
Tiled Microprocessors

by

Michael Bedford Taylor

A.B., Computer Science
Dartmouth College, 1996

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1999

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

c© 2007 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

February 2007

Certified by:
Anant Agarwal

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by:
Arthur C. Smith

Chairman, Departmental Graduate Committee

2

Tiled Microprocessors
by

Michael Bedford Taylor

Submitted to the Department of Electrical Engineering and Computer Science
on February 2007 in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

in Electrical Engineering and Computer Science

ABSTRACT

Current-day microprocessors have reached the point of diminishing returns due to inherent scal-

ability limitations. This thesis examines the tiled microprocessor, a class of microprocessor which

is physically scalable but inherits many of the desirable properties of conventional microprocessors.

Tiled microprocessors are composed of an array of replicated tiles connected by a special class of

network, the Scalar Operand Network (SON), which is optimized for low-latency, low-occupancy

communication between remote ALUs on different tiles. Tiled microprocessors can be constructed

to scale to 100’s or 1000’s of functional units.

This thesis identifies seven key criteria for achieving physical scalability in tiled microproces-

sors. It employs an archetypal tiled microprocessor to examine the challenges in achieving these

criteria and to explore the properties of Scalar Operand Networks. The thesis develops the field of

SONs in three major ways: it introduces the 5-tuple performance metric, it describes a complete,

high-frequency <0,0,1,2,0> SON implementation, and it proposes a taxonomy, called AsTrO, for

categorizing them.

To develop these ideas, the thesis details the design, implementation and analysis of a tiled micro-

processor prototype, the Raw Microprocessor, which was implemented at MIT in 180 nm technology.

Overall, compared to Raw, recent commercial processors with half the transistors required 30x as

many lines of code, occupied 100x as many designers, contained 50x as many pre-tapeout bugs, and

resulted in 33x as many post-tapeout bugs. At the same time, the Raw microprocessor proves to be

more versatile in exploiting ILP, stream, and server-farm workloads with modest to large amounts

of parallelism.

Thesis Advisor:

Anant Agarwal
Professor
Electrical Engineering and Computer Science

4

Contents

1 Introduction 13
1.1 Emerging Issues in Microprocessor Design . 13

1.1.1 VLSI Resources . 13
1.1.2 Putting VLSI Resources to Use . 15
1.1.3 Problems with Addressing Scalability through Microarchitecture 15

1.2 Addressing Scalability through Physically Scalable Microprocessor Designs 18
1.2.1 Seven Criteria for a Physically Scalable Microprocessor Design 18

1.3 Tiled Microprocessors: A Class of Physically Scalable Microprocessor 22
1.3.1 Tiled Microprocessors Meet the Physical Scalability Criteria 23
1.3.2 Tiled Microprocessors Overcome Microarchitectural Scalability Limitations . 24
1.3.3 The Raw Tiled Microprocessor Prototype . 25
1.3.4 Contributions . 25
1.3.5 Thesis Overview . 26

2 The Archetypal Tiled Microprocessor 27
2.1 Basic Elements of a Tiled Microprocessor . 27
2.2 Attaining Frequency Scalability (C1) . 28
2.3 Bandwidth Scalability, Locality Exploitation and Proportional Latencies (C2, C3, C4) 32

2.3.1 Bandwidth Scalability by Eliminating Broadcasts 32
2.3.2 Providing Usage-Proportional Resource Latencies and Exploitation of Locality 33

2.4 Attaining Efficient Operation-Operand Matching with Scalar Operand Networks (C5) 36
2.4.1 Scalar Operand Networks in Current Day Microprocessors 37
2.4.2 Scalar Operand Network Usage in Tiled Microprocessors 39
2.4.3 The AsTrO Taxonomy . 41
2.4.4 The 5-tuple Metric for SONs . 45

2.5 Parallel Execution on Tiled Microprocessors . 50
2.5.1 Multi-Threaded Parallel Execution on Tiled Microprocessors 51
2.5.2 Single-Threaded Parallel Execution on Tiled Microprocessors 51

2.6 The ATM Memory System . 56
2.6.1 Supporting Memory Parallelism . 59
2.6.2 Compiler Enhancement of Memory Parallelism in Single Threaded Programs 61

2.7 I/O Operation . 62
2.8 Deadlock in the ATM I/O and Generalized Transport Network (C6) 62

2.8.1 The Trusted Core . 68
2.8.2 The Untrusted Core . 73
2.8.3 Deadlock Summary . 74

2.9 Exceptional Events - Especially Interrupts (C7) . 74
2.10 ATM Summary . 77

5

3 Architecture of the Raw Tiled Microprocessor 79
3.1 Architectural Overview . 79
3.2 The Raw Tile . 81

3.2.1 The Raw Tile’s Execution Core . 82
3.2.2 Raw’s Scalar Operand Network . 86
3.2.3 Raw’s Trusted Core . 90
3.2.4 Raw’s Untrusted Core . 92

3.3 The Raw I/O System . 94
3.3.1 Raw I/O Programming . 95

3.4 Summary . 97

4 The Raw Implementation 99
4.1 The Building Materials . 99

4.1.1 The Standard-Cell Abstraction . 99
4.1.2 Examining the Raw Microprocessor’s “Raw” Resources 102

4.2 The Raw Chip . 107
4.3 The Raw Systems . 115
4.4 Conclusions from Building the Raw System . 120

5 Performance Evaluation 125
5.1 Evaluation Methodology . 125

5.1.1 Challenges in Evaluation Methodology . 126
5.1.2 Developing a Comparison with the Pentium III 127
5.1.3 Normalization with the P3 . 130

5.2 Evaluation of a Single Tile using SpecInt and SpecFP 133
5.3 Multi-tile Performance as a “Server Farm On A Chip” 134
5.4 Multi-tile Performance on sequential C and Fortran Applications 135

5.4.1 Memory Parallelism . 136
5.4.2 Instruction Parallelism . 138
5.4.3 Results . 140
5.4.4 Future Improvements . 142

5.5 Multi-Tile Performance on Streaming Applications with StreamIt 148
5.5.1 The StreamIt Language . 148
5.5.2 StreamIt-on-Raw Compiler Backend . 150
5.5.3 StreamIt-on-Raw Results . 154
5.5.4 Future Improvements . 156

5.6 Multi-Tile Performance on Hand-Coded Streaming Applications 158
5.6.1 Linear Algebra Routines . 158
5.6.2 The STREAM Benchmark . 159
5.6.3 Signal Processing Applications . 160
5.6.4 Bit-level Communications Applications . 162

5.7 The Grain Size Question: Considering a 2-way Issue Compute Processor 164
5.8 Conclusion . 168

6 Related Work 171
6.1 Microprocessor Scalability . 171

6.1.1 Decentralized Superscalars . 171
6.1.2 Non-Tiled Parallel Microprocessors . 172
6.1.3 Classical Multiprocessors . 173
6.1.4 Dataflow Machines . 173
6.1.5 Tiled or Partially-Tiled Microprocessors . 175

6.2 Scalar Operand Networks . 175
6.3 Conclusion . 177

7 Conclusion 179

6

A Compiler Writer’s and Assembly Language Programmer’s View of Raw 181
A.1 Architectural Overview . 181

A.1.1 The Raw Tile . 181
A.2 Programming the Networks . 185

A.2.1 Compute Processor Programming . 186
A.2.2 Switch Processor Programming . 186
A.2.3 Inter-tile Static Network Programming . 189
A.2.4 Dynamic Router Programming . 191

B The Raw Architecture Instruction Set 197
B.1 Compute Processor Instruction Set . 197

B.1.1 Register Conventions . 197
B.1.2 Compute Processor Instruction Template . 198
B.1.3 Cache Management in Raw and RawH . 229

B.2 Semantic Helper Functions . 233
B.3 Opcode Maps . 235

B.3.1 High-Level (“Opcode”) Map . 235
B.3.2 SPECIAL Submap . 235
B.3.3 FPU Submap . 236
B.3.4 COM Submap . 236
B.3.5 REGIMM Submap . 236

B.4 Status and Control Registers . 237
B.5 Event Counting Support . 243
B.6 Exception Vectors . 246
B.7 Switch Processor Instruction Set . 247

B.7.1 Switch Processor Instruction Set Examples 247
B.7.2 Switch Instruction Format . 248
B.7.3 Switch Instruction Format (Op == ExOp) 249
B.7.4 Switch Port Name Map (Primary Crossbar) 249
B.7.5 Switch Port Name Map (Secondary Crossbar) 249

7

Acknowledgments

My ten years at MIT have been a fruitful decade. For me, time is marked not in days but by

the people that I meet and the systems that I work on. I’ve met many great people and worked

on many great systems at MIT. However, as these acknowledgements will reflect, the story and the

thanks start before I arrived at MIT.

Advisors and Thesis Committee

First, I’d like to thank my advisor, Anant Agarwal, for providing me with the responsibility and

autonomy that I was looking for, and for providing the Raw group with the resources and mandate

to build great systems. I also thank Saman Amarasinghe, co-leader of the Raw project, who was

a co-advisor to me and offered both technical advice and many words of support over the years.

Finally, I thank Tom Knight, the third member of my committee, who inspires me to do creative

research and has patiently presided over several of my MIT exams over the years. In high school,

I read Steven Levy’s Hackers, which chronicles, among other things, Tom’s arrival at MIT in the

mid-sixties as a teenager. Little did I know that he would end up on my thesis committee! Tom’s

feedback greatly strengthened the “Related Work” section of this document.

Pre-MIT

The earliest credit must go to my family. My brother was truly my earliest computer collaborator;

I still remember us pulling long hours hacking Escape from Old Khazan on our dad’s timesharing

system. My mom and dad were avid supporters of my education and interests and helped me when

times were rough.

When I was in Lakeville, Rodney Page, my computer science teacher, forgave me for hacking his

network and fueled my interests with his remarkable enthusiasm. There, I also met my long-time

friend, Douglas S. J. DeCouto, Hacker Mac, the man with five names, who ultimately brought me to

MIT. Later, Doug worked in the same office one floor below me in 545 Tech Square. Quite rudely,

he started his PhD after I started and finished it years before I did. His advice and friendship has

truly kept me on course through the years. In Lakefile, I also met two of my good friends, Alex and

Jason Ferries, erstwhile Macintosh hackers and great friends who I later roomed with while I was in

Hanover and Boston.

In Denver, I learned a lot from Jeffrey Swartz, an engineer at StorTek, who combed through

8

my x86 code, line by line, and hacked with me on a variety of projects. From him, I learned many

valuable lessons about software engineering and other things. Amazingly, almost all of this was done

over the telephone or through email.

At Dartmouth, I met Scott Silver, with whom I spent many days hacking happily. We worked

on many great projects together. He and I learned much about hacking together; but from him I

also learned many things about life and about chutzpah. Scott and I journeyed to Silicon Valley

together twice and had many adventures there. Through Scott, I also met Joy Silver, who is a

constant source of enthusiasm and advice. At Dartmouth, I was indebted to my educators David

Kotz, Dennis Healy, Samuel Rebelsky, Thomas Cormen, and Daniela Rus, who all invested a lot of

time outside of class teaching me about research and computer science.

While in Silicon Valley, I had the pleasure of working with Tim Craycroft, Bruce Jones, Eric

Traut, Jorg Brown, and Chad Walters – passionate software engineers and PowerPC coders who I

learned many things from.

MIT

Not surprisingly given my tenure here, the list of people who impacted me at MIT is the longest.

Jonathan Babb, whose Virtual Wires research inspired the Raw project, was a frequent partner-

in-crime. Among other things, we created Russian chess robots, argued over the Raw project, and

compared our wildly intersecting libraries – microprocessors and VLSI, yes, but helicopter physics,

space mission design, propaganda about propaganda, and ...? Jonathan is distinguished by an

ability to inspire people to seek greatness and to realize that what they thought was big could be

even bigger. Beyond that, Jonathan and I had many entertaining adventures - car accidents while

drag racing, teaching streetwalkers to play chess at 3 am at Dunkin’ Donuts, twilight Bova Bakery

runs, and of course, screening the essential and formative works in the important emerging japanese

medical horror film genre.

Walter Lee, whose parallelizing compiler was used for many of the results in this thesis, was my

officemate for many years. We spent countless hours hacking on elegant systems that will never see

the light of publication. We both enjoyed taking engineering problems, no matter how mundane

sounding, and crafting the most amazing solutions for them. Somehow, after all of the projects

and papers we’ve worked on, I consider Walter’s characterization of me as a perfectionist (in his

dissertation, no less!) as a badge of honor rather than an insult.

David Wentzlaff was involved in practically every aspect of the Raw hardware prototype. Walt

and I had ear-marked him as our officemate from the beginning, and it was a great choice. In

addition to his brilliant ideas, enthusiasm, and technical alacrity, he provided us with no end of

entertainment with his inexorable annexation of office territory through the gradual sprawl of his

acquisitions from reuse@mit. I always look forward to running into Dave somewhere in Cambridge

to have a five hour discussion about something interesting.

9

Matthew Frank, who was instrumental in the founding discussions of the Raw project (and

indeed, authored the original 1997 Raw paper), was a compassionate counselor for many members

of the Raw group. He was always there to appreciate my latest software hack (and vice versa) and

provide thoughtful and motivating words.

Finally, Jonathan Eastep, my last office-mate at MIT, impressed me with his quick assimilation

of practically everything about the Raw project. His enthusiasm for technology – out-gadgeting

perhaps even Saman - is peerless and inspiring.

The contributions of the many members of the Raw group are obviously great and would be

difficult to enumerate. No part of Raw was done in isolation. Without the effort of so many talented

people, it would never have happened. To be comprehensive is impossible, but rather than just

list names, I will list a few things that come to mind for each person – in all cases, a subset of

what each person did. Jason Kim and I had frequent trips to Toscanini’s to discuss Raw micro-

architecture. We also supported each other through several week-long sessions, locked in various

windowless rooms at IBM, learning that Einstimer truly was our friend. I still remember an episode

with a certain Burger King hallucinogenic milkshake. IBM’s ASIC team was a constant help as

we iterated on the Raw ASIC design. USC ISI contributed essential software tools, benchmarks,

and board design expertise. Jason Miller was my steady counterpart in pushing the Raw processor

through the IBM tools; the Raw system could not have happened without his solid and unwavering

engineering energy. Jason also designed the software i-caching system and was instrumental in

developing the Raw motherboards. Andras Moritz examined the impact of different grain sizes in the

Raw architecture. Rajeev Barua contributed MAPS, part of the Raw parallelizing compiler. Mark

Seneski, master of logic emulation, ushered the Raw design through the SpecInt benchmark suite.

Sam Larsen hacked on many parts of the Raw system, exuding quiet competence in every part of the

toolchain he touched. Hank Hoffman and Volker Strumpen developed the Stream Algorithms for

Raw, among other things. Albert Ma lent his extensive chip-building experience to the project and

taught me about implementing datapaths. Jae-Wook Lee and I worked together to design the Raw

placement methodology. Jae also found several pre-tapeout bugs in the design. Paul Johnson found

more bugs in the Raw RTL than any other person and supported our software distribution efforts.

Chris Kappler lent his extensive industry experience during the early stages of microarchitecture

development. Devabhaktuni Srikrishna contributed his patient thoughtfulness to many interesting

discussions. Mark Stephenson and Michael Zhang hacked on early versions of the Raw system; as

roommates, our collaboration on a massive Allston party brought cops from all over. Russ Tessier

offered the wisdom that comes from spending too long at MIT.

Arvind Saraf perfected the physical design for Raw’s integer multiplier. Ben Greenwald con-

tributed his fountain of knowledge and well-principled taste for elegant software engineering to many

parts of the Raw infrastructure. Fae Ghodrat offered her chip-building expertise and was often there

10

with an upbeat and persevering attitude during the long process of building the chip and struggling

with the tools. Nathan Shnidman, whose research focused on software radio for Raw, gave great,

thoughtful advice and was a fantastic traveling companion through Europe. With Ian Bratt, I had

many frequent discussions about high-performance compilation for Raw. James Donald, a summer

visitor, and now graduate student at Princeton, hacked on a number of projects with Walter and I.

Saman Amarasinghe’s Commit group members were eager collaborators and provided the StreamIt

infrastructure and results, which are also featured in this thesis. In particular, the efforts of Bill

Thies, Mike Gordon, Jasper Lin, and Rodric Rabbah were instrumental in the Raw results.

Outside of the Raw group, I enjoyed interacting with the members of Martin Rinard’s program-

ming systems group. Martin Rinard, Karen Zee, Viktor Kuncak, Patrick Lam, Brian Demsky, and

Alex Salcianu all contributed to an intellectual office camaraderie that MIT is all about. Karen

Zee also designed the logo that graces the Raw microprocessor’s package. I found Maria-Cristina’s

friendship, unique perspective and insights invaluable to me over the years. I also enjoyed brain-

storming with Enoch Peserico, whose principled perspective on both computer architecture and life

was refreshing.

I also thank the MIT Scale group, including Krste Asanovic, Chris Batten, Ronny Krashinsky,

Mark Hampton, Jessica Tseng, Ken Barr, Seongmoo Heo, and Albert Ma, for many interesting

discussions about microprocessor design.

John Redford and Doug Carmean, top-notch microprocessor designers at Chipwrights and Intel,

provided me with much helpful advice and insight over time. I ran into Carmean in the hotel bar

the night before my first-ever talk (at Hotchips) and his encouraging feedback more or less got me

through it.

Mario Serna and Andy Kim, my roommates at Edgerton, offered many interesting conversations

about military theory and materials science, as well as fresh baked bread and a hilarious escapade

involving a turkey, a bike rack, and a bout of litigation. Another one of my roommates, Kirsten

Ferries, was frequently a source of outside perspective and advice. Tsoline Mikaelian, a fellow Sidney

and Pacific resident, was a welcome source of brainstorming and lively debate during my thesis grind

at MIT.

The staff at MIT are often underappreciated but deserve the utmost credit; in my time at MIT,

I’ve enjoyed the support, humor and advice of Marilyn Pierce, Cornelia Colyer, Anne McCarthy,

Jennifer Tucker, Simone Nakhoul and Mary McDavitt.

I would like to thank those who supported my expensive tour of duty at MIT: the American

Taxpayer (through the auspices of DARPA and NSF), ITRI, Intel’s PhD Fellowship program, and

the Michael B. Taylor Distinguished Presidential Doctoral Fellowship Program, which financed my

last year of MIT tuition.

Post-MIT

11

At UCSD, I’ve also benefited from the advice and encouragement of my colleagues; Sorin Lerner

and Ranjit Jhala for their discussions on gravitas; Matthias Zwicker, who sympathized on the

imperfections of taxonomy, and Steve Swanson, a fellow hawker of tiled architectures. Mohammed

Al-Fares, a graduate student in my CSE 240B class, implemented a class project that led the way to

the collection of the 5-tuple number for the Power 4 machine. Finally, I thank my graduate students,

who provide a constant source of inspiration.

Major Stakeholders

I thank all of the members of my immediate family – my mom, my dad, John, Cliff, Ingrid, Lars,

and Lauren – who have all helped me through MIT in many more ways than one.

Finally, I would like to thank Karen, one of the few remaining speakers of the ancient dialect of

High Taylorian, who has gone beyond the call of duty again and again and has sustained me over

the years. She is one in 18, 446, 744, 073, 709, 551, 616.

MBT

February 2, 2006

12

Chapter 1

Introduction

Over the last thirty-five years, microprocessor designs have constantly been re-adapted to accom-

modate enormous advances in the properties of integrated circuit (IC) implementation technology.

The most famous of these advances, referred to as Moore’s Law, is the exponential growth of the

number of transistors that can be placed on an integrated circuit. In 1971, the first microprocessor,

the Intel 4004, employed 2,300 transistors. In 2005, the Intel Pentium 670 used 169,000,000.

Microprocessor scalability refers to the ability of a microprocessor design to exploit changing

technology properties to gain additional performance or energy efficiency. Over time, it has become

difficult to exploit these properties and to scale microprocessor designs effectively with existing

centralized microprocessor organizations. This dissertation proposes that these scalability problems

can be overcome by structuring microprocessors in a tiled fashion. Accordingly, microprocessors

structured in this way are termed tiled microprocessors.

This chapter motivates the approach as follows. First, it examines the many scalability problems

that centralized microprocessor designs encounter as a result of growth in IC resources and the

increasing importance of wire delay (Section 1.1). Second, the chapter argues that these scalability

challenges can be overcome by implementing physically scalable microprocessors (Section 1.2). Third,

the chapter introduces seven key criteria for attaining this physical scalability. Finally, the chapter

details how tiled microprocessor designs fulfill the seven criteria and enable future microprocessor

scalability (Section 1.3). The chapter concludes with an overview of the thesis and its contributions.

