Shadow Mem

Shadow Mem

Shadow Mem
…

Segment
Table

Tag Table

0

3

…

P0

P1

…

Multi-level Table

The Scope Model of Poly-Scopic Analysis

  What is a scope?
–  Scope is an entity with a single-entry.
–  Two scopes are either nested or do not overlap.

  Properties
–  Scopes form a hierarchical tree at runtime.
–  Scopes at the same level never overlap.

loop i

loop j loop k

foo() bar1()	
 bar2()

for (j=0 to 32)

for (i=0 to 4)

for (k=0 to 2)

foo ();

bar1();

bar2();

Vector Shadow Memory
  Associates a tag vector to an address.

–  Scopes in the same level share the same tag storage.
–  Scope’s level is the index of a tag vector.

  Benefits
–  No storage setup / clean-up overhead.
–  A single tag vector lookup allows access to all the tags.

16	

loop i

loop j loop k

foo() bar1()	
 bar2()

addr size Level 0 Level 1 Level 2

0x4000 3 tag[0] tag[1] tag[2]

0x4004 3 tag[0] tag[1] tag[2]

0x4008 3 tag[0] tag[1] tag[2]

Tag Vector

Challenge: Tag Validation

  A tag is valid only within a scope, but scopes in the
same level share the same tag storage.

  Need to check if each tag element is valid.

17	

loop i

loop j loop k

foo() bar1()	
 bar2()

2 1 1

2 0 0

Tag vector of 0x4000
 written in foo()

Tag vector of 0x4000
read in bar2()

Tag Validation

Counting Memory Accesses in Each Scope

How can we support a lightweight tag validation?

Challenge: Storage Management

  Tag vector size is determined by the level of the
scope that accesses the address.

  Need to adjust the storage allocation as the tag
vector size changes.

18	

How can we efficiently manage storage
without significant runtime overhead?

0 1 5

Tag Vector of 0x4000

Access from level 2

Access from level 9

Access from level 1

1 2 6 … … 1

Vector Size

3

10

2 3 2

Event Storage Op

allocate

expand

shrink

Outline

  Introduction
  Vector Shadow Memory
  Lightweight Tag Validation
  Efficient Storage Management
  Experimental Results
  Conclusion

19	

Overview of Tag Validation Techniques

  For tag validation, Skadu uses version that
identifies active scopes (scopes on callstack)
when a tag vector is written.
–  Baseline: store a version for each tag element.
–  SlimTV: store a version for each tag vector.
–  BulkTV: share a version for a group of tag vectors.

20	

Ver Tag [N] Ver [N]

Tag [N] Ver [N]

… …

Tag [N] Ver [N]

Tag [N]

Tag [N]

…

Tag [N]

Ver

…

Ver

Tag [N]

Tag [N]

…

Tag [N]

Ver

(a) Baseline (b) SlimTV (c) BulkTV

Baseline Tag Validation

  for each level
 If (Ver [level] != Ver_active[level]) {
 // invalidate the level

 Tag[level]  Init_Val
 Ver[level]  Ver_active[level]);

}

21	

Tag [N] Ver [N]

Tag [N] Ver [N]

… …

Tag [N] Ver [N]

(a) Baseline

Slim Tag Validation:
Store Only a Single Version

// find max valid level
j = find (Ver, Ver_active[]);

// scrub invalid tags from level j+1
memset (& Tag[j+1], N-j-1, init_val);

// update total-ordered version number
Ver = Ver_active[current_level] 22	

Ver Tag [N]

Tag [N]

…

Tag [N]

Ver

…

Ver

  Clever trick: create a total ordering between all
 versions in all dynamic scopes (timestamp).
  Tag Validation:

(b) SlimTV

Bulk Tag Validation: Share a Version
Across Multiple Tag Vectors

23	

  Clever trick: Exploit memory locality and validate
 multiple tag vectors together.
  Benefit: Reduced memory footprint and more efficient
 per-tag vector invalidation.
  Downside: Some tag vectors might be never accessed

after tag validation, wasting the validation effort.
Tag [N]

Tag [N]

…

Tag [N]

Ver

(c) BulkTV

Outline

  Introduction
  Vector Shadow Memory
  Lightweight Tag Validation
  Efficient Storage Management
  Experimental Results
  Conclusion

24	

Baseline:
Array-Based VSM Organization

  A tag vector is stored
contiguously in an array.