1.1 Emerging Issues in Microprocessor Design

1.1.1 VLSI Resources

Since the days of the first microprocessor, the Intel 4004, the central drive of microprocessor research

has been the adaptation of microprocessor designs to improvements in semiconductor fabrication

13

technology. The most significant of these improvements have been the exponential increases in

the quantities of three types of VLSI resources: transistors, wires, and pins. However, with these

improvements have come the negative effects of wire delay. This thesis will refer generally to these

changes as the VLSI scaling properties.

Transistors The number of transistors that can be integrated onto a VLSI chip has been increasing

exponentially for 40 years. This trend is referred to as Moore’s Law [83]. This trend is evident in

Table 1.1 which contrasts the 2,300 transistor 1971-era Intel 4004 microprocessor [55, 54, 32] against

the 169,000,000 transistor 2005-era Intel Pentium 670.

Intel Feature Transistors Frequency Pins Wire Wire
Microprocessor Size Bandwidth Delay (Est.)

(nm) (MHz) (Est., Tracks) (clk cycle/cm)
4004 (1971) 10000 2,300 0.750 16 190 1/1000
Pentium 670 (2005) 90 169,000,000 3,800 775 125,000 4
Improvement ∼ 100x ∼ 75,000x ∼ 5,000x ∼ 50x ∼ 660x 1/4000x

Table 1.1: Microprocessor Properties in 1971 and in 2005

The size reduction of transistors carries with it side effects, a phenomenon that MOSFET (metal-

oxide-semiconductor field effect transistor) scaling theory [25, 24] attempts to elucidate for integrated

circuits. The transistor size reduction brought on by each successive process generation1 brings

proportionally lower delay and smaller power consumption per transistor; however, it also presents

a greater burden of difficulty in designing the circuits that exploit these properties. Table 1.1 shows

the great improvement in frequency of the Pentium 670 versus the Intel 4004. A significant portion

of this (100x out of 5000x) comes from the lower delay due to transistor scaling.

Wires and Pins Of course, VLSI (very large scale integration) chips do not include just tran-

sistors; they include wires, for connecting the transistors within the chip, and pins, for connecting

the integrated circuit to the outside world. The quantity of these resources available to the mi-

croprocessor designer have also increased substantially over the years. The pin-count increase for

microprocessors is also evident in Table 1.1.

Wire Delay One of the properties which has not improved as favorably with successive process

generations has been wire delay [13, 79]. Wire delay has stayed mostly constant (in cm
s , for instance)

across process generations. Historically, wires were so fast relative to transistors that they appeared

to provide an almost instantaneous connection between their endpoints. Unfortunately, as transistor

frequencies have improved with each process generation, the relative speed of the wires (measured in

terms of transistor delay) has worsened exponentially. While they once barely impacted processor

1The semiconductor industry tries to scale the minimum feature size of transistors by approximately .7 every two
to three years. The term process generation is used to refer to the group of VLSI parameters that is employed to
create integrated circuits of a given minimum feature size.

14

operating frequencies, wires now consume a significant fraction of the cycle time in the critical paths

of current microprocessors. Wire delay has become a central concern for microprocessor designers [2],

and significant effort has been expended by the semiconductor community to mitigates its effect

through better materials (such as copper wires and low-K dielectrics) and better computer aided

design (CAD) tools. There is evidence that wire delay will worsen in coming process generations

because of complications in manufacturing wires [45], and because the wires are becoming small

relative to the mean-free path of electrons in conductors.

1.1.2 Putting VLSI Resources to Use

The exponentially increasing availability of transistors, pins and wires according to VLSI scaling

drives us to create microprocessors that put these resources to effective use.

In the early days of microprocessor design, many of these additional resources were expended to

make microprocessors more usable; for instance, extending datapaths to accommodate reasonable

address and data widths, adding floating points units to facilitate scientific calculation, and incor-

porating operating system protection mechanisms. Today, relatively few transistors are expended

on improving microprocessor usability. Architects, recognizing that many features are better left

implemented in C than in silicon, have focused on expending these additional resources to improve

performance.

This focus led to the incorporation of microarchitectural innovations which exist only for per-

formance reasons, such as caching, dynamic branch predictors, pipelining, wider memory interfaces,

and superscalar and out-of-order execution. These microarchitectural approaches have the positive

aspect that they improve performance without exposing to the programmer or compiler the fact

that the microprocessor is utilizing exponentially more resources.

1.1.3 Problems with Addressing Scalability through Microarchitecture

Unfortunately, addressing scalability solely through microarchitectural mechanisms has led to a

number of problems:

Problem 1. Diminishing Performance Returns on VLSI Resources Microarchitectural

approaches have reached the point of diminishing returns. Today’s wide-issue microprocessor design-

ers have found it increasingly difficult to convert burgeoning silicon resources into usable, general-

purpose functional units. The percentage of transistors that are performing actual programmer-

specified computation has been steadily declining in successive versions of these modern designs.

An extreme example of this can be found by comparing the 2004-era Intel 32-bit Xeon 4M to the

1989-era 32-bit Intel 80486. The Xeon has 238 times more transistors than the 80486 [51] but can

sustain only three general purpose operations per cycle versus the 80486’s one operation per cycle.

15

At the root of these difficulties are the centralized structures responsible for orchestrating operands

between the functional units. These structures grow in size much faster asymptotically than the num-

ber of functional units. The prospect of microprocessor designs for which functional units occupy

a disappearing fraction of total area is unappealing but tolerable. Even more serious is the poor

frequency-scalability of these designs; that is, the unmanageable increase in logic and wire delay as

these microprocessor structures grow [2, 92, 91, 121]. A case in point is the Itanium 2 processor,

which sports a zero-cycle fully-bypassed 6-way issue integer execution core. Despite occupying less

than two percent of the processor die, this unit spends half of its critical path in the bypass paths

between the ALUs [85].

Scalability issues in microprocessors extend beyond the components responsible for functional

unit bypassing. Contemporary processor designs typically contain unscalable, global, centralized

structures such as fetch units, multi-ported register files, load-store queues, and reorder buffers.

Furthermore, future scalability problems lurk in many of the components of the processor responsible

for naming, scheduling, orchestrating and routing operands between functional units [92].

Problem 2. Large and Growing Design and Validation Effort Microarchitectural ap-

proaches to scalability have led to exponentially increasing design complexity. Intel’s Pentium 4

required on the order of 500 people to design, and consisted of over 1 million lines of RTL code [12].

Of those people, 70 worked on verification. 7,855 bugs were found in the design before silicon and

101 errata were detected in the released product [11]. The number of pre-silicon bugs has approx-

imately tripled for each of the last three significant microarchitectural revisions of the Intel IA32

architecture (from Pentium to Pentium Pro to Pentium 4) [97]. Correspondingly, the number of post-

silicon errata continues to rise with each major release [49, 52, 53], despite advances in verification

methodology and the use of larger verification groups.

Problem 3. Low Power Efficiency Microprocessor designers have recently found that the rising

thermal dissipation of high performance microprocessors has affected these systems’ applicability

even in non-mobile environments. High thermal dissipation delayed the introduction of early Itanium

II and Pentium 4 processsors in dual-processor 1U rack-mount configurations. Heat production also

affects the cost of these systems: the price of an appropriate cooling solution increases drastically with

rising microprocessor temperatures. These power concerns led the Pentium 4 architects to include a

thermal monitor and a mechanism to stop the processor’s clock in order to prevent overheating [39].

Current wide-issue superscalar processor designs use large, centralized microarchitectural struc-

tures to extract parallelism from serial instruction streams. These microarchitecture features are

inherently energy-inefficient because they add overhead to the execution of every instruction. Fur-

thermore, these designs have undesireable power density properties – because they tend to cluster

like components together (such as the execution units), which causes high power consumption com-

16

ponents to be situated near to each other. Complex microarchitectures also prove a difficult challenge

for energy optimization through clock-gating because they consist of many interdependent compo-

nents, each of which must be examined carefully to determine the cases in which the component is

not required for correct operation. Additionally, in cases where large structures, such as multiported

register files or instruction scheduling windows are not being fully used, it adds significant complex-

ity to add the ability to “partially” shut them off. Finally, because superscalar processors do not

exploit parallelism efficiently and scalably, they are not well-equiped to save power by trading off

frequency (and thus voltage and energy through voltage-scaling) with parallelism.

Problem 4. Lack of Performance Transparency The increase in microarchitectural com-

plexity has resulted in the loss of performance transparency which confounds the ability of the

programmer or compiler to generate code that runs efficiently on a microprocessor. Unlike in the

past, the execution time (and order) of a program on modern-day microprocessors cannot be de-

termined simply from instructions and their register dependences. One of the biggest culprits has

been the introduction of various forms of hidden state in the processor, such as reorder buffers,

dynamic branch predictors, way predictors, memory dependence predictors, branch target buffers,

prefetch engines, and hierarchical TLBs. This state can significantly impact performance, and in

general, may be left as a trade secret by the designers. To the end goal of overcoming these trans-

parency problems, Intel has written an optimization guide for the Pentium 4 [50]. Even at 331

pages, the guide is incomplete; for instance, it fails to mention the presence of the P4’s L1 data

cache way-predictor [15] and its related performance effects.

In fact, the performance of applications is so much an emergent property that the Pentium 4

underwent a late revision that introduced an infrequently-invoked cautious mode, which overrides one

of the predictors in order to address a performance problem on an important Windows application.

This problem only manifested itself on 2 other traces out of 2200 [15]. Of course, these transparency

problems are not limited to the Pentium 4; however due to its high profile, more data has emerged. A

recent MIT thesis [69] noted a number of similar performance transparency issues in the Ultrasparc.

Problem 5. Limited Design Adaptivity One desirable characteristic of a microprocessor

design is that it be easy to modify to accommodate different levels of VLSI resources and different

operating constraints. This allows the design to target a greater market, which helps amortize the

large initial design cost. Current microprocessor designs are relatively fixed for a given amount

of VLSI resources. For instance, it is typically extremely difficult to add more general purpose

functional units to a given microprocessor design. Because current microprocessor designs are not

easily changed to more and fewer resources, they can not be easily adapted for use in other operating

environments with different cost, power and size budgets. For example, most desktop superscalar

designs like the Pentium 4 could not be made suitable for use in the MP3, handheld or mobile

17

telphone market. Even when these designs are deployed in the server and laptop markets, adaptations

are limited, for instance, to cache configurations, bus interfaces and sleep functionality.

Furthermore, the complexity of these designs makes them brittle to technology changes. For

instance, Intel had to write off its investment in the Pentium 4 architecture far earlier than planned

because of the emerging energy limitations of the latest VLSI process generations.

1.2 Addressing Scalability through Physically Scalable Mi-
croprocessor Designs

This thesis examines the idea of using a physically scalable microprocessor design to overcome these

five problems. A physically scalable microprocessor is one that can be modified in a straightforward

mannner to accommodate more or fewer underlying VLSI resources (such as transistors, wires, and

pins), thereby providing proportionally more or fewer gainfully employable computational resources

to the user. Such a design would address the problems described in the previous section. It solves

Problems 2 (design and verification complexity) and 5 (design adaptivity) because it by definition

can be easily modified to accommodate different levels of resources. It solves Problems 1 (diminishing

returns) and 3 (power efficiency) because it provides usable processing resources proportional to the

underlying resources. Finally, Problem 4 (performance transparency) can be addressed if VLSI re-

sources are exposed through programmer-visible architectural structures rather than through hidden

microarchitectural mechanisms.

1.2.1 Seven Criteria for a Physically Scalable Microprocessor Design

What properties would a physically scalable microprocessor design have? Surprisingly, a physically

scalable microprocessor combines elements of existing microprocessor designs with elements tradi-

tionally found in scalable multiprocessor systems. In a sense, scalable microprocessors generalize

existing microprocessors by incorporating multiprocessor design principles. Inherited from micro-

processors is the concept that scalable microprocessors should be optimized for the communication

of scalar values between the computational logic elements, or ALUs, and that they need to support

traditional mechanisms such as interrupts, branches, and caching. At the same time, these scalable

microprocessors must, like multiprocessors, be frequency scalable and bandwidth scalable, and man-

age exceptional conditions such as deadlock and starvation that arise from being implemented in a

distributed fashion. We would also like them to offer usage-proportional resource latencies and to

support the exploitation of locality. These properties (“The Seven Criteria For Physical Scalability”)

are discussed next.

CRITERION 1 (“C1”): Frequency Scalability Frequency scalability describes the ability

of a design to maintain high clock frequencies as the design is adapted to leverage more VLSI

18

resources. In other words, we do not want the frequencies of these designs to drop as they get

bigger. When an unpipelined, two-dimensional VLSI structure increases in area, speed of light

limitations dictate that the propagation delay of this structure must increase asymptotically at least

as fast as the square root of the area. More practically speaking, the increase in delay is due to

both increased interconnect2 delay and increased logic levels. If we want to build larger structures

and still maintain high frequencies, a physically scalable design must pipeline the circuits and turn

the propagation delay into pipeline latency. Scalability in this context thus refers to both individual

components (“intra-component”) and to collections of components (“inter-component”) within a

microprocessor.

Intra-component frequency scalability As the issue width of a microprocessor increases, monolithic

structures such as multi-ported register files, bypassing logic, selection logic, and wakeup logic

grow linearly to cubically in size. Although extremely efficient VLSI implementations of these

components exist, their burgeoning size guarantees that intra-component interconnect delay will

inevitably slow them down. Put another way, these components have an asymptotically unfavorable

growth function that is partially obscured by a favorable constant factor. As a result, physically

scalable microprocessors cannot contain monolothic, unregistered components that grow in size as

the system scales. The Itanium 2 is an example of a microprocessor that is pushing the limits of

frequency scalability: it has twice the number of general-purpose functional units as the Pentium 4

but the cycle-time is twice as great.

Inter-component frequency scalability Frequency scalability is a problem not just within components,

but between components. Components that are separated by even a relatively small distance are

affected by the substantial wire delays of modern VLSI processes. This inherent delay in interconnect

is a central issue in multiprocessor designs and is now becoming a central issue in microprocessor

designs. Two recent examples of commercial architectures addressing inter-component delay are the

Pentium IV, which introduced two pipeline stages that are dedicated to the crossing of long wires

between remote components; and the Alpha 21264, which has a one cycle latency cost for results

from one integer cluster to be used by the other cluster. Once interconnect delay becomes significant,

high-frequency systems must be designed out of components that operate with only partial knowledge

of what the rest of the system is doing. In other words, physically scalable microprocessors need

to be implemented as a collection of distributed processes. If a component depends on information

that is not generated by a neighboring component, the architecture needs to assign a time cost for the

transfer of this information. Non-local information includes the outputs of physically remote ALUs,

stall signals, branch mispredicts, exceptions, and the existence of memory dependencies.

CRITERION 2 (“C2”): Bandwidth Scalability While many frequency scalability problems

2We use this term loosely to refer to the set of wires, buffers, multiplexers and other logic responsible for the
routing of signals within a circuit.

19

can be addressed by distributing centralized structures and pipelining paths between distant com-

ponents, there remains a subclass of scalability problems which are fundamentally linked to a micro-

processor’s underlying architectural algorithms. These bandwidth scalability problems occur when

the amount of information that needs to be transmitted and processed grows disproportionately

with the size of the system.

Physically scalable microprocessors inherit the bandwidth scalability challenge from multipro-

cessor designs. One key indicator of a non-bandwidth scalable architecture is the use of broadcasts

that are not directly mandated by the computation. For example, superscalars often rely on global

broadcasts to communicate the results of instructions to consuming reservation stations. Because

every functional unit’s result must be processed by every reservation station, the demands on an in-

dividual reservation station grow as the system scales. Although, like the Alpha 21264, superscalars

can be pipelined and partitioned to improve frequency scalability, this is not sufficient to overcome

the substantial area, latency and energy penalties due to poor bandwidth scalability.

To overcome this problem, physically scalable microprocessors must employ a method of deci-

mating the volume of messages sent in the system. Directory-based cache-coherent multiprocessors

provide insight into a potential solution to this problem: employing directories to eliminate the

broadcast inherent in snooping cache systems. Directories are distributed, known-ahead-of-time

locations that contain dependence information. The directories allow the caches to reduce the

broadcast to a unicast or multicast to only the parties that need the information. The resulting

reduction in necessary bandwidth allows the broadcast network to be replaced with a point-to-point

network of lesser bisection bandwidth3.

A directory scheme is one candidate for replacing broadcasts in a scalable microprocessor’s SON

and achieving bandwidth scalability. The source instructions can look up destination instructions

in a directory and then multicast output values to the nodes on which the destination instructions

reside. In order to be bandwidth scalable, such a directory must be implemented in a distributed,

decentralized fashion. This thesis will show one such implementation, and examines some alterna-

tives.

CRITERION 3 (“C3”): Usage-Proportional Resource Latencies The ability to provide

usage-proportional resource latencies is a subtle but fundamental criteria for physically scalable mi-

croprocessors. Architectures with usage-proportional resource latencies offer inter-resource latencies

that are proportional to the amount of resources used in a computation rather than the total quan-

tity of resources in the system. Without this property, as the design is scaled up, existing programs

with small amounts of parallelism would slow down due to increased latencies. More generally, this

3We define bisection bandwidths with a sequence of definitions. First, a cut of the network is a separation of the
nodes of the network into two equal sized groups. The min cut is the cut which minimizes the sum of the edge weights
of edges that connect the two groups. Finally, the bisection bandwidth is the edge weight sum corresponding to the
min cut of network graph in which the edges weights correspond to the bandwidths of individual links.

20

criteria allows the compiler to make tradeoffs between using fewer resources at a lower average la-

tency (e.g., a subset of the machine), or greater numbers of resources at a higher average latency.

In general, dancehall-style resource topologies cannot provide usage-proportional resource latencies,

while those with recursively substructured (such as trees or meshes) resource topologies are more

easily able to.

CRITERION 4 (“C4”): Exploitation of Locality In addition to providing usage-proportional

resource latencies, physically scalable architectures should connect resources via interconnect which

offers communication latencies that reflect the underlying physical communication costs (i.e., wire

delay) in the implementation substrate. To complement these networks, physically scalable mi-

croprocessors must provide architectural mechanisms that allow the program to exploit positional4

locality between the program’s virtual objects (e.g., data, instructions, operations, operands) in

order to minimize latency and transport occupancy. Hardware or software mechanisms must be

provided to enable related objects (e.g., communicating instructions) to be placed close together in

order to avoid paying worst-case costs for communication.

CRITERION 5 (“C5”): Efficient Inter-node Operation-Operand Matching The most

fundamental criteria for any microprocessor is that it perform operation-operand matching. Operation-

operand matching is the process of gathering operands and operations to meet at some point in space

to perform the desired computation. In the context of a physically scalable microprocessor, operation-

operand matching must be performed across distributed ALUs, which can be more challenging than

for standard centralized designs.

Efficient inter-node operation-operand matching is what distinguishes a physically scalable mi-

croprocessor from other types of distributed systems, such as multiprocessors, which have relatively

high overheads for inter-node operation-operand matching.

This thesis introduces the term scalar operand network (“SON”) to refer to the set of mecha-

nisms in a microprocessor that implement operation-operand matching. These mechanisms include

the physical interconnection network used to transport the operands (referred to as the transport

network) as well as the operation-operand matching system (hardware or software) which coordi-

nates these values into a coherent computation. This choice of definition parallels the use of the

word “Internet” to include both the physical links and the protocols that control the flow of data

on these links.

SONs have evolved as microprocessors have evolved – from early, monolithic register file in-

terconnects to more recent ones that incorporate point-to-point mesh interconnects. Section 2.4.1

examines this evolution in detail.

This thesis examines SONs in depth, as they are the central component of any physically scalable

4I would use the term spatial locality, but the semantic nuances of the term (as currently employed in the context
of caches) are different.

21

microprocessor.

CRITERION 6 (“C6”): Deadlock and Starvation Management Superscalar SONs use

relatively centralized structures to flow-control instructions and operands so that internal buffering

cannot be overcommitted. With less centralized SONs, such global knowledge is more difficult to

attain. If the processing elements independently produce more values than the SON has storage

space, then either data loss or deadlock must occur [29, 102]. This problem is not unusual; in fact

some of the earliest large-scale SON research – the dataflow machines – encountered serious problems

with the overcommitment of storage space and resultant deadlock [6]. Alternatively, priorities in

the operand network may lead to a lack of fairness in the execution of instructions, which may

severely impact performance. Transport-related deadlock can be roughly divided into two categories;

endpoint deadlock, resulting from a lack of storage at the endpoints of messages, and in-network

deadlock, which is deadlock inside the transport network itself. Because effective solutions for in-

network deadlock have already been proposed in the literature, endpoint deadlock is of greater

concern for SONs.

CRITERION 7 (“C7”): Support for Exceptional Events Exceptional events, despite not

being the common case, play a prominent role in microprocessor design. The introduction of new

architectural mechanisms, such as those likely to be found in physically scalable microprocessor

designs, will carry with them the need to devise strategies for handling these exceptional events.

Microprocessors of all types must be able to support events like cache misses, interrupts, memory

dependencies, branch mispredictions, and context switches. The design of these items is a challenging

task for any microprocessor, but is especially challenging for physically scalable microprocessors due

to the necessity that they be implemented in a distributed manner.

1.3 Tiled Microprocessors:

A Class of Physically Scalable Microprocessor

How do we design physically scalable microprocessors? In this thesis, we examine tiled microproces-

sors, which are microprocessors that have the property of being physically scalable by construction.

The central idea is to compose the microprocessor out of three core architectural entities – tiles,

networks, and I/O ports – which are in correspondence with the three classes of VLSI resources

described in Section 1.1.1: transistors, wires and pins. This correspondence is shown in Table 1.2.

The computation and storage abilities of on-chip transistors are exposed through the tile abstrac-

tion. The communication capabilities of on-chip wires are exposed through the network abstraction.

Finally, pin connections to the off-chip world are exposed through the I/O port abstraction.

Each tile occupies a rectangular region of the silicon area and is sized so that its width and

22

VLSI Resource Architectural Entity
Gates Tiles
Wires Networks
Pins I/O Ports

Table 1.2: Correspondence of VLSI resources and architectural entities in Tiled Microprocessors

height are approximately the distance that a signal can travel in a single cycle. In addition to

computational resources, a tile contains an incremental portion of the network – the network links

that connect to the nearby neighbors and the router that controls those links. These point-to-point,

pipelined on-chip network links contain at least one register between neighbor tiles. The I/O ports

are connected to the periphery of the network.

Systems are scaled up or down by changing the number of tiles and I/O ports in accordance with

the amount of die array and the number pins available, rather than by changing the contents of the

tiles themselves. A latency, proportional to the distance between tiles, is assigned for communication

between tiles.

1.3.1 Tiled Microprocessors Meet the Physical Scalability Criteria

We develop the definition of a tiled microprocessor by examining how they fulfill the seven criteria

of physical scalability:

1. Frequency Scalability Tiled microprocessors meet the frequency scalability criteria because

they do not have wires or structures that grow in size as the system is scaled up. In particular,

because network wires are registered at tile boundaries, we know that wire lengths in the

system do not grow as the system is scaled up by adding more tiles.

2. Bandwidth Scalability Tiled microprocessors implement all inter-tile networks using point-

to-point rather than broadcast networks. Furthermore, all protocols implemented on these

networks will be implemented using point-to-point communication patterns rather than broad-

cast. This includes protocols for performing both operation-operand matching as well as those

that manage memory accesses and control operations. This way network congestion and la-

tency will be solely a function of the computation being performed and not the number of tiles

in the system.

3. Proportional (non-uniform) Resource Latency Tiled microprocessors are implemented

with point-to-point networks that have latencies proportional to the distances between tiles.

Furthermore, the programmer has the choice of determining how many tiles will be used to

implement the computation. Thus, as microprocessors with more resources become available,

the option still remains to use fewer tiles in order to minimize latency.

23

4. Exploitation of Locality Tiled microprocessors provide architectural interfaces for software

and hardware mechanisms to control the placement of instructions, data objects, and I/O

connections so that communication in the system can be localized.

5. Efficient Inter-node Operation-Operand Matching Of course, in order to be a micro-

processor at all, the functional units have to be connected by a scalar operand network. Tiled

microprocessors contain a scalar operand network that performs operation-operand matching

both within and between all tiles5.

6. Deadlock and starvation management Tiled microprocessors, like the greater class of

physically scalable microprocessors, must handle deadlock and starvation inside tiles and in

all inter-tile networks, such as the SON. Later sections of this dissertation will describe some

ways that tiled microprocessors can attain this.

7. Support for Exceptional Events Tiled microprocessors implement the same class of func-

tionality as conventional microprocessors, such as interrupts, memory requests, branches and

context switches. This requirement extends to functionality implemented over the inter-tile

networks, e.g. the tiled microprocessor must be able to context switch even in the presence of

inter-tile network traffic.

1.3.2 Tiled Microprocessors Overcome Microarchitectural Scalability Lim-
itations

Tiled microprocessors overcome the limitations inherent in modern-day microprocessors that attempt

to employ the microarchitectural approach to scalability. We examine in turn each of the issues

discussed in Section 1.1.3 (“Problems with addressing scalability through microarchitecture”):

a. Proportional returns on VLSI resources Tiled microprocessors expose transistor re-

sources through a proportional number of tiles. They expose the VLSI wiring resources through

the on-chip networks. Finally, they expose the VLSI pin resources via the I/O port abstrac-

tion. These tiles, networks and I/O ports are in turn exposed to the programmer, providing

proportional programmable resources.

b. Constant Design and Validation Effort Because systems are built by replicating the same

basic tile and I/O port design, the system require only marginally more design and validation

effort as more VLSI resources are employed.

c. Power Efficiency Tiled systems are easy to optimize for power and are inherently power-

efficient. First, tiling provides an easy way to power down portions of the chip when they

5In this thesis, we examine a system that is composed of only one type of tile, however we do not preclude the
possibility of having a heterogeneous tiled system composed out of multiple types of tiles.

24

are unneeded [62]. For instance, individual tiles can be powered down by gating the clock

coming into the tile. Second, tiled systems can easily implement frequency and voltage scaling

to tradeoff parallelism for energy because they can exploit parallelism with little overhead.

Third, because tiles do not grow in complexity as the system scales, the designer only has to

optimize the power consumption of a single tile and the power gains will be realized across

all of the tiles and thus throughout the microprocessor. Furthermore, because the processing

resources available to the programmer are proportional to the underlying amount of VLSI

resources, i.e., because the system overhead does not grow as more ALUs are added, the

system does not experience the same declining efficiency found in successive generations of

modern-day microprocessors. Finally, tiled systems can be implemented with short wires and

simple, fixed-sized VLSI structures which makes them inherently power-efficient.

d. Performance Transparency Since the central way in which the processor transforms VLSI

resources into improved performance is exposed to the programmer via the number of tiles

available, the user has a clear picture of the performance model. Furthermore tiles tend to

be simple, because the mechanism for improving successive generations of processors is not

through adding microarchitectural mechanisms, but by adding tiles.

e. Design Adaptivity Tiled microprocessors are eminently design adaptable, because the de-

signer can easily vary the number of tiles to accommodate different operating environments.

Furthermore, because the system is composed out of a replicated element, it is easy to adapt

tiled systems to new technology parameters – simply design a new tile, and the rest of the

system is a few copy commands away.

1.3.3 The Raw Tiled Microprocessor Prototype

In order to investigate tiled microprocessors further, we designed and built a full tiled microprocessor

prototype in 180 nm technology. We call this microprocessor the Raw microprocessor, in reference

to the direct correspondence between VLSI resources and architectural entities in the architecture.

A photomicrograph of the Raw microprocessor is shown in Figure 1-1. The 330 mm2 chip attains

16-issue, greater than any Intel microprocessor in the same process generation.

1.3.4 Contributions

The contributions of this thesis (and the underlying research) focus around the formulation, for-

malization, and evaluation of tiled microprocessors as a way of attaining physically scalable micro-

processors. To this end, the thesis proposes and examines seven criteria for physical scalability in

microprocessor designs. It uses the ATM, an archetypal tiled microprocessor, to illustrate the design

considerations that arise in realizing the seven criteria. One of these criteria leads to the introduction

25

Figure 1-1: Photomicrograph of the scalable 16-tile Raw microprocessor.

and formalization of a new class of network, Scalar Operand Networks, which are the core commu-

nication mechanism inside scalable microprocessors. Finally, the thesis describes and evaluates a

complete 180 nm prototype tiled microprocessor implementation, the Raw microprocessor.

1.3.5 Thesis Overview

This thesis continues as follows. Chapter 2 employs an archetypal tiled microprocessor, labeled

the Archetypal Tiled Microprocessor, to explore the key issues in designing tiled microprocessors.

Chapter 3 and Appendices A and B describe the Raw architecture, a concrete tiled microprocessor

implementation. Chapter 4 examines the Raw prototype and Raw VLSI implementation. Chapter 5

evaluates the Raw prototype and describes the various programming systems that were designed at

MIT to program it. Chapter 6 examines related work, and Chapter 7 concludes.

26

Chapter 2

The Archetypal Tiled
Microprocessor

In the introduction, we discussed the favorable characteristics of a tiled microprocessor. However,

concretely, what are the essential architectural components of a tiled microprocessor? How does a

tiled microprocessor function? In what ways is a tiled microprocessor different than conventional

microprocessors? How does the tiled microprocessor address the seven criteria for physically scalable

microprocessors discussed in Section 1.2.1? These are the questions which this chapter addresses.

In order to do this, we discuss a prototypical tiled microprocessor which we call the Archety-

pal Tiled Microprocessor, or ATM. As with the Raw prototype, the ATM has the essential char-

acteristics that we would expect of a tiled microprocessor; however, at the same time, it allows us

to abstract away from the nitty-gritty characteristics which may vary from design to design. It

also allows us to generalize some of the findings that resulted from our experience with the Raw

prototype.

2.1 Basic Elements of a Tiled Microprocessor

Fundamentally, the purpose of a tiled microprocessor is to execute programs in a parallel fashion.

To do this, tiled microprocessors are comprised of an array of tiles. Each tile contains a number

of functional units. Using their functional units, the tiles work together to collectively execute the

instructions of a single program. The basic idea is to take the individual instructions of a program

and assign them to different tiles, so that they can execute in parallel. Figure 2-1 shows an example

program sequence and the mapping of instructions to an array of tiles.

Given a mapping of instructions to different tiles, tiled microprocessors must provide a way to

transport the outputs of an instruction to the inputs of one or more dependent instructions. For this

purpose, tiled microprocessors employ a class of on-chip networks called scalar operand networks

(“SON”) that is specialized for exactly this purpose. We call them scalar operand networks because

27

LD

LD

+

ST

INC

LD LD

+

ST

INC

Figure 2-1: The goal of a tiled microprocessor: parallel execution of a program’s instructions across
an array of tiles. The figure depicts a program graph being mapped to an array of tiles.

they are a type of network optimized for transporting scalar operands between physically distributed

functional units.

Furthermore, we want these tiles to operate autonomously; so a tile will contain a fetch unit that

sequences a unique program counter (“PC”) through an instruction stream. Tiles will also contain

a data and instruction cache so that they can take advantage of instruction and data locality much

like conventional microprocessors.

Finally, programs need to have inputs; and the instruction and data caches need to be backed

by a larger pool of memory. For this purpose, we add two components. First, we will add a class

of on-chip networks that is intended for generalized data transport, including cache misses. The

tiles can use these networks to communicate between each other (for instance, to share their cache

memory) and with the outside world; we’ll call these the generalized transport networks (“GTN”).

In some cases, these may be the same network as the SON. Furthermore, we want to ensure that

our on-chip networks are also able to communicate with the outside world. To do this, we surround

the array of tiles with a number of I/O ports, which interface the on-chip networks at the array

edges with the pins of the VLSI package. These pins in turn are connected to off-chip devices like

DRAM’s, A/D converters, and PCI slots. Using these I/O ports, not only can tiles communicate

with I/O devices, but the I/O devices can use the on-chip networks to communicate with each other.

2.2 Attaining Frequency Scalability (C1)

At this point, we have touched upon the basic components of a tiled microprocessor. However, as

is often the case with parallel systems, one of our goals in designing the tiled microprocessor is to

attain scalability. In this context, we seek physical scalability, which is the ability to create designs

that exploit the VLSI processes made available with subsequent generations of Moore’s law. To first

28

S S S S

S S S S

S S S S

S S S S

C C C C

DRAM

PCI

DRAM

A/D

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

C C C C

C C C C

C C C C

D
R

A
M

D
R

A
M

D
R

A
M

D
/A

D-Cache I-Cache

Compute
Pipeline

Tile

Networks

I/O Ports

PC

Figure 2-2: The Archetypal Tiled Microprocessor.

order, the tiled microprocessor as we’ve described it has a straight-forward path to doing this. As

Moore’s law provides more transistors, we can add more tiles. As Moore’s law provides more pins,

we add more I/O ports. Finally, as Moore’s law provides more wiring resources, we can provide

more network links.

However, physical scalability is more subtle then simply adding more tiles, networks links and I/O

ports. Ultimately it is the way that these elements are tied together which determines this scalability.

Much of the discussion in this thesis centers upon the architectural mechanisms that emerge from

the desire to achieve scalability. In this section, we focus on attaining frequency scalability, the first

of our seven criteria for physically scalable microprocessors.

To further the discussion on frequency scalability, we are ready to introduce the Archetypal Tiled

Microprocessor. The Archetypal Tiled Microprocessor is an example of a physically scalable micro-

processor based upon a set of engineering principals that help ensure scalability. The ATM is

depicted in Figure 2-2. On the left hand side, we see an array of identical tiles, which are connected

to their nearest neighbors via a number of point-to-point networks. At the periphery of the array of

the tiles, the network links are connected to the I/O ports, which are in turn connected to the pins

of the chip and to off-chip devices, such as DRAMs, I/O buses, and A/D converters.

Depicted on the right side of Figure 2-2 is the tile. A tile is comprised of computing resources

29

(including caches), routers (indicated by the crossbar “X” symbol), and a set of network links, which

span the tile and connect the tile to its four neighbors. These network links are registered on input.

Because the network links are the only wires (except for the clock) that run between tiles, this

configuration gives us an important guarantee – that the longest wire in the system is no longer

than the width or height of a tile. The idea is that the cycle time of the tiled microprocessor should

be approximately the time it takes a signal to pass through a small amount of logic (e.g., a simple

router) and across one inter-tile link. We call these inter-tile links point-to-point interconnections

because there is a single sender on one end and a single receiver on the other. The advantage of

using nearest neighbor point-to-point links is that the wire lengths of the architecture do not grow

as we add more tiles. The alternative communication mechanism, shared global buses, has the

disadvantage that as more tiles are added to the bus, the bus gets longer, has more contention and

has greater capacitance. All of these result in degraded performance as the number of tiles increases.

None of these negative effects occur with the ATM’s point-to-point links.

To make the issue of frequency scalability more concrete, let’s examine graphically what happens

when we attempt to scale the ATM design. In Figure 2-3a, we have depicted the baseline ATM design.

In one scenario, we might anticipate using the same process generation, but with a more expensive

and bigger die, as well as a more expensive package with more pins. This is shown in Figure 2-3b.

As is evident from the diagram, although we have increased the number of tiles in order to exploit

the larger transistor budget, none of the architectural wire lengths have changed. Thus, we can

reasonably expect that the new design will have a frequency similar to the original design. In

Figure 2-3c, we have pictured a implementation of the ATM in a VLSI process two generations of

Moore’s law later. The amount of on-chip resources has roughly quadrupled. As a result, in the

same space, we are able to fit four times as many tiles and network links. In this new process,

transistors are twice as fast, but the wire delay, per mm, is about the same. Thus, for a sensible

design, the wire lengths need to be approximately half the original length. Because the ATM has

only local wires, the wire lengths have shrunk with the tiles, and are a factor of two shorter. As a

result, wire delay should not impact the design’s ability to exploit the faster transistors and run at

twice the frequency as the original ATM.

The design discipline for ensuring short wires is an important step towards frequency scalability.

Today, it can take ten to twenty cycles for a signal to travel from corner to corner of a silicon die. As

a result, wire delay has the potential to decrease the frequency of a chip by a factor of twenty or more

in comparison to its frequency if wire delay were not considered. By ensuring that the architecture

has no wires that increase in size as the number of tiles increases, tiled microprocessor designs can

attain high frequencies and scale to future process generations even if wire delay worsens.

Wire delay is not the only potential problem area for frequency scalable systems – logic delay is

also an important consideration. As VLSI structures – such as FIFO buffers, memories, bypass paths

30

S S S S

S S S S

S S S S

S S S S

C C C C

C C C C

C C C C

C C C C

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

C C C C

C C C C

C C C C

C C C C

S S S S

S S S S

S S S S

S S S S

C C C C

C C C C

C C C C

C C C C

a)

b)

c)

Figure 2-3: Scalability Scenarios for The Archetypal Tiled Microprocessor. Part a) is the baseline
ATM. Part b) depicts an ATM implemented in the same VLSI process, but with a bigger die size
and a higher pin-count package. We can expect that this ATM will have a frequency similar to the
original ATM, because wire lengths have not changed. Part c) depicts an ATM implemented two
VLSI process generations later. In this new process transistors are twice as fast; but the wire delay,
per mm, is about the same. For a sensible design, the wire lengths need to be approximately half
the original size. Because the ATM has only local wires, the wire lengths have shrunk by a factor of
two; as a result, wire delay should not impact the design’s ability to exploit the faster transistors;
the design should run at twice the frequency as the original ATM.

and out-of-order issue logic – grow in size, they also get slower. This is a key problem in today’s

superscalar processor designs. As the issue-width of superscalars increases, their micro-architectural

structures grow in size, and the frequency of the design drops. As a result, superscalars are often

characterized as either “brainiacs” – lower-frequency designs that are wide issue – or “speed-demons”

– high-frequency designs that are narrow issue [40]. One example of a brainiac is the Itanium 2, which

is a 6-way issue microprocessor. Its frequency is significantly lower than 3-way issue superscalars

like the Pentium 4.

By increasing the capabilities of a machine by adding more tiles, rather than by increasing

the size of micro-architectural structures, tiled microprocessors can be both “speed-demons” and

31

“brainiacs” at the same time. By using the same tile design regardless of the scale of the system,

tiled microprocessors ensure that frequency is not adversely impacted by the size of the system.

The ATM is one example of how to attain frequency scalability in a tiled microprocessor. Cer-

tainly it is not the only possibility – we could imagine more exotic interconnection topologies with

different tile shapes that are also frequency scalable. However, the symmetry of mesh networks

and square tiles affords us a simple proof, by construction, that the ATM is frequency scalable.

In the field of engineering, more complex solutions (for instance, utilizing different wire styles to

enable more aggressive topologies) often achieve a constant-factor advantage that is desirable in

practice. For these more sophisticated tiled microprocessors, a more complex chain of reasoning will

be necessary to ensure frequency scalability.

2.3 Bandwidth Scalability, Locality Exploitation,

and Usage-Proportional Resource Latencies (C2, C3, and

C4)

Although we have shown that the ATM is frequency scalable, we would also like to show that the

ATM is bandwidth scalable, that it exploits locality and that it supports usage-proportional resource

latencies. All three of these criteria are necessary to ensure that tiled microprocessors do not

suffer unnecessary performance degradation as we add more resources, such as tiles. A system with

frequency scalability but without these three properties is likely to suffer from low efficiency. We

examine each of the three criteria in turn.

2.3.1 Bandwidth Scalability by Eliminating Broadcasts

We can look to the program mapping in Figure 2-1 for an excellent example of an bandwidth

scalability problem. In that example, we have mapped instructions to different tiles. However,

we have not yet specified exactly how operands are routed between instructions on different tiles.

Suppose that the scalar operand network that we employed used a broadcast protocol in order to

communicate the results of an instruction to other tiles. That is, it sends the output of every

instruction to all tiles. On the surface, this is a reasonable thing to do – it means that we can be

more relaxed about tracking dependencies between instructions on different tiles. In fact, this is

exactly what today’s out-of-order issue superscalar processors do.

Unfortunately, one of the implications of broadcasts for operand communication is that every

tile most process every other tile’s output operands. As a result, if there are N tiles in the system,

each producing one output per cycle, then each tile must be able to process N incoming operands

per cycle. We could solve this problem by augmenting the tile’s capabilities. First, we would need

32

to scale the bandwidth of each tile’s network links with the number of tiles in the system. Further,

we would have to augment the tile’s operand bypassing hardware so it could “snoop” all of the

incoming operands. Clearly, this approach creates many physical scalability issues. The frequency

of the system would eventually have to drop as we increased the number of tiles.

An alternative approach is to keep the current tile’s capabilities and just take multiple clocks to

process the operands. Although this solution is physically scalable, it effectively means that every

tile would be able to execute instructions at a rate much slower than the frequency of the processor.