  Efficient tag vector operations
–  loop through each array element.

  Expensive resizing
–  Resizing would require expensive

array reallocation.
–  Unclear when to shrink a tag

vector to reclaim memory.

25	

T0-0

T1-0

T2-0

…

T0-1

T1-1

T2-1

…

T0-…

T1-…

T2-…

…

Tag Vector

Addr / Level L1 … L0

0x4000

0x4004

0x4008

Array-Based VSM

Alternative:
Level-Based VSM Organization
  Idea: reorganize tag storage by

scope level so that like-
invalidated tags are contiguous

  Efficient tag vector resizing
–  Resizing is part of tag validation.
–  Simply update a pointer in level

table.
–  Dirty tag tables added to a free

list and asynchronously scrubbed.
  Inefficient tag vector operations

–  Tag vectors are no longer stored
contiguously. 26	

T0-1

T1-1

…

L0

L1

…

Tag Table Level Table
T0-0

T1-0

…

……

NULL

Scrubbed

Level-Based VSM

Use Best of Both: Dual Representation

27	

T0-0

T1-0

T2-0

…

T0-1

T1-1

T2-1

…

T0-…

T1-…

T2-…

…

Tag Vector

Addr / Level L2 … L1

0x4000

0x8004

0x4008

Fast Execution
For Recently Accessed Tags

T0-1

T1-1

…

L0

L1

…

Tag Table Level Table
T0-0

T1-0

…

……

Efficient Storage
For not recently
Accessed Tags

Implement Tag Vector Cache
Using Arrays

Implement Tag Vector Store
Using Levels

Fill

Evict

Triple Representation: Add
Compressed Store for Very
Infrequently Used Tag Vectors

28	

T1-2

T2-2

…

L1

L2

…

Tag Table Level Table
T1-1

T2-1

…

……

Compressed
Vector
Tags

Tag Vector Store

Fill

Evict

Compressed
Tag Vector Store

Outline

  Introduction
  Vector Shadow Memory
  Lightweight Tag Validation
  Efficient Storage Management
  Experimental Results
  Conclusion

29	

Experimental Setup
  Measure the peak memory usage.

–  Compare to our baseline implementation [PLDI 2011].
–  Target Spec and NAS Parallel Benchmarks.

  HCPA
–  Tag: 64-bit timestamp, Version: 64-bit integer
–  Tag Vector Cache: covers 4MB of address space.
–  Tag Vector Store: 4 KB units.

  Memory Footprint Profiler
–  Please see the paper for details.

30	

HCPA
Memory Expansion Factor Reduction

art vpr mesa
equake

lu cg is mcf
bzip2

gzip
ft mg geomean

top6

M
em

. E
xp

. F
ac

to
r R

ed
uc

tio
n

(X
)

1

4

16

64

37.9X 25.5X 8.7X 4.3X 6.6X 3.5X 4.0X 3.9X 3.1X 1.9X 2.3X 2.1X 5.2X 2.8X

SlimTV Dual Representation
(includes BulkTV) Triple (+ Compression)

Final Memory Expansion Factors

Native execution’s memory usage.

Conclusion

  Conventional shadow memory does not work with
poly-scopic analysis due to excessive memory
overhead.

  Skadu is an efficient vector shadow memory
implementation designed for poly-scopic analysis.
–  Shares storage across all the scopes in the same level.
–  SlimTV and BulkTV: reduce overhead tag validation.
–  Novel Triple Representation for performance / storage.

 (Tag Vector Cache, Tag Vector Store, Compressed Store)

  Impressive Results
–  HCPA: 11.4X memory reduction from baseline

implementation with only 1.2X runtime overhead. 32	

33	

HCPA Speedup

art vpr mesa
equake

lu cg is mcf
bzip2

gzip
ft mg geomean

top6

Sp
ee

du
p

(X
)

0

0.25

0.5

0.75

1

1.25

202X 131X 188X 227X 401X 213X 148X 231X 211X 170X 221X 475X 219X 224X

¨ SlimTV VCache + VStorage + Dynamic Compression

Final Memory Expansion Factors