This is because it would be bottlenecked by the time required to process all of the operands being

broadcasted from the other tiles.

Clearly, neither of these solutions is particularly palatable. A better solution is to employ mul-

ticast operand communication, that is, to have instructions send operands only to those other in-

structions that are dependent on a particular operand. This, combined with a routed, point-to-point

(rather than broadcast-based) network, would give the system the property that adding more tiles

does not increase the amount of operand traffic that an individual tile has to service.

2.3.2 Providing Usage-Proportional Resource Latencies and Exploitation

of Locality

Two other desirable characteristics for physical scalability relate to the cost of accessing varying

numbers of resources. First, we would like the ATM to support usage-proportional resource latencies.

The basic idea is that as we add more resources to the system, we would like the inter-resource

latencies of a fixed set of resources to remain constant. Second, an ATM that exploits locality can

achieve an asymptotic speedup on applications which have locality, relative to an architecture that

does not exploit locality.

In order to demonstrate the benefits of architectures that exploit locality and usage-proportional

resource latencies, in the subsequent paragraphs, we contrast the ATM with a system we call the

Uniform Resource Machine (“URM”), which does not exploit locality. Figure 2-4 depicts the URM.

The URM offers a number of compute pipelines (“P”) equal latency, full bandwidth access to a

large number of caches (“C”), using a pipelined interconnect composed of a number of switches

(“S”). In this example, the caches could easily be any sort of resource, whether instruction memory,

register files, or ALUs. Figure 2-4b demonstrates that as more compute pipelines are added, the

interconnect must grow larger to accommodate the greater bandwidth needs. Although the pipelined

interconnect is frequency scalable because its wires are registered at the switches and of constant

length, the distance, measured in cycles, between a processor and cache memory grows as the system

scales. Thus, because the system does not support usage-proportional resource latencies, the cost of

accessing the cache increases as the system is scaled up. Furthermore, this system has an unfavorable

asymptotic growth of its interconnect resources – basically, as the system scales, the percentage of

33

a)

S S S S

S S S S

S S S S

S S S S

P

P

P

P

C

C

C

C

S S S S

S S S S

S S S S

S S S S

P

P

P

P

C

C

C

C

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

P

P

P

P

C

C

C

C

S S S S

S S S S

S S S S

S S S S

b)

Figure 2-4: The Uniform Resource Machine, a machine that is physically scalable but that does
not exploit locality. In both examples, a number of compute pipelines (“P”) are connected by
a pipelined interconnect to a number of caches (“C”). Figure 2-4b shows that as more compute
pipelines are added, the interconnect must grow quadratically larger to accommodate the greater
bandwidth needs. Although the pipelined interconnect is physically scalable because its wires are
registered at the switches and are of constant length, the distance, measure in cycles, between a
processor and cache memory grows as the system scales, as illustrated. Thus, because this system
does not support usage-proportional resource latencies, the cost of accessing the cache increases as
the system is scaled up.

the system dedicated to cache and processing (relative to interconnect) becomes a disappearing

fraction.

In contrast to the processors in the URM design shown in Figure 2-4, ATM tiles are largely

self-sufficient. Each tile has its own program counter, fetch unit, instruction cache, register file, data

cache, and ALUs. Because these resources are local, the latency of these resources does not change

as the ATM is scaled to larger number of tiles. If an ATM tile did not have its own PC, fetch unit

and instruction cache, but was supplied by a single system-wide resource, the cost of mispredicted

branches would greatly increase as the system was scaled up and latencies increased. Similarly, the

latency of accessing data memory or using a functional unit would also increase. Finally, like the

URM, the ATM would have to dedicate a disproportionate amount of die area to the interconnect

to provide adequate bandwidth to keep the tiles fed with instructions and data.

In the ATM, the average latency between resources does increase as a program utilizes more

resources (e.g., ALUs, caches or tiles); this is an unavoidable reality stemming from the fact that

more resources take up more space, and more space takes greater latency to traverse. However, the

key idea is that the latency the program observes is based on the way the program has been mapped

34

(and how many tiles the mapping employs) rather than the total number of resources in the system.

In Table 2.1, we compare the asymptotic costs of accessing resources in the ATM versus the costs

of accessing resources in the URM. The costs are given relative to A, the silicon die area used to

implement the system.

ATM URM

Global Bisection Bandwidth O(
√

A) θ(
√

A)

Local Bandwidth θ(A) θ(
√

A)

Global Latency O(
√

A) θ(
√

A)

Subset Latency O(
√

S) θ(
√

A)

Local Latency θ(1) θ(
√

A)

Processors Utilized

- Global Communication θ(
√

A) θ(
√

A)

- Local Communication θ(A) θ(
√

A)

Table 2.1: Asymptotic analysis of ATM versus URM. A is the area of the silicon die. S is the
subset of the silicon die being used by the computation, in the case where computation only uses
a subset of the total die area.

As is evident from the table, the latencies and bandwidths for global communication are similar

in the ATM and URM systems. By global communication, we mean communication in which there

is no decipherable pattern that we can exploit to co-locate the data item and the user of the item.

The global latencies for ATM and URM have the same asymptotic upper bound, O(
√

A), because

in both cases, each resource access requires a message to be sent across a span proportional to the

dimensions of the chip, θ(
√

A). The bisection bandwidths have the same asymptotic upper bound,

O(
√

A), because both designs use an area proportional to the total die area for communication, and

the bisection bandwidth of a square area is the square root of that area.

The ATM is superior to the URM for local communication. By local communication, we mean

communication in which there is a strong correspondence between data items and the consumers of

the items. In this case, the data item can be located on the tile itself, and no inter-tile communication

is necessary, which results in θ(1) communication latency. In the URM, there is no mechanism by

which to exploit locality, so the latency is the same as if there were no locality to exploit, θ(
√

A). We

also list here what we call the “subset latency” - this is the latency of the system when only a subset

of the system (i.e., of the total die area) is being used for the computation, but communication is

global within this subset. The table shows that, in this scenario, the ATM’s resource latency is

proportional only to the die areas used for computation rather than the total die area in the system.

The final entries in the table, under the heading “Processors Utilized”, give a feel for the utiliza-

tion of the system in the two scenarios. By utilization, we mean the percentage of the processing

35

nodes that are actively computing as opposed to waiting for data. In a program with global commu-

nication, there are many communications that must span long distances across the machine. As a

result, the system is bottlenecked by two factors - if the program is latency-sensitive, both systems

will spend significant time (O(
√

A)) waiting for responses to arrive from long-distance requests for

resources. If the program is not latency-sensitive (i.e., it can emit many requests in parallel), then

both systems will be rate-limited by the θ(
√

A) network bandwidth available. In contrast, for a

program with only local communication, the ATM’s tiles are able to proceed independently, with

little inter-tile communication, achieving θ(A) utilization; while the URM will continue to achieve

θ(
√

A) utilization because it must wait on requests sent out to access the remote resources.

As is evident from the table, the advantages of the ATM are very dependent on the presence

of locality in the end application. However, exploitation of locality is a common precept of current

microprocessor design - if most computations did not have locality, then today’s microprocessors

would probably not have caches. Because of this, we believe that structuring the system to exploit

locality is a worthwhile goal. Nonetheless, some computations have little locality, and in these cases,

the ATM will perform equivalently, but not better, than the URM design. Thus, overall, we can say

that the ATM is no worse than the URM in the absence of locality, but can do much better when

it is present.

2.4 Attaining Efficient Operation-Operand Matching with

Scalar Operand Networks (C5)

In the beginning of this chapter, we alluded to our end goal of creating tiled microprocessors: to

execute a program’s instructions across an array of tiles. Now that the previous sections have

established the characteristics of a tiled architecture that are necessary for physical scalability, we

are now ready to discuss the core architectural component of a tiled microprocessor: the scalar

operand network.

To develop our understanding of scalar operand networks, let us examine what is necessary for

executing a program on a tiled microprocessor. To assist the reader, we resurrect the picture of

a program graph being mapped to a tiled microprocessor in Figure 2-5. There are key stages in

executing a program across a tiled microprocessor. First, we need to assign each operation in the

program to a tile. Second, we need to transport operands from their source tiles to their destination

tiles. Finally, the destination tiles need to join incoming operands with their corresponding oper-

ations. Collectively, we call this process operation-operand matching, and we call the mechanisms

that perform this function, whether hardware or software, the scalar operand network (“SON”).

The remainder of this section examines SONs as they are used in current day microprocessors

(Section 2.4.1), enumerates the key components of SON operation in tiled microprocessors (Sec-

36

LD

LD

+

ST

INC

LD LD

+

ST

INC

Figure 2-5: Executing a program graph: the role of a scalar operand network.

tion 2.4.2), identifies common properties and diversity of approaches in current tiled microprocessor

SON research (Section 2.4.3), and proposes a metric for comparing SON implementations (Sec-

tion 2.4.4). The reader may also wish to refer to Chapter 4 and Appendices A and B, which discuss

the SON implemented in the Raw microprocessor.

2.4.1 Scalar Operand Networks in Current Day Microprocessors

Register File

W

R1

R2

Figure 2-6: A simple SON.

Register File

W

R1

R2
Mux

Figure 2-7: SON in a pipelined proces-
sor with bypassing links.

As it turns out, scalar operand networks are not unique to a tiled microprocessor; they exist in

legacy and current day microprocessors as well. However, because tiled microprocessors are built out

of distributed components, their SONs are a bit more sophisticated. To illustrate this connection

with the past, we examine the scalar operand networks of a few classical microprocessor designs.

Pictured in Figure 2-6 is perhaps one of the simplest SON designs - the transport mechanism

implicit in a simple register-ALU pair. Typically, register files are drawn as black boxes; instead

we expose the internals of the register file in order to emphasize its role as a device capable of

37

performing two parallel routes from any two internal registers to the output ports of the register file,

and one route from the register file input to any of the internal registers. Each arc in the diagram

represents a possible operand route that may be performed each cycle. This interconnect-centric

view of a register file has become increasingly appropriate due to the increased impact that wire

delay has had on VLSI processes in recent years. In the context of operation-operand matching, this

simple SON assigns all operations to the single ALU, it uses the network inside the register file to

perform operand transport, and the joining of operands with operations is achieved through the use

of register names.

Figure 2-7 shows a more advanced SON, the transport in a pipelined, bypassed register-ALU

pair. The SON now adds several new paths, multiplexers and pipeline registers, and partitions

operand traffic into two classes: “live” operands routed directly from functional unit to functional

unit, and “quiescent-but-live” operands routed “through time” (via self routes in the register file)

and then eventually to the ALU. The partitioning improves the cycle time because the routing

complexity of the live values is less than the routing complexity of the resident register set. This

transformation also changes the naming system – the registers in the pipeline dynamically shadow

the registers in the register file. In terms of operation-operand matching, all operations are once

again assigned to the single ALU, but the network topology (and routing function) is more complex,

and the corresponding task of joining operands with operations requires more sophisticated logic

that incorporates the knowledge of what values are currently being routed on the bypass paths.

Figure 2-8: A superscalar pipelined processor with bypass links and multiple ALUs.

Finally, Figure 2-8 shows a pipelined, superscalar (i.e., with multiple ALUs), bypassed processor

In this case, the SON includes many more multiplexers, pipeline registers, and bypass paths, and

looks much like our traditional notion of a network. In this case, the SON must assign operations

to one of the two ALUs, it must coordinate the transport of the operands over the more complex

interconnect structure (multiple bypass paths, and a more complex multi-ported register file inter-

connect), and it has a relatively complex control for matching operations and their operands (which

38

may be coming from different places depending on times at which instructions issue.)

Modern microprocessors SONs typically look much like the superscalar design shown in Figure 2-8

– with the exception that they have more ALUs (they are referred to as being “wide issue”), and even

more complex register files and interconnect structures. It is as these microprocessors have attempted

to scale their SONs that the physical scalability problems described in the previous two section have

emerged as significant concerns. For example, Intel’s Itanium 2, a six-issue microprocessor, spends

half of its cycle time in the bypass paths that connect its ALUs [85]. As the Itanium 2 already has a

significantly lower frequency than the Pentium 4 due to physical scalability problems, the possibility

of Intel’s engineers increasing the number of ALUs in the Itanium design is remote.

These issues are not limited to the Itanium 2; today’s microprocessors have fundamentally un-

scalable designs. The demands of wide issue – large numbers of physical registers, register file ports,

bypass paths and ALUs distributed at increasingly large distances to accommodate interconnect –

have make it progressively more difficult to build larger, high-frequency SONs that employ a single

centralized register file as operand interconnect. Ultimately, overcoming these issues is the goal of

tiled microprocessor research - to rework the microprocessor in a way that is physically scalable.

2.4.2 Scalar Operand Network Usage in Tiled Microprocessors

This subsection examines how the execution of programs is orchestrated on the Scalar Operand

Network (SON) of a tiled microprocessor. This orchestration can be done statically by a compiler,

or dynamically by a combination of hardware and/or software. In either case, the set of decisions

that needs to be made is similar.

Figure 2-9 depicts these decisions through a series of four diagrams. Diagram 2-9a shows the

program graph to be executed. Each numbered square denotes an instruction, which typically has a

number of inputs, depicted by incoming edges. Each square typically also has outgoing edges, which

indicate which other instructions consume the instruction’s output(s). The first step in executing

the program graph is to decide how instructions will be assigned to tiles. This is depicted in

Diagram 2-9b, which shows four tiles and the instructions that have been assigned to each of them.

Once instructions have been assigned to the tiles, the SON can decide the path that operands will

take when there is an inter-tile instruction dependency. In Diagram 2-9c, these paths are indicated

with hexagonal route “operations” that have been placed on the corresponding tiles where a route

passes through. Finally, the SON must specify the order that routes occur in, and the order that the

instructions will execute in. One such ordering is shown in Diagram 2-9d, where each instruction and

route has been labeled with the cycle that it executes in. In this example, we assume the machine

can execute multiple route operations in parallel with a single compute operation. We also assume

that all operations (including routing) take one cycle to occur.

The reader may have noticed that the mapping given is non-optimal given this program graph

39

1

2

4
5

6

3

7

1

2

4

5

6
3 7

a) b)

1

2

4

5

6
3 7

E

S

E

S

E
N

N

E

c)
1

2

4

5

6
3 7

E

S

E

S

E
N

N

E

0 1

1

12

3

2
4

3

3

4

5

5

6

7

d)

Figure 2-9: Decisions required to execute a program graph on a tiled microprocessor. Part a) is
the program graph to be executed. Each numbered square is an instruction. Each incoming edge
represents one of the instruction’s inputs, while outgoing edges indicate which other instructions use
the instruction’s output operand(s). Part b) shows an assignment of instructions to tiles. Part c)
shows the route operations and the tiles they occur in, determining the path that the operands take
between instructions. Part d) indicates the schedule; the execution order of the instructions and
route operations on a hypothetical machine in which inter-tile communication can be performed in
parallel with ALU operations and in which all operations take one cycle. The cycle number that the
operation occurs on is annotated next to each instruction or route operation.

and these timing constraints. Figure 2-10 shows an improved mapping, which executes in fewer

cycles using fewer tiles. It’s clear that effective mappings are integral to achieving good program

performance on an SON. Because of this, the study of how these decisions are made (whether in

software or in hardware) and the resulting machine cycle time, SON costs, and overall program

performance has become an active area of research. The span of investigation extends from the

scalable, compiler-focused Raw SON, to dynamic software and hardware approaches, to extensions

of the unscalable hardware-focused SON of the modern-day superscalar.

In Raw’s SON, the compiler makes most decisions about the way a program executes on the tiles.

The compiler assigns compute instructions to tiles, and determines the paths that operands will take

between tiles. Then, it schedules the route operations on each tile into a router instruction stream.

40

1

2

4
5

6

3

7

N

0

1

0

2

3
4

1

S
2

3

1

2

4

5

6
3 7

E

S

E

S

E
N

N

E

0 1

1

12

3

2
4

3

3

4

5

5

6

7

a) b)

Figure 2-10: Optimized assignment and execution order. On the left is the original instruction and
route assignment and ordering given in Figure 2-9. On the right is a more optimized instruction and
route assignment and ordering, which happens to require only two tiles.

Finally, it schedules the compute instructions into a separate compute instruction stream. When

the program is executed, the routers and compute pipelines execute their instructions in the order

that they are specified in the instruction stream, much like a simple in-order processor. Chapter 3,

Chapter 4, and Appendices A and B examine aspects of Raw’s SON in greater detail.

In contrast, a conventional, un-tiled out-of-order superscalar performs all of these decisions in

hardware. It uses arbitration logic to assign instructions to functional units as they are executed.

Operands are transported between functional units over a broadcast network – or if the operand

has not been recently produced, through the register file. Finally, instruction and operand route

orderings are determined by a hardware scheduler as the program executes.

2.4.3 The AsTrO Taxonomy

What alternatives do tiled microprocessor designers have in designing tiled SONs? Which parts go

into software and which parts go into hardware? A number of interesting proposals have recently

emerged in the literature [38, 121, 108, 87, 60, 96, 105, 66, 112]. In an effort to explore the design

space of SONs and to synthesize these proposals, we created the AsTrO taxonomy [112] to describe

their key differences and similarities1. We first give a formal definition of the AsTrO taxonomy and

subsequently discuss and apply it more informally.

The AsTrO taxonomy consists of three components - Assignment, Transport, and Ordering.

Each of these parameters can be decided in an SON using a static or dynamic method.

Typically, the static methods imply less flexibility but potentially better cycle times,

lower power, and better latencies. An architecture’s categorization in the taxonomy can

be expressed by a sequence of three characters – each one either an “S” for static, or a

1Technology constraints and engineering experience will give us more insight into which SONs are most appropriate
in which environments; the ATM does not assume a specific SON.

41

“D” for dynamic – which are given according to the ordering in the AsTrO name: As

signment, then Tr ansport, then O rdering.

An SON uses dynamic assignment if active dynamic instances of the same instruction

can be assigned to different nodes. In static assignment, active dynamic instances of the

same static instruction are assigned to a single node. A dynamic assignment architecture

attempts to trade implementation complexity for the ability to dynamically load-balance

operations across tiles. A static assignment architecture, on the other hand, has a much

easier task of matching operands and operators.

An SON employs dynamic transport if the ordering of operands over transport network

links is determined by an online process. The ordering of operands across static transport

links are pre-computed (e.g., by a compiler). A dynamic transport SON benefits from

the ability to reorder operand transmissions between nodes in response to varying timing

conditions, for instance, cache-misses or variable latency instructions. Conversely, static

transport SONs can prepare for operand routes long before the operand has arrived.

An SON has static ordering if the execution order of operations on a node is fixed. An

SON has dynamic ordering of operations if the execution order can change, usually in

response to varying arrival orderings of operands. A dynamic ordering SON has the

potential to be able to reschedule operations on a given node in response to varying time

conditions.

Thus, as will see later, we might use the AsTro taxonomy in a sentence as follows: “Raw and

Scale have SSS SONs, TRIPS and Wavescalar have SDD SONs, ILDP has a DDS SON, and the

conventional superscalar has a DDD SON”. Generally speaking, the dynamic variants use hardware

to change the way that the program executes in response to varying runtime conditions (such as cache

miss patterns). Furthermore, dynamic variants can lead to more concise program representations

(e.g., with less loop unrolling), since the compiled program representation is not responsible for

conveying many of the details of execution. At the same time, the dynamic variants also need

additional hardware logic because these decisions – such as where to place an instruction for execution

(and where to find its operands), which operand to route next, and which instruction to issue next.

This hardware can impact the power consumption, cycle time and inter-tile operand latency of the

SON.

The line between dynamic and static can be somewhat arbitrary – imagine for instance, if we

extended Raw with a profile-based runtime code generation system that can re-optimize code as

it executes. Certainly this proposed system is “more dynamic” than the baseline Raw system.

However, on the other hand, it remains significantly less dynamic than the baseline out-of-order

superscalar.

42

Assignment

Raw,
Scale

RawDynamic Grid,
TRIPS,

WaveScalar

ILDP Out-of-Order
Superscalar

Static Dynamic

DynamicDynamic

StaticDynamicStaticStatic

Static

DynamicOrdering

Transport

Figure 2-11: The AsTrO classification for Scalar Operand Networks: Assignment, Transport and
Ordering. Of the systems we categorized, Raw [121], RawDynamic [112], and WaveScalar [105] are
fully tiled, physically scalable architectures. Scale [66], Grid [87], TRIPS [96], and ILDP [60] are
partially tiled architectures, and enjoy some but not all of the benefits of being physically scalable.
Current out-of-order superscalars are untiled and lack physical scalability.

Nonetheless, many of the current research systems are, after careful consideration, neatly char-

acterized by this taxonomy. Figure 2-11 categorizes a number of recent tiled (or “partially” tiled)

proposals using the AsTrO taxonomy. We overview each of the categorized architectures briefly

in the next few paragraphs. Note that architectures shown span the spectrum of being fully tiled

and physically scalable (Raw, RawDynamic and Wavescalar), to being partially tiled and partially

physically scalable (Scale, Grid, TRIPS, ILDP). We also include the out-of-order superscalar, which

is not tiled and is not scalable.

ILDP [60] is a partially tiled microprocessor that uses a centralized fetch unit to issue groups

of instructions dynamically to a number of distributed in-order cores that are connected via a

broadcast-based transport network. Since several copies of the same instruction can be executing

simultaneously on different in-order cores, ILDP qualifies as having a dynamic assignment SON.

Because the SON is dynamic assignment, the order of operands traveling over the broadcast network

can change in response to varying execution conditions. Therefore, it has a dynamic transport SON.

Finally, each core executes instructions within an instruction group in-order, indicating an SON with

static ordering. Thus, ILDP has an DDS SON.

TRIPS [96] (originally referred to as Grid [87]) is a partially tiled microprocessor that employs a

unified fetch unit that maps a compiled array of instructions across an array of processing elements.

These instructions execute in a data-flow fashion, and send their operands as they become available

across a network to consuming instructions. Because it is the responsibility of TRIPS’s compiler

to assign instructions to individual nodes, TRIPS is a static assignment architecture. TRIPS has

dynamic ordering because each node issues instructions in response to incoming operands, much like

43

an out-of-order superscalar. Finally, TRIPS forwards operands over a network as they are produced

by the out-of-order nodes, thus it employs dynamic transport. Thus, TRIPS has an SDD SON.

RawDynamic [112] operates in much the same way as Raw, except that it employs a packet-

switched dynamic SON that is controlled by incoming packet headers instead of a router instruction

stream. It uses compile-time assignment of instructions to ALUs, so its SON is static assignment.

Since the ordering of operands over links is dependent upon the arrival time of packets to the

routers, RawDynamic employs a dynamic transport SON. Finally, RawDynamic, like Raw, employs

an in-order compute pipeline (and logic to reorder incoming operands accordingly), so RawDynamic

possesses a static ordering SON. Thus, RawDynamic has an SDS SON.

The Scale [66] partially-tiled architecture employs a 1-D array of vector lanes, each of which

contains a number of clusters. These clusters and lanes receive their instructions from a centralized

fetch-unit that broadcasts AIB (“atomic instruction blocks”) across the lanes. These clusters and

lanes are connected by an inter-lane interconnect with a ring topology, as well as an inter-cluster

interconnect. In Scale, the assignment of AIBs (atomic instruction blocks) to virtual processing

elements is determined at compile time, so the architecture is static assignment2. Because the

ordering of operands on Scale’s inter-lane and inter-cluster communication networks is fixed, Scale

employs a static transport SON. Finally, because the execution of instructions on a virtual processing

element is determined by ordering of instructions in the instruction stream, Scale SON uses static

ordering. Thus, Scale has an SSS SON.

Overall, the bulk of the tiled or partially-tiled systems have focused upon static assignment

architectures – the hypothesis being that achieving even partial physical scalability is easier if in-

structions are mapped to known places. Dynamic ordering architectures are often paired with

dynamic transport, and static ordering architecture are often paired with static transport. The

reasoning is relatively straight-forward – in dynamic assignment architectures, the hardware already

exists to manage operands that arrive out-of-order on the network, so the cost of adding dynamic

transport is low. Conversely, in static assignment architectures, the systems have been optimized

around the fact that instruction orderings are predictable, so the lesser complexity and fewer levels

of logic (presumably resulting in lower latency networks) entailed by static transport is attractive.

Finally, the benefits that a dynamic assignment SON receives from out-of-order execution would be

hampered by the in-order nature of static transport.

2Classifying Scale is a little subtle, because of its support for virtualization through a vector-style ISA. Because
of this, operation assignment, transport ordering, and operation ordering do differ between machine implementations
with different quantities of physical lanes. However, here the intent is to have the program adapt to varying machine
configurations, rather than to have the program adapt to varying program timing conditions (such as cache misses).
Assignment, transport and ordering are all compiler-determined on a given Scale implementation. Nonetheless, the
Scale approach is interesting because it achieves one of the benefits of dynamic behavior – running existing binaries
across a spectrum of implementations with different quantities of resources) without the full hardware overhead of
the full dynamic mechanisms.

44

2.4.4 The 5-tuple Metric for SONs

How do we evaluate the basic goodness of a scalar operand network? How is an SON differentiated

from conventional microprocessor networks? How do we parameterize SONs so that we can determine

program sensitivity to SON properties? It is these questions that drove us to develop the 5-tuple

performance metric for scalar operand networks.

In order to address these questions, we decided that it was necessary to create a way of describing

the cost of the most fundamental part of an SON: operation-operand matching. For each machine,

the 5-tuples encapsulate the complete end-to-end cost of routing an operand from the output of

one ALU to the input of a remote ALU. Defining the performance metric in this way allows us to

compare operation-operand matching across a spectrum of network types, including both SONs and

multiprocessor networks.

More formally, we define the performance 5-tuple as a 5-tuple of costs <SO, SL, NHL, RL, RO>:

Send occupancy (SO) average number of cycles that an ALU on the source tile
wastes in transmitting an operand to dependent instructions
at other ALUs.

Send latency (SL) average number of cycles incurred by the message at the
send side of the network without consuming ALU cycles.

Network hop latency (NHL) average transport network hop latency, in cycles,
between physically adjacent ALUs

Receive latency (RL) average number of cycles between when the final input to a
consuming instruction arrives at the receiving tile and when
that instruction is issued.

Receive occupancy (RO) average number of cycles that an ALU on the receiving tile
wastes by using a remote value.

Figure 2-12 depicts graphically the components of the operand transmission that the 5-tuple

incorporates. Informally speaking, send occupancy incorporates the opportunity cost of instructions

that the sender incurs by initiating a communication with a remote node. The send latency incor-

porates the latency of message injection – this cost is simply the delay before the operand “hits the

network.” The transport cost is used to express the actual cost of routing the operand through the

network. It is given in the form of a per-hop network hop latency3 rather than network diameter (as

3The use of a per-hop latency raises some issues when comparing network with greatly varying topologies. Unless
otherwise specified, 5-tuples apply to 2-D meshes and other topologies for which nodes are embedded uniformly
embedded in 2-D space and whose latencies, in cycles, are roughly proportional to the physical distances between
nodes. This is a reasonable assumption for on-chip networks in modern VLSI processes, for which 2D node packing
minimizes communication latency and for which wire delay is significant in comparison to router delay. This wire
delay prevents physically-scalable hyper-dimensional topologies from reducing effective network diameter, in cycles,
beyond a constant factor of the underlying physical topology. Networks with constant communication costs between
nodes (e.g., crossbars or multistage networks) can be modeled in the 5-tuple by counting their fixed inter-node latency
as part of the send latency and setting NHL to 0. Then their 5-tuples can be directly compared to that of all other
networks regardless of packing dimensionality. One approximate approach for normalizing NHL latency of more exotic
topologies to a mesh is to graph the number of nodes which are mutually reachable in the network for a given number
of cycles, and find the mesh 5-tuple whose corresponding graph most closely matches this curve.

45

Sender Node Receiver Node

Transport Cost

receive
occupancy

receive
latency

send
occupancy

send
latency

Figure 2-12: Graphical depiction of the 5-tuple, which characterizes the end-to-end costs of routing
an operand from the output of one ALU to the input of a remote ALU.

in LogP [21]) in order to emphasize the importance of locality in tiled microprocessors. The receive

latency is the injection delay associated with pulling the operand in from the transport network at

the receiving node. The receive occupancy incorporates the opportunity cost that the receiver incurs

by receiving an operand from the sender. Generally speaking, all of the costs are exclusive. So, for

instance, if the sender has to execute an instruction that occupies one issue slot but takes 30 cycles

(including a cycle to issue the instruction) for the message to appear on the network, this would be

notated as a send occupancy of 1 and a send latency of 29.

For reference, these five components typically add up to tens to hundreds of cycles [68, 67] on

a conventional multiprocessor. In contrast, all five components in conventional superscalar bypass

networks add up to zero cycles! The challenge of tiled microprocessor design is to realize efficient

operation-operand matching systems that also scale.

In the following subsections, we examine SONs implemented on a number of conventional systems

and describe the components that contribute to the 5-tuple for that system. At one end of the

spectrum, we consider superscalars, which have perfect 5-tuples, <0,0,0,0,0>, but are not physically

scalable. On the other end of the spectrum, we examine message passing, shared memory and systolic

systems, which have physically scalable implementations but poor 5-tuples. Tiled microprocessors,

such as Raw, strive to incorporate the favorable aspects of both types of systems, achieving physical

scalability and a 5-tuple that comes closer to that of the superscalar. For instance, Raw’s SON

attains a 5-tuple of <0,0,1,2,0>.

46

2.4.4.1 Example: Estimating the 5-tuple for Superscalar operation-operand matching

Out-of-order superscalars achieve operation-operand matching via the instruction window and result

buses of the processor’s SON. The routing information required to match up the operations is inferred

from the instruction stream and routed, invisible to the programmer, with the instructions and

operands. Beyond the occasional move instruction (say in a software-pipelined loop, or between the

integer and floating point register files, or to/from functional-unit specific registers), superscalars do

not incur send or receive occupancy. Superscalars tend not to incur send latency, unless a functional

unit loses out in a result bus arbitration. Receive latency is often eliminated by waking up the

instruction before the incoming value has arrived, so that the instruction can grab its inputs from

the result buses as it enters the ALU. This optimization requires that wakeup information be sent

earlier than the result values. Thus, in total, the low-issue superscalars have perfect 5-tuples, i.e.,

<0,0,0,0,0>. We note that non-zero network latencies have begun to appear in recent wider-issue

superscalar designs such as the Alpha 21264 [59] and Power4 [114].

2.4.4.2 Example: Estimating the 5-tuple of Multiprocessor operation-operand match-

ing

One of the unique issues with multiprocessor operation-operand matching is the tension between

commit point and communication latency. Uniprocessor designs tend to execute early and specu-

latively and defer commit points until much later. When these uniprocessors are integrated into

multiprocessor systems, all potential communication must be deferred until the relevant instructions

have reached the commit point. In a modern-day superscalar, this deferral means that there could

be tens or hundreds of cycles that pass between the time that a sender instruction executes and the

time at which it can legitimately send its value on to the consuming node. We call the time it takes

for an instruction to commit the commit latency. Barring support for speculative sends and receives

(as with a superscalar!), the send latency of these networks will be adversely impacted.

The two key multiprocessors communication mechanisms are message passing and shared mem-

ory. It is instructive to examine the 5-tuples of these systems. As detailed in [111], the 5-tuple

of an SON based on Raw’s relatively aggressive on-chip message-passing implementation falls be-

tween <3,1+c,1,2,7>and <3,2+c,1,2,12>(referred to subsequently as MsgFast and MsgSlow) with

c being the commit latency of the processor. A shared-memory chip-multiprocessor SON imple-

mentation based on Power4, but augmented with full/empty bits, is estimated to have a 5-tuple

of <1,14+c,2,14,1>. Later, we were able to confirm experimentally that the actual Power4 has a

5-tuple of <2,14,0,14,4>. For completeness, we also examine a systolic array SON implementation,

iWarp, with a 5-tuple of <1,6,5,0,1>.

Message-passing operation-operand matching For this discussion, we assume that a dy-

namic transport network [22] is used to transport operands between nodes. Implementing operation-

47

operand matching using a message-passing style network has two key challenges.

First, nodes need a processor-network interface that allows low-overhead sends and receives of

operands. In an instruction-mapped interface, special send and receive instructions are used for

communication; in a register-mapped interface, special register names correspond to communication

ports. Using either interface, the sender must specify the destination(s) of the out-going operands.

(Recall that the superscalar uses indiscriminate broadcasting to solve this problem.) There are

a variety of methods for specifying this information. For instruction-mapped interfaces, the send

instruction can leave encoding space (the log of the maximum number of nodes) or take a parameter

to specify the destination node. For register-mapped interfaces, an additional word may have to

be sent to specify the destination. Finally, dynamic transport networks typically do not support

multicast, so multiple message sends may be required for operands that have non-unit fanout. These

factors will impact send and receive occupancy.

Second, receiving nodes must match incoming operands with the appropriate instruction. Be-

cause timing variances due to I/O, cache misses, and interrupts can delay nodes arbitrarily, there is

no set arrival order for operands sent over dynamic transport. Thus, a tag must be sent along with

each operand. When the operand arrives at the destination, it needs to be demultiplexed to align

with the ordering of instructions in the receiver instruction stream. Conventional message-passing

implementations must do this in software [120], or in a combination of hardware and software [76],

causing a considerable receive occupancy.

Shared-memory operation-operand matching On a shared-memory multiprocessor, operation-

operand matching can be implemented via a large software-managed operand buffer in cache RAM.

Each communication edge between sender and receiver could be assigned a memory location that

has a full/empty bit. In order to support multiple simultaneous dynamic instantiations of an edge

when executing loops, a base register could be incremented on loop iteration. The sender processor

would execute a special store instruction that stores the outgoing value and sets the full/empty bit.

The readers of a memory location would execute a special load instruction that blocks until the

full/empty bit is set, then returns the written value. This would eliminate branch misprediction

penalties inherent in polling. Every so often, all of the processors would synchronize so that they

can reuse the operand buffer. A special mechanism could flip the sense of the full/empty bit so that

the bits would not have to be cleared.

The send and receive occupancy of this approach are difficult to evaluate. The sender’s store

instruction and receiver’s load instruction only occupy a single instruction slot; however, the proces-

sors may still incur an occupancy cost due to limitations on the number of outstanding loads and

stores. The send latency is the latency of a store instruction plus the commit latency. The receive

latency includes the delay of the load instruction as well as the non-network time required for the

cache protocols to process the receiver’s request for the line from the sender’s cache.

48

This approach has number of benefits: First, it supports multicast (although not in a way that

saves bandwidth over multiple unicasts). Second, it allows a very large number of live operands

due to the fact that the physical register file is being implemented in the cache. Finally, because

the memory address is effectively a tag for the value, no software instructions are required for

demultiplexing. In [111], we estimated the 5-tuple of this relatively aggressive shared-memory SON

implementation to be <1,14+c,2,14,1>. Subsequently, experimentally, we were able to measure the

5-tuple between two cores on a 1.3 GHz Power4 node (in which the two cores are located on the

same die and are connected via shared memory through a shared on-chip L2) as being <2,14,0,14,4>

– under the optimistic assumption that the top bit of each word is unused and can be used as a

full-empty bit.

Systolic array operation-operand matching Systolic machines like iWarp [38] were some of

the first systems to achieve low-overhead operation-operand matching in large-scale systems. iWarp

sported register-mapped communication, although it is optimized for transmitting streams of data

rather than individual scalar values. The programming model supported a small number of pre-

compiled communication patterns (no more than 20 communications streams could pass through a

single node). For the purposes of operation-operand matching, each stream corresponded to a logical

connection between two nodes. Because values from different sources would arrive via different logical

streams and values sent from one source would be implicitly ordered, iWarp had efficient operation-

operand matching. It needed only execute an instruction to change the current input stream if

necessary, and then use the appropriate register designator. Similarly, for sending, iWarp would

optionally have to change the output stream and then write the value using the appropriate register

designator. Unfortunately, the iWarp system is limited in its ability to facilitate ILP communication

by the hardware limit on the number of communication patterns, and by the relatively large cost

of establishing new communication channels. Thus, the iWarp model works well for stream-type

bulk data transfers between senders and receivers, but it is less suited to ILP communication. With

ILP, large numbers of scalar data values must be communicated with very low latency in irregular

communication patterns. iWarp’s 5-tuple can modeled as <1,6,5,0,1> - one cycle of occupancy for

sender stream change, six cycles to exit the node, four or six cycles per hop, approximately 0 cycles

receive latency, and 1 cycle of receive occupancy. An on-chip version of iWarp would probably incur

a smaller per-hop latency but a larger send latency because, like a multiprocessor, it must incur the

commit latency cost before it releases data into the network.

2.4.4.3 5-tuple for the Archetypal Tiled Microprocessor

What 5-tuple should the Archetypal Tiled microprocessor possess? Ideally, the components would

be as close to zero as physics allows. However, the network hop latency (“NHL”) should not be

zero because the absence of a distance-related cost for routing operands implies that the machine

49

is not physically scalable. How do we know that the NHL of our ATM is respectable? One way

is to measure the percentage of the latency due to wire (and repeater) delay. If the percentage is

relatively high (for instance, 40%), then we know that overhead of intermediate routing is low.

Furthermore, in the ATM, we would like the send and receive occupancy to be zero. The reason

is that these parameters have a large effect on performance (see [111]), and yet it is relatively easy,

through the use of parallel hardware and appropriate instruction set support, to eliminate these

costs. The communication hardware can run independently of the tile’s compute pipeline. Send

and receive occupancy have a large negative impact on performance because they penalize nodes for

communicating. For instance, in Figure 2-10, the speedup attained on the application is attained

because we are able to offload two of the instructions from the upper-left hand tile (“tile 0”) to the

lower-left hand tile (“tile 1”). The existence of a single cycle of receive occupancy would make it

unprofitable to execute instruction 2 on tile 1, since it would be just as cheap for tile 0 to execute

the instruction itself as to receive the operand. Similarly, the existence of a single cycle of send

occupancy would make it unprofitable to execute instruction 7 on the tile 1 because it would as

cheap for tile 0 to execute the instruction itself as it would to send the operand to the tile 1.

The ideal send and receive latency parameters are more difficult to discern. Looking back on

our experiences with the Raw prototype, it appears that it is possible to implement an SSS SON

with zero send latency and unit receive latency. For other SONs from other parts of the AsTrO

taxonomy, it remains to be seen how low the latencies can go, since the additional sophistication of

these SONs tends to incur additional levels of logic, which will result in either lower cycle times or

higher latencies. On the other, the additional dynamicity of these architectures may allow them to

compensate for slower SON operation-operand matching performance. As the research matures and

more implementations emerge, more will become known.

2.5 Parallel Execution on Tiled Microprocessors

The previous section discussed scalar operand networks and how they facilitate fast communication

between remote functional units. In this section, we examine the larger picture of how the SON and

other resources are programmed to achieve the goal of parallel execution – both for single-threaded

and multi-thread programs. In this section, we examine the general themes in compilation for fully-

tiled architectures such as the ATM – the reader can refer to the description of Raw’s compilers in

Section 5 and [71, 37, 7, 72, 70, 3, 58, 116, 36, 82, 86, 100, 18] for further details about compiling

for specific architectures or languages.

50

2.5.1 Multi-Threaded Parallel Execution on Tiled Microprocessors

From Section 2.1 we know that every tile has its own program counter, fetch unit and instruction

cache. The self-sufficiency of tiles is part of the physical scalability argument, because it eliminates

many of the centralized components – such as fetch units, control broadcast networks and global

barriers – that contribute to scalability problems. Because of this self-sufficiency, tiles have the

ability to operate independently in addition to in tightly-coupled groups.

As a result, this allows the ATM to support a naturally threaded mode of execution much like

that found in multiprocessor systems – groups of tiles can be organized into threads in which each

thread operates autonomously with respect to the other threads. Of course, should the need arise,

separate threads can periodically synchronize, through the on-chip networks, or through memory.

Generally speaking, in the threaded model, there is a notion of resources that are associated with

a particular thread. In the ATM, at a minimum these resources include a set of program counters,

fetch units and functional units. However, it may also be necessary to partition the SON, that is,

to divide the resources of the SON among the threads. This is particularly true if the SON is a

static transport SON, where separate threads with no reconciliation of control-flow will not be able

to easily derive a unified communication schedule. On the other hand, a dynamic transport SON

may very well be able to share large parts of the SON between threads, although there may be

some negative performance effects due to contention. This “partition the resources and periodically

synchronize” mode of usage is much like that of a chip-multiprocessor, although the latencies are

typically smaller if the SON is employed for communication.

2.5.2 Single-Threaded Parallel Execution on Tiled Microprocessors

Within a thread, ATM tiles operate in a much more tightly coupled fashion – executing the same

instruction stream with a notion of a shared – but possibly slightly decoupled – control-flow structure.

In this model, the instruction streams for each tile are typically created with mutual knowledge of

the other tiles’ instruction streams. Because of this shared knowledge of control-flow structure,

the SON communication patterns can be quite rich, complex and fine-grained in comparison to

conventional multi-threaded programs which are programmed without detailed knowledge of the

instruction streams of the other threads. For conventional threaded programs, the control flow

structure of different physical threads can be wildly diverging, but communication (over SON or

otherwise) is typically quite structured (e.g., through homogeneous streaming channels, or through

the use of meta-data to describe messages) – otherwise neither thread would know when or what

the other thread was transmitting.

Between threads, much of the existing knowledge in multiprocessors directly applies to the ATM.

It is for a multi-tile execution of a single thread (such as in Figure 2-10) that we are faced with the

51

task of orchestrating these otherwise self-sufficient tiles (and their SONs) within a common control-

flow context. Generally speaking, control-flow instructions are replicated to all tiles that have been

assigned non-control instructions that are guarded by those control-flow instructions. Then, it

remains to multicast the branch condition, if necessary, to the replicated instructions. Fortunately,

the scalar operand network provides a fast way of communicating this information. Control-flow

values (e.g., branch conditions) can easily be transmitted over the scalar operand network just as

any other type of data.

a++;
}

ld a

cmp _, 0

beq _, out beq _, out

E

bne _, else

cmp _, ‘\n’

bne _, else

x = x+z

a = a+1

y = y+z

E

(out) (out) Tile 1Tile 0

while (*a!=0)

{
if (*a==‘\n’)

x=x+z;

else

y=y+z;

Figure 2-13: A program segment and a mapping of its control flow graph (“CFG”) to two tiles. The
rectangles with rounded edges are the CFG nodes. The dotted arcs are the CFG edges. The white
boxes are instructions, which belong to one CFG node.

Figure 2-13 shows an example of a control-flow intensive program segment and a mapping of

its control flow graph (“CFG”) to two tiles. The CFG’s nodes, represented using rectangles with

rounded corners, correspond to basic blocks in the program. A basic block is a single-entry, single-

exit region of the program. Each instruction in the original program segment belongs to one of

the CFG’s nodes. An important invariant of control flow graph execution is that if the flow of

control proceeds upon one of the CFG’s outbound edges, then all of the operations in the CFG have

52

executed.

We describing the process of mapping of a CFG to an array of ATM tiles in the following sub-

sections on instruction assignment, scalar assignment, route assignment, and instruction scheduling.

2.5.2.1 Instruction Assignment

The process of mapping a CFG to an array of tiles begins with the assignment of instructions to

tiles, as described in this section. First, each node of the control-flow graph is conceptually mapped

across every tile in the array, regardless of whether that tile is used in the computation. Then, each

instruction in each CFG node is assigned to a single tile, with one exception – conditional control

flow instructions, of which there can be at most one per CFG node, are mapped to all of the tiles.

Once every instruction has been mapped, the challenge is to manage the flow of scalar values

within the control flow graph. If all sources and destinations of the scalar value reside in the same

control flow block, then the process is much as we’ve seen in the previous discussion of scalar operand

networks. The appropriate route operations are created and assigned to the same CFG node as the

sending and receiving instructions. This ensures that they are executed accordingly with the other

operations in the same CFG node.

In the case where the sources and/or destinations of scalar values do not reside in the same

control flow block, the process is somewhat more involved, especially because there may be multiple

entry and exit arcs to a given control flow node. In essence, we need to perform a task that is similar

in spirit to register allocation. We call this task scalar assignment.

2.5.2.2 Scalar Assignment

The purpose of scalar assignment is to determine the “hand-off locations” for scalar variables between

CFG nodes. Scalar assignment takes as input a set of live-ins and live-outs for each CFG node.

These are typically determined through a compiler data-flow analysis. Live-ins are variables whose

values are still possibly needed in the computation, and are valid upon entrance to the control flow

block. Live-outs are variables whose values are still possibly needed in a subsequent phase of the

computation upon exiting a control flow block. The job of scalar assignment is to create a contract,

for each control-flow block, of the expected location(s) of live-ins and live-outs – these may be in a

particular register in the register-file, or in a particular network buffer, or at a particular memory

location4. Each live-in or live-out may have more than one location, to improve locality.

Scalar assignment must further ensure that the contracts between CFG nodes are consistent. For

each control-flow edge (the dotted lines in Figure 2-13), the live-outs of the source must meet (or

4To simplify the compiler implementation, scalar assignment may make use of virtual registers or virtual buffers to
defer the assignment of storage locations until a later phase of the compiler. This is especially practical if a backing
store exists (e.g., spill instructions and a cache) that is guaranteed to be accessible in spite of any resources the
compiler may have reserved for other parts of the computation.

53

ld a

cmp _, 0

beq _, out beq _, out

E

bne _, else

cmp _, ‘\n’

bne _, else

x = x+z

a = a+1

y = y+z

E

(out) (out) Tile 1
Tile 0

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>
t1: <0,4>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>
t1: <0,4>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>,<1,2>

a: <0,1> x: <0,2>
y: <1,1> z: <0,3>

in:

out:

in:

out:

in/
out:

in/
out:

in/
out:

in:

var: <tile, location>, …

t1

Figure 2-14: A valid scalar assignment for a control flow graph. Each CFG node’s live-out and live-in
operands have been assigned one or more locations. Furthermore, live-out and live-in locations of
connected CFG nodes are consistent.

exceed) all of the expectations of the live-ins of the destination node. For instance, if the destination

node expects variable z to be placed in register 3 on tile 0, then the source would satisfy this if, for

instance, its live-out list had variable z in register 3 on tile 0, and register 2 on tile 1. In some cases,

scalar assignment may chose to insert an additional new “stitch” control flow node on a given control

flow edge in order to transition between CFG nodes which have different ideal scalar assignments –

for instance, for CFG nodes belonging to different loops that have different ideal scalar placement.

In this case, the original source node will have an output edge going to the stitch CFG node, which

in turn will have an output edge going to the original destination node. The CFG node will be given

live-in and live-out signatures that are compatible with the CFG nodes it connects to.

Scalar assignment can also be used to exchange data that is “in flight” between control flow

nodes – that is, a scalar value’s assigned location can be a FIFO on the SON rather than a location

in a tile’s local register file. In this case, the interconnect semantics are somewhat more challenging

– namely, unlike with values stored in the register file, excess operands can have the side effect of

54

“blocking” other operands from passing through. In this case, the live-in and live-out consistency

must be enforced more strictly – not only must the live-outs of the source be a superset of the live-ins

of the destination, but vice versa as well. Put another way, the FIFO-resident live-out and live-in

scalar assignments must match exactly. In this case, the insertion of “stitch” CFG nodes can also

be used to dequeue unnecessary elements upon transition between control flow nodes.

Figure 2-14 shows an example of consistent live-in and live-out annotations for the original

graph in Figure 2-13. Note that there are two copies of the variable z in the loop, which reduces

communication latency.

How are good scalar assignments determined? Ideally, the ideal locations will minimize the net

occupancies and latencies involved in transmitting live-in values to remote instructions that require

them – an interesting compiler optimization problem.

2.5.2.3 Route Assignment

After scalar assignment has been run, the compiler can now focus exclusively on one CFG node at

a time. It must perform route assignment. First, it must assign route operations to tiles in order to

route values from live-ins to consuming instructions. Since a given variable may have multiple live-in

locations, it is up to the compiler to choose the one that best optimizes program execution. Second,

the compiler must generate routes that go between dependent instructions. Third, the compiler

must generate routes that go from the last definition of the scalar value (which may be a live-in) to

all of the live-out locations. Finally, if the SON has a concept of in-network state, route assignment

must perform the task of ensuring that unwanted operands are not left “hanging” in the network

unless this is specified by the live-out contract. A key idea is that, because of the use of the scalar

assignment pass, code generation occurs within control-flow nodes as opposed to across them. Each

route operation has a definite CFG node that it is associated with. This is because inter-CFG routes

have been divided, through scalar assignment, into a series of intra-CFG routes.

2.5.2.4 Scheduling and Code Generation

At this point, route operations have been assigned and all instructions have been assigned to tiles.

Next, we want to schedule the operations within each CFG node, taking into account instruction and

routing latencies5. We may also need to perform register allocation to map local virtual registers

(assigned through scalar assignment) to a tile’s local register file and stack. We may also have some

final optimizations we want to perform. For instance, we may want perform per-tile optimization

with respect to minimizing unnecessary control flow – for instance, the elimination of unconditional

jump instructions, or eliminating conditional branches that do not guard any instructions.

5Of course, static ordering SONs benefit the most from scheduling; however, dynamic ordering SONs also benefit
from an informed ordering of the instruction stream.

55

However, to a large degree, overall program performance has already been determined – once the

program has been sliced and diced across the array of tiles, the tiles are often so inter-dependent

that improving one tile’s performance often will not improve the schedule of the whole. As a result,

it is desirable to design a tiled microprocessor’s instruction set so that most peephole optimizations

can be performed before assignment and routing are performed.

At this point, it remains to “render the binary” – to generate instruction streams for each

tile that ensure that each instruction and route is contained within the surrounding control flow

instructions. Because we have assigned route operations to their corresponding control-flow blocks,

we can insure that route operations will be executed in their correct contexts – even if they are the

only operation that executes on a given tile in a given control flow. This guarantee is particularly

important in an architecture with static transport, in which the routers need to be programmed with

route operations. Furthermore, because there are consistent live-in and live-out contracts between

CFG nodes due to scalar assignment, we know that scalar values are correctly orchestrated in the

program.

2.6 The ATM Memory System

In the previous section, we described many aspects of compilation and execution for tiled micropro-

cessor, including how control flow is managed. In this section, we examine the memory system of the

ATM . Although we have already specified that each tile in an ATM has its own data-cache, there

are a number of interesting issues that arise in the ATM. In this section, we address the following

questions. How do the caches interact with the external memory system and each other? How do

tiled systems support a memory hierarchy? How are memory dependences handled between tiles?

First, we examine how cache misses are treated in the system. During the common case, memory

operations (such as load or store instructions) find their corresponding values in the local cache of

a tile. Should the value not be in the cache, then the cache miss logic is responsible for retrieving

the corresponding cache line. In the most basic tiled microprocessor, cache misses cause requests

(typically a packet with one or more words) to be sent out over a point-to-point on-chip network

(a generalized transport network) to I/O ports which are in turn connected to off-chip DRAM.

Since the tiled microprocessor may have several I/O ports, the cache miss logic must use a memory

hash function to determine where to send the request. The hash function takes an address and

converts it to a destination which is used in the header of the cache miss message. Thus, the hash

function effectively partitions the address space across the DRAM ports. Should the tile support

multiple outstanding cache-miss messages, it may also include a sequence number which is used as a

way to disambiguate message responses, which may return out-of-order depending on network and

DRAM congestion and latency. Since the memory configuration (such as the size and number of

56

DIRDRAM

DIRDRAM

DIR DRAM

DIR DRAM

Data Cache

hash function

Figure 2-15: Memory system for a basic tiled microprocessor. Each tile has a local data cache and
a configurable hash function, which maps addresses to I/O port addresses. The cache miss requests
are packaged into a message, which is transmitted over a point-to-point on-chip network to the I/O
ports. At the I/O ports are a number of DRAMs and memory controllers that optionally implement
a directory-based coherence protocol.

DRAMs) may vary between machines, it is common to allow this hash function to be configured by

the operating system, or even the application. Since this hash function operates much like a TLB,

it may also be convenient, but not mandatory, to combine it with the functionality of a TLB.

Figure 2-15 illustrates this idea. It depicts an array of four tiles. Inside each tile is a local data

cache and a hash function that maps addresses to I/O ports. Also pictured next to each DRAM

is an optional cache-coherence controller (marked “DIR”) which implements directory-based cache-

coherence for facilitating a shared-memory programming model between multiple tiles.

There are several undesirable scalability characteristics with the basic mechanism of Figure 2-15.

First, as the number of tiles is increased, the distance that cache miss messages must travel increases.

These increased distances in turn increase the average latency and average bisection bandwidth re-

quirements of each cache miss. Second, since I/O bandwidth does not tend to scale with transistor

count, it is likely that there will be relatively high contention on I/O ports as the system is scaled

up. Third, with subsequent generations of Moore’s law, the speed of logic transistors is likely to

increase relative to the speed of DRAM accesses. As a result, we can expect that DRAM latencies,

measured in terms of clock cycles, will increase. All of these factors (which are effectively architec-

tural scalability problems caused by a failure to exploit locality) argue for having larger caches in the

tiles, to reduce the average latency and bandwidth requirements of memory accesses. However, if we

increase tile cache sizes to address this problem, then we introduce a physical scalability problem –

the cycle time of the processor, normalized for process (e.g., by the FO4 metric), would increase. An

alternative is to introduce hierarchy into the tile’s caches. Although this will eliminate the physical

scalability issues at the cache level, it will cause tiles to grow larger, which in turn will force the

57

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAM

Figure 2-16: Virtual caches: using tiles to implement a memory hierarchy in the ATM to attain
physical scalability. In this case, there is one compute tile (with a single L1 cache), 8 tiles at the
L2 level, and 55 tiles at the L3 level. Were there an additional compute tile, coherence would be
maintained at the L2 level; the tiles would share all levels of the cache hierarchy at and below L2,
with invalidations and flush requests being sent up to the individual tiles’ L1 caches.

inter-tile latencies to increase. Furthermore, it will reduce the proportion of the chip dedicated to

computation relative to cache, which penalizes those programs which have good locality and do not

need a higher relative percentage of cache.

The ATM addresses these problems by using the tiles themselves to implement hierarchical

caches, as determined by the needs of the workload. By generalizing the hash function so that it can

target both external I/O ports and internal tiles, the ATM gains the ability to employ groups of tiles

as additional cache memory. This way, depending on the memory characteristics of the program,

on how much parallelism is present, and on how many programs are being run on the ATM, more

or fewer resources can be dedicated to on-chip cache for the program.

Figure 2-16 shows an example multi-level cache configuration for a program which has extremely

high working sets and low parallelism. This configuration is determined by software. In this case,

the center tile is the only one performing computation. Its memory hash function is configured

to hash addresses to eight different tiles. These eight tiles use their local caches to implement a

distributed L2 implementation with roughly eight times the capacity of the center tile. When these

tiles do not contain the cache line in question, they in turn consult their configurable hash function

58

(or a software routine) to refer the requests to the next level of cache, which is also implemented

using tiles. In total, eight tiles are used to implement the L2, and 55 tiles are used to implement

the L3. The L3 tiles in turn have their hash function configured to send misses to external DRAM

ports.

Clearly, there is a large design space for implementing caches out of tiles; and we will leave the

details largely unspecified. However, there are a few items that are worth mentioning. First, the

optimal topology of these virtual caches is dependent on the relative latencies of the cache miss

hardware and the transport network’s hop cost. The lower the hop cost relative to the cost of

processing the misses in the cache miss hardware, the fewer the levels of hierarchy (and the greater

the number of tiles per level) in the virtual cache.

Second, when a virtual cache is employed by multiple client compute tiles that also make use

of cache-coherent shared memory support, there are a number of alternatives for implementing

coherence. One possibility is to pick a level at which coherence is done (e.g., L2), and then to make

all levels of cache (e.g., L1) above this level private to individual tiles (but possibly containing the

same data in a “shared” state.) All levels below (e.g., L2, L3, ...) are used in common by the client

compute tiles. Then, the L2 tiles’ caches cache both program data and the directory information

needed to describe the sharing relationships of the client tiles’ private (e.g., L1) caches. Finally,

since tiles are used to implement successively deeper levels of the memory hierarchy, there are a host

of trade-offs between what is implemented in hardware (simple but fast and lower power) versus

software (more sophisticated, slower, and reconfigurable).

2.6.1 Supporting Memory Parallelism

Tiles in the ATM system employ multiple caches and can optionally use standard distributed

directory-based cache-coherency protocols to maintain coherence. In the case where tiles are be-

ing used to execute independent threads, memory parallelism operates much like in shared memory

multiprocessor systems – it is the programmer’s responsibility to insert the appropriate synchroniza-

tion and/or cache-control primitives to ensure mutual exclusion as well as dependency, coherence

and consistency constraints for memory accesses on different tiles.

However, in the case where multiple ATM tiles are being used to execute a single sequential pro-

gram in parallel, the burden of enforcing memory semantics lies upon the compiler and architecture.

In a sequential program, memory operations are ordered by their appearance order in a sequential

execution of the instruction stream – the value read from a given address is the value that was stored

in the most recent store instruction. However, when a single sequential program is being executed

in parallel by multiple tiles, maintaining these semantics can be more challenging, since tiles do not

execute the program’s instructions in strictly lock-step order.

59

One solution to this problem is to map all memory operations to a single tile6, and to use

traditional uniprocessor techniques to enforce memory dependences. However, this has several dis-

advantages. First, it means that the program is only utilizing the local cache memory of a single tile.

Second, it restricts the ability of tiles to exploit parallelism. For example, if on average one-in-five

instructions is a memory operation, then there would be little benefit to using more than five tiles

to execute a program. Clearly such an approach is not scalable.

A more desirable solution is to be able to map memory operations to different tiles, allowing us

to exploit multiple tiles’ data caches and memory ports. To achieve this goal and ensure program

correctness, we need to find a way to make sure that the program adheres to the memory dependences

contained in the original sequential program. One possibility is to map memory operations to

different tiles, and then use a token, communicated over a point-to-point network such as the SON,

to signal to the next memory operation that the previous operation has completed. Although this

has the benefit that it distributes memory objects across caches, it has two disadvantages. First,

it increases the effective latency of memory operations because the program now has to pay the

cost of transmitting the token between memory operations. Second, it does not achieve our goal of

being able to execute memory accesses in parallel. Third, if this mapping is done without regard

to temporal locality, cache lines may be prone to “ping-ponging” between different tiles that are

accessing the same address.

The key to attaining memory parallelism is to take advantage of the fact that not all memory

operations need to be ordered with respect to each other – only those memory operations which have

intersecting addresses need to be ordered7. Thus, to parallelize memory operations across tiles, we

want to divide memory operations into groups of operations such that no two groups access the same

address [8, 9]. Each group can be assigned to a single tile, and can proceed without synchronizing

with memory operations in other groups8. Periodically, we may migrate a given group from one tile

to another, in which case a message can be sent over the SON from the original tile to the new tile

after the original tile has confirmed that all previous operations have completed. Cache coherence or

explicit cache management can handle the migration of actual data objects between tiles at migration

points. As the program transitions between phases, we may reformulate the groups, so that a new

set of groups is formed that repartitions the address space. A similar (but more comprehensive)

synchronization is necessary for this reconfiguration. In many cases a barrier (which can be done

quickly with most SONs) may be the most efficient way to achieve this. Once again, cache coherence

or explicit cache management can handle the actual transfer of data.

6Or to a centralized hardware unit that orders memory operations.
7Memory consistency (as opposed to memory coherence) for inter-thread communication can be handled through

the insertion of explicit constructs that inform the compiler of the need to enforce ordering of memory operations that
target different addresses. The compiler can then insert synchronization communications over the SON to ensure that
all memory operations proceed in order. This use of explicit constructs to enforce compiler ordering is common in
many current multiprocessor systems that have relaxed memory consistency models, and is not unique to the ATM.

8Of course, the tiles must continue to ensure intra-tile memory ordering within a group.

60

This process allows us to distribute memory objects across the caches of different tiles and

to sustain parallel execution of the memory operations. At the same time, dependent memory

operations are located on the same tile, which makes enforcement of memory ordering fast and

efficient. Finally, the assignment of groups of addresses to individual tiles helps reduce the frequency

of cache ping-ponging.

2.6.2 Compiler enhancement of Memory Parallelism in

Single Threaded Programs

Both compiler analyses and transformations play an important role in enabling memory parallelism

in single-threaded programs on tiled microprocessors. The compiler needs to examine the input

program and deduce which memory operations in the program may refer to the same addresses

(whether they may alias). This deduction can be performed through a variety of analyses. For

instance, the compiler may deduce that two addresses have different types, and thus cannot alias.

Or it may determine that two addresses are referenced using different offsets from the same pointer

or array. Although alias analysis is still an active area of research, tiled architectures provide a way

of turning these advanced techniques into performance.

for (i = 0; i < n; i++)
a[i] = i;

for (i = 0; i < (n & 3); i++)
a[i] = i;

// these stores can be mapped to different tiles
for (i < n; i+=4)
{

a[i] = i;
a[i+1] = i+1;
a[i+2] = i+2;
a[i+3] = i+3;

}

a) b)

Figure 2-17: An example of a code transformation that safely increases memory parallelism. The
code is transformed in a way that duplicates a given memory instruction such that each duplicate
accesses a provably disjoint set of addresses.

The compiler can also help by going beyond program analysis to program transformation. In

this case, the compiler transforms the input program in order to increase the number of groups. One

common transformation addresses the issue that a given memory operation may access many classes

of addresses. By selectively duplicating code, the memory operation may be replicated in such a

way that the addresses accessed by one instruction are provably disjoint from the addresses accessed

by the other. At this point, the operations can be assigned to different tiles9. Figure 2-17 shows an

example of one such transformation. Section 5.4.1 details the program analyses and transformations

9In a way, we could think of this as instruction meiosis – the instruction is being split into two copies which each
access a disjoint subset of the addresses.

61

that the Raw compiler performs in order to enhance memory parallelism. More details on these

techniques, including modulo unrolling and equivalence class unification, can be found in [8, 9].

2.7 I/O Operation

We now turn our attention to the final architectural component of the ATM, the I/O system. The

I/O ports connect the on-chip networks to the pins of the chip, which in turn are connected to I/O

devices. These I/O devices – whether hard drives, video inputs, D/A or A/D converters, or memories

– are essentially network devices that are logically situated on the ATM’s on-chip networks. Because

I/O devices are network clients, they are free to initiate and pursue communication with other tiles

and other devices, as depicted in Figure 2-18. This communication is typically done through a

series of network packets, if a generalized transport network is employed, or in the form of a stream

of words if the scalar operand network is used. Frequently, both types of communication can be

employed by the same device types. For instance, Figure 2-19 depicts a tile doing a number of

cache-misses (via request-reply messages) in parallel over the generalized transport network, while

Figure 2-20 shows a tile which, having programmed three DRAMs with the appropriate meta-data

(e.g., addresses, strides and lengths), is summing two streams coming in from two DRAMs and

routing the output to a third DRAM.

2.8 Deadlock in the ATM I/O and Generalized Transport

Network (C6)

In any distributed networked system, such as the ATM, a central concern is deadlock. Deadlock

occurs when multiple messages become lodged in the network indefinitely due to a cyclic interde-

pendence for buffer resources. In the context of the ATM, deadlock can emerge in many parts of

the system including communication between tiles, among I/O devices, and between tiles and I/O

devices. Deadlock can result from communication over the SON, communication over the general-

ized transport network, or a combination of both. In this section, we discuss the two key types of

deadlock – in-network and endpoint deadlock – and describe some effective approaches for handling

them in tiled microprocessors, including the use of trusted and untrusted cores which implement

deadlock avoidance and virtual buffering, respectively.

Figure 2-21 shows one such example of deadlock. Two tiles are issuing a series of requests to two

DRAMs. Each DRAM repeatedly dequeues a request from the ingoing network, and then enqueues

a response into the outgoing network. Each DRAM will not dequeue the next request until it has

replied to the last request. Deadlock occurs if the network buffers in the DRAM request paths

become full and the DRAMs are both trying to reply to messages. In this case, both DRAMs are

62

DRAM

DRAM

DRAMDRAM

DRAM

f(x)

Figure 2-18: I/O communication in the ATM. I/O devices can use the ATM’s network to commu-
nicate among each other and with the tiles. In the figure, this is demonstrated in three instances.
First, data is routed directly from DRAM to a hard disk. Second, data is being routed directly
from a video camera to a DRAM. (Although both of these cases might come under the term direct
memory access (“DMA”), communication is also possible between non-DRAM devices, such as the
video camera and the hard drive). Finally, the example shows an example in which a video stream
is being processed by a tile and then routed directly to a frame buffer for display.

DRAM

DRAM

DRAMDRAM

DRAM

DRAMDRAM

DRAM

Figure 2-19: Packet-oriented communication between a tile and a DRAM. The tile is servicing
multiple cache requests in parallel via the packet-oriented generalized transport network. Each
cache miss causes a request packet to be sent to DRAM. The DRAM then sends a reply packet back
to the requesting tile.

63

DRAM

DRAM

DRAMDRAM

DRAM

DRAM

+

DRAM

DRAM

Figure 2-20: Stream-oriented communication between a tile and three DRAMs. Two of the DRAMs
are streaming data into the on-chip SON, which is routing the streams to the tile. The tile is
processing the data and then routing the output over the SON to a destination DRAM. Typically,
this procedure requires that the DRAMs be informed of the addresses, strides and data lengths that
apply to the incoming or outgoing data streams. This may occur over the SON or the generalized
transport network.

DRAM

DRAM

DRAMDRAM

DRAM

DRAMDRAM

DRAM

Figure 2-21: Example of deadlock in ATM.

64

1 2

3

45

6

7 8

9
10

11

12 1314

1 2 3 4 5 6

12 11 10 9 8 7

13
14

1 2 3 4 5 6

12 11 10 9 8 7

13
14

a) b)

c)

1

2

3

4

5

6
12

11

10

9

8

713 14

d)

Figure 2-22: Deadlock Analysis using channel dependence graphs. a) shows an example network
containing 6 nodes. b) shows the channel dependence graph, assuming that messages are never sent
back on their incoming edges. There are a number of cycles. c) shows the same network, with
dimension-ordered routing constraints. d) shows the same graph, but drawn in a way that shows it
is clearly acyclic.

unable to proceed because they have insufficient space to enqueue their replies; they are mutually

dependent on each other’s forward progress to free space in the network. Although this example

involves communication between two DRAMs and two tiles, it could just as easily be communication

between two pairs of tiles, or two pairs of DRAMs.

More generally, the problem of deadlock in interconnection networks can be formalized through

the use of a channel dependence graph [23]. In a channel dependence graph, a node represents a

network buffer, and an edge from node a to node b indicates the fact that the “agent” (for instance,

a network router) holding a may wait indefinitely until b is free. If there is no cycle in the channel

dependence graph, then it is not possible for deadlock to occur.

For example, we examine a 6-node mesh network in which messages can be routed in any direction

except back on the link on which they came. For this network, shown in Figure 2-22a, we can create

a channel dependence graph (Figure 2-22b) which represents the dependences created by the routers

65

in the network. This graph has a number of cycles, indicating that deadlock may be possible. A

common technique for eliminating possible deadlock is to restrict network type and the possible

routes that can occur on the network. One such restriction, in the context of mesh networks without

end-around connections is called dimension-ordered routing [22], in which all routes in one dimension

(say, the X direction), are performed before all routes in the next dimension (say, the Y direction.)

The 6-node system, with these additional restrictions, has no cycles in its channel dependence graph

(Figure 2-22c), which has significantly fewer edges. (Figure 2-22d shows the same graph, laid out in

a way that clearly demonstrates that it is acyclic.)

Although dimension-ordered routing is a handy technique for attacking the deadlock problem in

meshes, it is often in itself not sufficient. The problem is that network routers are not the only parties

responsible for creating edges in the channel dependence graph – the software and hardware that

injects and receives messages can also be responsible for these edges. Thus, the channel dependence

graph in Figure 2-22c is not quite complete – because it does not include the additional dependence

arcs that the DRAM controllers introduce.

To examine this issue, we add two DRAMs to the 6-tile system, pictured in Figure 2-23a. The

DRAMs (and I/O ports more generally) themselves present a minor challenge because if they are

considered to be in either the X or Y plane, they become unreachable by some nodes if dimension-

ordered routing is employed. Fortunately, an easy solution exists: out-arcs from an I/O port are

considered to be in the “W” dimension, and in-arcs from an I/O port are considered to be in the

“Z” direction. The dependences caused by this “WXYZ” dimension-ordered routing are pictured in

Figure 2-23b. The new nodes, d1, d2, d3, and d4, are either source (“W” direction) or sink (“Z”

direction) nodes, so we know that no cycles are created by these additional arcs. It is only when we

incorporate the knowledge that the DRAM controllers wait to complete their current transaction

(which may require enqueuing a message on the output channel) before moving on to dequeue the

next request from the input channel that we observe the existence of a deadlock. Figure 2-23c shows

the additional arcs (shown dotted) added by this dependence. Careful examination reveals that the

graph now contains a cycle which, interestingly, occurs only once the second DRAM is added to the

system.

The example shown in Figure 2-23 demonstrates an instance of endpoint deadlock as opposed to

in-network deadlock. Endpoint deadlock occurs because one or more nodes has a message waiting

that it is not dequeuing (often because the node is blocked trying to inject a message into the

network). In-network deadlock, where deadlock occurs in intermediate nodes of the routing network

as opposed to at the endpoints, is easily prevented in wormhole or virtual cut-through mesh networks

(without end-around connections) through the use of dimensioned-ordered routing [22]. On the other

hand, endpoint deadlock is often a challenging issue to address.

The endpoint deadlock problem is one with surprising and deep consequences on on-chip network

66

a)

1 2

3

45

6

7 8

910
11

12 1314

DRAMDRAM
d1

d2 d3

d4

1

2

3

4

5

6

12

11

10

9

8

713 14

b)

d3

d4
d1

d2

c)

1

2

3

4

5

6
12

11

10

9

8

713 14

d3

d4
d1

d2

Figure 2-23: Applying deadlock analysis to a 6-tile ATM with two DRAMs. Part a) is the ATM sys-
tem, ignoring that the compute pipeline portion of the tiles. Part b) shows the corresponding channel
dependence graph. Part c) shows the graph given the knowledge that DRAM controllers may block
on their outputs, preventing them from absorbing incoming messages.

design and use. Ultimately, the best deadlock-free network design can be thwarted by the software

or hardware state machines that control each node, connecting channels, directly or indirectly, and

creating cycles in the channel dependency graph. For closed, controlled networks, where the user

can only inject messages indirectly through restricted system or hardware-level interfaces, deadlock

can be prevented by analyzing the fixed system and providing the resources (e.g., buffers) to make

it deadlock-proof. For networks that are user programmable and for which users have unfettered

access, the system designer’s goals must be more modest. Ultimately, nothing can save the users

from themselves. Much like with a user’s program that has a killer memory leak, we can try to

forestall deadlock (just as virtual memory does for out-of-memory errors) but ultimately the best

guarantee to be hoped for is the capacity to kill the program and return the machine to a usable

state.

67

The approach to deadlock in the ATM mirrors a recent trend in many areas of computer science

– first, we establish a trusted core that employs a closed, controlled network in conjunction with a set

of protocols that has been proven deadlock-free given that network. This closed network provides

reliable, deadlock-free access to external DRAMs and I/O devices. Second, the ATM provides a

untrusted user-level, open network which supports arbitrary communication patterns. Although

ultimately it is still the end programmer’s responsibility to avoid deadlock in order to ensure that

their application runs correctly, we assist them in two ways. First, the open network is virtualized

using the DRAMs that are accessible by the trusted network. Thus, if the user overflows the buffer-

space inside the network, the DRAM is used to transparently virtualize this space in order to facilitate

forward progress in the majority of cases, with a modest performance penalty. Furthermore, should

the program exhaust the virtualization resources, the facility exists to discard the user’s packets and

terminate the program.

2.8.1 The Trusted Core

The existence of a trusted core begets the question “Who is it that we trust to touch the trusted

core?” Certainly there are many possibilities – we may, for instance, want to allow device driver

writers or embedded system designers to be able to extend the trusted core. Ultimately, for the

purposes of this thesis, we simply trust whoever it is that is willing and able to prove that their

modifications to the core are deadlock-free. This proof is burdensome, and requires a relatively

complete understanding of the system, because it often must incorporate the interactions of multiple

network clients that make up the trusted core. In practice, it is the complexity of these proofs (and

the necessity or benefit of putting them in the trusted core) that drives a programmer to decide

whether to implement functionality inside or outside the trusted core. Fortunately, architects have

developed a number of techniques which simplify the task of reasoning about potential deadlocks.

Both the hardware designer and protocol designer have significant impact on the trusted core.

The hardware designer must determine the resources levels that will be provided to the protocol de-

signers. At the same time, the protocol designers must determine what protocols are implementable

given the hardware constraints. To a certain extent, this arrangement requires that the hardware de-

signer have a reasonable idea ahead-of-time of the nature of the protocols that will be implemented.

However, the design remains moderately fluid, to the extent that the protocols in the trusted core

can be extended within the constraints of the existing resources and still guarantee the absence of

deadlock.

In the remainder of this section, we discuss a number of disciplines that are available for the

trusted core designers – both hardware and software – and their implications on ATM scalabil-

ity. These approaches include a) guaranteeing message sinkability at message destinations and b)

employing logical channels.

68

2.8.1.1 Discipline I: Guarantee Message Sinkability

Perhaps one of the most intuitive approaches to avoiding endpoint deadlock is to ensure that all

message destinations are capable of pulling any incoming messages off the network without relying

on the state of the outgoing link. The net effect is to remove the edges in the channel dependence

graph that connect the node’s input channels to the node’s output channels. In Figure 2-23c, these

edges are shown as dashed lines. This, in concert with a dimensioned-ordered routing or another

in-network deadlock avoidance technique, removes the presence of cycles in the dependence graph,

eliminating the possibility of deadlock.

Practically speaking, this means that the receiving node needs to be able to consume incoming

values without producing new values on output channels, or if the incoming values do produce

outgoing values, the node needs to have enough buffering to buffer the incoming values (and remove

them from the channel) until the outgoing channel is freed up. To apply this discipline, the designer

first quantifies the worst-case behaviors of the protocols running on the trusted network and then

ensures that the node’s local buffering is sufficient. Then, the system is designed to ensure that

incoming messages never arrive at times when the node is unable to receive them10.

In addition to prevent deadlock, this message sinkability discipline incurs the benefit that it

naturally clears the networks, which eliminates network congestion that is caused by clients that

run more slowly than the network. For instance, in the absence of receive buffering, if the hard disk

in Figure 2-18 had a backlog of messages to write to disk, messages would back up into the network,

clogging network channels. As a result, unrelated messages in the network could be blocked until

the hard disk finished its transaction, which could be millions of cycles. However, if the I/O port

(or hard-drive controller) connected to the hard drive has resources to sink the message, the system

will be able to operate in parallel.

Analyzing the effects of employing the message sinkability discipline is a worthwhile task. Perhaps

the most important analysis is the size of the node buffering that will be required. Obviously, every

node must have some limit on the number of messages it can send; otherwise, any finite buffer at

the receiving node could be exceeded. In practice, limiting the number of messages that a sender

can issue is relatively easy; and in fact, it need not be node based; it could well be based on

some other system resource. In practice, we often would like the amount of buffer per node to

be proportional to the bandwidth-delay product of the round-trip path of a request-reply pair –

this allows us to hide the communication latency of the system. In a mesh network of n nodes

with Manhattan communication latencies and devices that rate-match the interface, this would be

θ(
√

n). The bandwidth-delay product for high-bandwidth, high-latency devices, such as a RAID

10For instance, if a tile’s compute processor has executed a blocking message send, then it may be unable to
execute a message receive to pull in the packet, because the send is blocked and may be indirectly dependent on
the corresponding receive. On the other hand, it is acceptable if the computer processor cannot receive the value
immediately, but is provably able to do so after the passage of some time.

69

system with high bandwidth and high latencies (e.g., 10 GB/s and 10 ms) could be even higher,

however it is reasonable to expect that devices in general have enough buffering to handle their own

internal bandwidth-delay products due to internal mechanisms.

More difficult is the possibility of a “flash mob”, in which a large number of the nodes decide to

send messages to a single node. In this case, a single node may need buffer space that is proportional

to the number of nodes in the system, i.e. Ω(n). Moreover, if we want to be able to allow every

tile to issue Ω(
√

n) messages (for latency hiding) to a single target, we arrive at a total of Ω(n
√

n)

buffer space per tile. In practice, we may be able to decouple these two factors, by allowing the

software (or the receiving node) to configure how many outstanding messages any sender-receiver

pair can sustain, and to reserve the corresponding buffers from a pool of available buffers. But, in

practice, requiring even Ω(n) buffer space per node is a troubling scalability issue – it means the

system grows asymptotically as Ω(n2).

In the context of the ATM, one solution is to disallow general messaging among tiles using the

trusted network – instead inter-tile messaging is performed using an “untrusted network”. Then the

trusted network is used only for communication among I/O ports, as well as among I/O ports and

tiles. This way, assuming that I/O ports scale with the perimeter of the chip, the n tiles will each

require only θ(
√

n) messages (O(1) per port), while I/O ports will require θ(n) space (O(1) per tile

and port). Again assuming that I/O ports scale with the perimeter of the chip, the total buffering

area will be n ∗ θ(
√

n) +
√

n ∗ θ(n) = θ(n ∗ √n), which may be more reasonable given the constant

factors.

2.8.1.2 Discipline II: Employing Logical Channels

The emergence of the possibility of a non-scalable aspect of the ATM is somewhat disturbing at this

late state in the analysis. We are motivated to find the ever elusive θ(n). The buffer requirements

of providing arbitrary message sinkability are much greater than those needed in the common case.

Further, even in the worst case scenario, the destination node is presumably so backlogged with

data to process that the extra buffers are not of much use. A key observation is that while the

message sinkability discipline eliminates the harmful side-effects of flow control (i.e., deadlock), it

also eliminates the beneficial ones (e.g., telling sender nodes to “hold up”).

If instead, we could find a way to reintroduce flow-control on all of the arcs from a transac-

tion’s initiator (e.g., the node for which no incoming messages required the outgoing message to

be produced) to the final consumer (e.g., the node for which no outgoing messages are required to

finalize the message), then we would be able to use flow-control to applying back-pressure on the

network and avoid the need to buffer all incoming traffic. Then, the only party that is required

to sink incoming messages is the final node, where it is easily done because there are not outgoing

dependencies.

70

a)

b

d

b)

a

initiator/
consumer intermediary

network

network

c

a
b

f

h

network

network

c

d
eg e

h

f

g

intermediary

intermediary

Figure 2-24: Request-reply communication flow and dependence graph. Each circle represents a node
which is processing the input message and outputting a separate output message. The hexagon is
both the initiator of the initial request and the consumer of the final reply. A different logical
network is used between each pair of participants. The “X” denotes the edge of the dependence that
has been removed by the guarantee that the final node be able to consume incoming messages.

Figure 2-24 shows this scenario. A request is sent out by an initiator (which also happens to

be the consumer of the final reply message), processed by three intermediaries in succession, and

then returned back to the consumer. The corresponding channel dependence graph is shown –

it is complete, except for the arc that has been eliminated (marked by the “X”) because of the

requirement that the final node sink the message. As we can see, the dependences are held intact

from the start to the end of the message. If any of the intermediate nodes are short on input buffer

space, they are free to stall the nodes that feed into them without consequence. Because the final link

does not finish the cycle, deadlock is not possible in the system. However, there is one detail which

is overlooked – the network segments in-between intermediaries are represented as a single-acyclic

edge. How can we guarantee that these network segments do not introduce cycles, especially since

there may be unrelated messages flowing through the networks? That’s the key: each network is a

separate logical network, which employs a in-network deadlock avoidance algorithm. Furthermore,

the networks are ranked according to their priorities. The intermediate nodes are only allowed to

block lower-priority networks if waiting on higher-priority networks. Because blocking higher-priority

networks while waiting on lower-priority networks is disallowed, and because each logical network

is in-network deadlock free, we can prove that there are no cycles in the channel dependence graph

and thus that the end-to-end protocol is deadlock free. This approach can extended to an arbitrary

DAG-structured-protocol. Figure 2-25 shows the use of logical channels to eliminate the deadlock

scenario of Figure 2-21.

What then, are these logical networks? The essential element is that they be able to act, in terms

71

DRAM

DRAM

DRAMDRAM

DRAM

DRAMDRAM

DRAM

Figure 2-25: Deadlock elimination of example in Figure 2-21 using two logical channels – one for
requests and one for replies.

of network blockages and flow-control, as if they were completely separate networks. In practice, we

may implement them as several physical networks, or we may multiplex the data wires but employ

a separate set of FIFOs. The relative constraints of the implementation technology will determine

what is practical.

With this sketch in mind, we can evaluate the scalability impact of this organization. The number

of logical networks is determined by the complexity of the protocols that are run on the trusted core –

essentially, it is proportional to the maximum number of intermediaries that must be passed through

on the longest trek related to a single request. Since this number depends on the protocols that

we choose to use in the trusted core, rather than the number of tiles, we have effectively exchanged

the unscalable buffer demands of the message sinkability discipline for a constant factor overhead.

The constant factor comes from the fact that we limit our protocols on the trusted core so they

require only a fixed number of logical networks. Of course, it will still be desirable to maintain some

buffers at the receive side to reduce congestion in the network – but the sizes will be determined by

performance constraints rather than the desire to avoid deadlock.

2.8.1.3 The ATM’s trusted core

For the purposes of the ATM, we will assume the logical channels discipline for the trusted core trans-

port network. In practice, we may well do with a mix of the two approaches. For smaller networks,

72

the message sinkability approach may be the most efficient, since it minimizes tile size. However, as

the system is scaled up, logical networks (or another approach11) provide more scalability.

2.8.2 The Untrusted Core

Trusted Core

Untrusted Core

networknetwork

spillrestore

DRAM

Endpoint with virtual buffering

FIFO

Router

Figure 2-26: Using virtual buffering in the untrusted core to virtualize buffers and reduce potential
deadlock. Only two links of the untrusted network are shown, but the topology could be arbitrary.

The trusted core discipline has two significant limitations. First, it requires that the users prove

that their protocols are deadlock-free. This makes the trusted core difficult and error prone to

modify. Second, the discipline limits the diversity of protocols that can be used on the trusted

network. In the case of the logical channel discipline, the protocols are limited by the number of

available logical channels. In the case of the message sinkability discipline, protocols are limited by

the amount of buffer space available at the nodes.

The role of the untrusted core is to provide a communication mechanism for users that does not

11An alternative discipline is to do what is frequently done in larger-scale networks: drop packets. Dropping packets
is another way of removing dependence edges in the network without restricting the routing function. Although this
technique may indeed be applicable to on-chip networks, we leave investigation of these issues (and subsequent proofs
about the absence of livelock and forward progress!) to future work.

73

require them to write proofs about deadlock, and further does not limit the complexity of protocols

that are run. The key idea is that the trusted core can be relied upon to provide a path to copious

memory (e.g., external DRAM) in order to virtualize the buffering resources in the untrusted core12.

Effectively, this virtual buffering [76] implements a caching hierarchy for message buffers at each

message end-point, providing the abstraction of nearly-unbounded message sinkability for nodes.

Figure 2-26 shows an instance of virtual buffering on an untrusted core that employs the trusted

core to virtualize buffer space. Each endpoint has a “spill unit” that can dequeue elements from the

incoming FIFO and send them to the DRAM using the trusted core. The “restore unit” can then

retrieve elements from DRAM on a demand basis. In the common case, the spill and restore units

are not employed; however, if the data has been waiting on the input for a long time, then the spill

unit will start buffering data in DRAM. The restore unit then intercepts requests to the incoming

FIFO and substitutes the buffered data.

2.8.3 Deadlock Summary

The most challenging type of deadlock in tiled microprocessors is endpoint deadlock. In the preced-

ing section, we proposed the technique of subdividing generalized transport network functionality

into two parts – the trusted core and the untrusted core. The trusted core is designed to avoid

deadlock using either the message sinkability or logical channel based disciplines. To do so requires

that the system designers limit the set of protocols that run on the network, and that, for any incre-

mental functionality, that they extend the existing proof of deadlock-freedom to encompass the new

functionality and its interactions with the existing functionality. Since the burden of such proofs

is too high to place on ordinary users, the ATM also provides the untrusted core, which does not

require user proofs. The untrusted core uses the trusted core to implement virtual buffering (the

trusted core is used as transport to pools of buffering in a deep memory such as DRAM), which

delays the onset of deadlock much in the way that virtual memory delays the onset of out-of-memory

and out-of-address space errors.

2.9 Exceptional Events - Especially Interrupts (C7)

Although we have already examined many types of exceptional events that microprocessors need

to deal with – such as branches, cache misses, memory requests, memory dependencies, and I/O

– the issue of interrupt handling remains. In a tiled microprocessor, we want interrupt handling

to inherit the same scalability properties as the rest of this system. As a result, it is desirable to

have interrupts (issued by periphery devices, or by tiles) implemented in a distributed and scalable

12Although there are parallels to the concept of escape channels [28], where an acyclic subset of network links
guarantees a deadlock-free path from sender to receiver, this approach is subtly different. The deadlock-free subset
in this case is used to redirect messages through a virtual buffer rather than to their final destination.

74

fashion. Generally speaking, the deadlock issues involved in processing interrupts can be solved by

applying the same concepts that were used to define the trusted and untrusted cores. However,

because interrupts are infrequent events, our willingness to expend on-chip resources to overcome

deadlock is limited.

DRAM DRAM

Interrupt
Controller

1

2

3

4
5

a) b)
1

2

3

4

5
c)

Figure 2-27: Part a) shows an interrupt being sent from an I/O device to a tile via “port bouncing”.
This configuration creates deadlock and scalability issues for the tile. Part b) show an alternative
implementation, which makes use of an interrupt controller. The I/O device sends its interrupt to
the designated interrupt controller via the DRAM (1). The interrupt controller records the per-tile
interrupt information, sinking all messages (2). For each tile assigned to the interrupt controller,
the interrupt controller maintains a bit indicating whether it has sent a notification message to a
tile indicating the presence of available interrupts, and whether the tile has responded. If there are
outstanding interrupts for a tile, and no notification message is outstanding, the interrupt controller
will send a message (3) to the tile indicating the presence of waiting interrupts. Note however, that
the interrupt controller can always sink incoming requests, which eliminates the corresponding arc
from the channel dependence graph. The tile contains a single bit or word indicating the existence of
a pending interrupt. A message from the interrupt controller will automatically be sunk and set this
bit, clearing the channel. When the tile is free to service the interrupt, it will send a series of requests
(4) to the interrupt controller, which will provide more information (5) about each interrupt. The
coloring of the arcs indicates that this can be done with two logical networks (e.g., a request-reply
network). Part c) shows the channel dependence graph, which is free of cycles. In many cases, the
interrupt controller will be implemented in DRAM, since that is a cheap source of storage.

How does an interrupt occur in a tiled microprocessor? Typically, an interrupt will occur when

some device has completed a task; for instance, when a hard drive has finished transferring data

to DRAM over the on-chip interconnect. At this point, the hard drive needs to notify a tile that

the data has finished transferring. On first impression, we may imagine that the hard drive would

send a message directly to the tile. But in order to avoid race conditions, the hard drive must

75

ensure that its data has indeed reached the DRAM before informing the tile that that is the case.

This is because it’s feasible that the tile may receive the drive’s notification message and access the

DRAM before the final writes have been posted to DRAM. In many cases, we can rely upon the

ordering guarantees of the network and DRAM system (e.g., messages sent from the same source to

the same destination on the same logical network in an obliviously routed network are guaranteed

to arrive in order) and simply “bounce” the notification message off of the DRAM port in question

(Figure 2-27a). In more sophisticated systems, it may be necessary to perform a more comprehensive

completion check.

The major challenge arises when considering the arrival of interrupt message at the destination

tile. Once again, the flash mob issue arises – what if a flood of devices all decide to contact the same

tile? We need to be able to avoid deadlock in this case. Logically, interrupts are higher priority

than almost all messages except memory messages. They are lower priority than memory messages

because the servicing of interrupt messages requires the use of memory messages. If interrupt

and memory messages are intermixed on the same logical network, then we will be forced to buffer

incoming interrupt messages because the memory messages stuck behind them are necessary (perhaps

because of a inter-dependency with other tiles that are trying to complete their own interrupts and

are performing cache-coherency requests to the current tile) for completing the current interrupt

message and then continuing on to the next interrupt message. Conversely, interrupt messages are

higher priority than user-level messages because we do not want interrupt processing to be delayed

if the user is slow to process incoming messages and the interrupt message is stuck behind a number

of incoming messages.

Of course, our first impulse is to employ the standard arsenal of deadlock management techniques.

Indeed, both of our canonical solutions can be made to work. We could provide tiled-local memory

buffering proportional to the number of requesters, or we could provide a separate logical network

for delivering interrupts. However, both of these solutions are quite costly (and the first unscalable)

considering the relatively low frequency of interrupts.

An alternative (shown in Figure 2-27b) is to make use of off-chip interrupt controllers. Each

tile is assigned to one of the interrupt controllers. The job of the off-chip interrupt controller is

to buffer interrupt information on behalf of tiles. It in turn notifies tiles when they have pending

interrupts (setting as little as a single bit on the tile). The tile can then message, as its leisure, the

interrupt controller to find out about and process the interrupts. This protocol can be integrated

into the trusted core (essentially behaving as a series of memory requests) with little impact on

logical network count or buffering requirements. In many cases, the interrupt controllers will be

integrated with the DRAM controllers, providing convenient access to a cheap memory. Although

the introduction of interrupt controllers can help reduce the effective cost of interrupt support,

ultimately the system must ensure that the number of pending interrupts is bounded in some way.

76

Typically, this is done by the operating system, application (in an embedded system), and/or device

drivers, by limiting the number of outstanding I/O operations that can be initiated.

2.9.0.1 Interrupt Controller Scalability Analysis

The scalability analysis of the off-chip interrupt controller is somewhat ambiguous, since it is difficult

to estimate how the number of outstanding I/O requests may change as the system is scaled up. In

general, we can expect there to be a number of interrupt controllers proportional to the number of

I/O ports13, θ(
√

A). Each interrupt controller can receive messages from θ(
√

A) I/O ports. If the

interrupt controller uses a linked-list based representation for interrupt lists, we have a net asymp-

totic growth of θ(
√

A +
√

A) = θ(
√

A). If the interrupt controller uses a fixed array representation

for interrupt lists, we have a net asymptotic growth of θ(
√

A ∗ √A) = θ(A). Since the density of

each DRAM increases as θ(A) with successive generations of Moore’s Law, the system is relatively

scalable with respect to technology scaling. However, if a system is scaled up through an increase in

real die area (e.g., the use of many silicon die) rather than increased transistor density, the burden

on an individual interrupt controller becomes more appreciable, and the linked-listed representation

may become increasingly more applicable. Practically speaking, however, the greater issue in such a

system is the decreasing amount of DRAM available per tile rather than the relatively small amount

that is needed for interrupts.

2.10 ATM Summary

This chapter used the ATM , an archetypal tiled microprocessor, to discuss the essential architectural

components of a tiled microprocessor. To do so, it examined seven criteria for physical scalability.

Criterion 1, frequency scalability, allows us to build larger and larger systems without suffering a

decrease in operating frequency. Criterion 2, bandwidth scalability, keeps the system efficient as

it scales up. Criterion 3, usage-proportional resource latencies, ensures that the cost of accessing

resources (in cycles) does not increase unnecessarily as the system grows. Criterion 4, exploitation

of locality, circumvents the otherwise unavoidable reduction in system efficiency caused by global

communication. Criterion 5, efficient operation-operand matching, enables the execution of programs

over distributed ALUs. Criterion 6, deadlock management, is attained through either the message

sinkability or logical channels discipline, and is most frequently applicable to the I/O and memory

systems. Finally, Criterion 7, handling exceptional events, is a necessary requirement for usable

microprocessors.

The chapter also introduced Scalar Operand Networks, a class of low-latency, low-occupancy

network responsible for the transport of operands between remote functional units. We developed a

13This analysis assumes, as in previous sections, that I/O ports scale with the perimeter, θ(
√

A), of the die area, A.

77

metric for SONs, the 5-tuple, as well as a classification system, the AsTrO taxonomy, and applied

them to existing SONs.

Finally, the chapter discussed the challenges of mapping programs to tiled microprocessors, which

includes placement, routing, and scheduling in the presence of control flow as well as methods for

enhancing and exploiting memory parallelism in programs.

With the more abstract foundations of tiled microprocessors in hand, we are now prepared for

the next chapter, which examines the architecture of the Raw tiled microprocessor prototype.

78

Chapter 3

Architecture of the
Raw Tiled Microprocessor

The Archetypal Tiled Microprocessor described in the previous chapter represents an abstract ideal.

To evaluate the ideas inherent in the ATM, we must concretize this ideal into an architecture,

render the architecture into silicon, and scrutinize the resulting artifact. To that end, we created

the Raw Architecture, which is the culmination of the design proposed in [121, 106, 107]. This

chapter overviews the Raw architecture, the next chapter examines the Raw implementation, and

the following chapter, Chapter 5, evaluates its performance. Chapter A and Chapter B can be

referred to for concrete details on the architecture and instruction set. Generally speaking, this

chapter explains the why and Appendices A and B explain the what.

Every implementation of the Raw architecture will have a number of parameters that are im-

plementation specific, such as the number of tiles and I/O ports. We include the parameters for

the Raw microprocessor in this description so as to provide a complete picture; since Raw is a tiled

microprocessor, scaling the system is relatively straight-forward.

3.1 Architectural Overview

Much like the ATM, the Raw architecture divides the usable silicon area into a mesh array of

identical tiles. Each of these tiles is connected to its neighbors via four point-to-point, pipelined

on-chip mesh inter-tile networks. Two of these networks form part of the scalar operand network

of the processor. The other two networks correspond to the generalized transport networks of the

ATM. At the periphery of the mesh, i.e, the edge of the VLSI chip, I/O ports connect the inter-tile

network links to the pins. Figure 3-1 shows the Raw microprocessor, which is a 16 tile, 16 I/O port

implementation of the Raw architecture. The Raw architecture is designed to scale to 1024 tiles.

As a tiled microprocessor, the Raw architecture exhibits the same scalability properties as the

ATM. It is by construction physically scalable, and meets the seven criteria for physically scalable

79

Figure 3-1: The Raw Microprocessor. The diagram shows the layout of the 16-tile, 16 I/O port
Raw microprocessor on a VLSI die. The tiles, the I/O ports, and the networks are all visible. The
sixteen replicated squares are the tiles. The arrows indicate the location of the network wires for
the four physical networks. Each arrow corresponds to 34 wires running in each direction. The pin
connections are located around the perimeter of the die. The shaded regions emanating from the
tiles correspond to I/O ports; they show the connection from each edge tile’s network links to the
pins of an I/O port. Each I/O port is full duplex and has two sets of pins; 37 pins for incoming
data, and 37 pins for outgoing data. The ports are shaded in alternating colors for better visibility.
Note that two pairs of I/O ports share pins.

80

microprocessors. It does not employ broadcasts for its basic mechanisms, and its resources are

fully distributed in order to exploit locality. It supports efficient operation-operation matching

through the use of an SSS scalar operand network – i.e., assignment, transport, and ordering

decisions are all performed at compile time. It attains an aggressive 5-tuple of <0,0,1,2,0>. The

Raw architecture employs two wormhole-routed generalized transport networks. The first network,

called the memory dynamic network (“MDN”), is used to implement a trusted core using the message

sinkability deadlock-avoidance discipline. The second network, called the general dynamic network

(“GDN”), is part of the user-level untrusted core, which provides virtual buffering through DRAM

accessed over the trusted core. Finally, the Raw architecture employs interrupt controllers in order

to eliminate the need for a third logical interrupt network. In practice, the message sinkability

discipline works up to 1024-tile systems, but with the significant caveat that inter-tile messaging

over the trusted core is disallowed.

Raw tiles each contain local data and instruction caches, which employ a configurable memory

hash function1 to wrap the address space around the I/O ports, according to the number of I/O

ports, and according to which I/O ports are connected to DRAM. Although we’ve demonstrated

virtual caching and shared memory in the Raw system on the untrusted core through the use of

software run-time system assistance, Raw would likely benefit from greater hardware support of

these mechanisms, and from the use of a logical-channel based deadlock avoidance system to allow

flow-controlled inter-tile messaging on the trusted core. To an extent, our experience designing and

implementing Raw motivated the addition of these entities to the ATM. Because shared memory has

only limited hardware support in Raw, the compiler has the responsibility of maintaining not only

memory dependences in sequential programs, but also cache coherence. Although in practice this

is not a huge burden2, it puts a moderately high price on the mobility of memory objects between

phases of the computation, and thus results in relatively constrained movement of memory objects

between caches in the system.

3.2 The Raw Tile

Logically, the components of a Raw tile, shown in Figure 3-2, are more or less the same as those

of the ATM’s tile. A tile contains a fetch unit and instruction cache to sequence instructions,

functional units and a data cache for processing data, an SON for routing operands, and a trusted

and untrusted core for free-form messaging, including cache misses. The Raw design divides the

SON into two portions: an intra-tile SON and an inter-tile SON. This division optimizes the back-

to-back execution of instructions in mostly-serial computations. The intra-tile SON has zero cost

1See the description of the OHDR instruction to see the mapping. Examples of the hash function in use are given in
Chapters 9 and 10 of the Raw Specification [110].

2Raw has a selection of caching instructions that allow it to efficiently manipulate large address ranges, which can
be used for efficient coarse-grained software-managed coherence.

81

(i.e., <0,0,0,0,0>) for communicating results between functional units that are local to the tile,

while the inter-tile SON incurs the full <0,0,1,2,0> 5-tuple cost. The intra-tile SON is responsible

for routing operands among the local functional units, the local data cache, and the interfaces to

the inter-tile SON and the generalized transport networks. The local instruction and data caches

employ the trusted core in order to message lower levels of the memory hierarchy.

Fetch Unit
Instruction

Cache

Generalized Transport Networks

Dynamic Router
“GDN”

Dynamic Router
“MDN”

Functional
Units

Execution
Core

Inter-tile
Network
Links

Compute Processor

Trusted
Core

Untrusted Core

Inter-tile SON

Instruction
Cache

Static Router

Switch Processor
Cross-

bar

Intra-tile
SON

Data
Cache

Figure 3-2: Logical anatomy of a tile in the Raw architecture.

Structurally, the Raw tile is divided into three components: the compute processor, the static

router, and the generalized transport networks. The compute processor contains the functional units,

the intra-tile SON, the data cache, and the fetch unit. The static router, which implements the

inter-tile SON, uses a switch processor to control the inter-tile SON crossbar. This switch processor

sequences through a dedicated instruction cache, which relies upon the trusted core for access to

DRAM. The trusted and untrusted core are implemented jointly by the compute processor and the

generalized transport networks, which provide the two physical wormhole-routed networks (called

the “MDN” and the “GDN”) for data transport. The untrusted core uses the trusted core (and its

underlying network, the MDN) to implement virtual buffering.

3.2.1 The Raw Tile’s Execution Core

The Raw tile execution core, shown in Figure 3-3, contains a number of pipelined functional units

connected by the intra-tile SON. The intra-tile SON also connects the functional units to three

82

classes of inter-tile networks. First, it connects functional units to the inter-tile SON through the

network input blocks (“NIB”s) labeled csti, csti2, and csto. Second, the intra-tile SON connects

the functional units to the trusted core generalized transport (through cmni and cmno). Third, the

intra-tile SON connects the functional units to the untrusted core generalized transport (through

cgni and cgno). The intra-tile SON contains a 32-element register file (“RF”) with 2 read ports

and 1 write port (“2R-1W”) which is used to name, time-delay and reorder operands. The timing

properties of the functional units and intra-tile SON are indicated with the flip-flop symbols in the

figure; for instance, back-to-back dependent ALU instructions can occur on consecutive cycles, while

back-to-back dependent FPU instructions can occur every four cycles.

The instruction set that controls the pipeline shown in Figure 3-3 is much like a conventional

32-bit MIPS-style instruction set, and the control logic is very similar to the canonical 5-stage

MIPS pipeline (except with more pipeline stages). Figure 3-4 shows a more traditional pipeline

representation for the tile’s execution core and fetch unit. Register numbers are used to specify

the communication of operands between functional units, and the typical RAW, WAW, and WAR

hazards must be obeyed. Since the issue logic can dispatch one instruction per cycle to the functional

units, the one write port on the register file is sufficient to manage the output operand traffic.

However, because the functional units have different latencies, it is necessary to buffer their outputs

so that writes to the register file can be performed in order. For instance, an ALU instruction that

follows an FPU instruction but targets the same output register must wait for the FPU instruction to

write its result before writing its own result. This buffering, shown in the left portion of Figure 3-3,

in turn motivates the need for the bypass crossbar, which is used to forward the most recent value

corresponding to a register name to the functional units.

3.2.1.1 Accessing the inter-tile networks

To specify that an instruction produces or consumes a value to or from a NIB rather than the register

file, a number of register names have been reserved. When these register names are employed for an

input operand, the value is taken from the corresponding input NIB instead of from the register-file.

If the NIB is empty, then the instruction stalls in the IS stage. When one of the reserved register

names is employed for an output operand, the value is sent to the corresponding output NIB. Much

like writes to the register file, the microarchitecture must perform writes to a given NIB (in Raw’s

case, one per cycle) in the appropriate order. However, because one of the goals is to minimize

latency through the inter-tile networks, writes to a NIB are allowed to occur as soon as all preceding

writes to the NIB have completed. As a result, the pipeline employs a sort of “inverse-bypass” logic

which, in contrast to conventional bypass logic, selects the oldest value destined for the NIB rather

than the newest. If the oldest value is not ready, then all newer writes to the NIB must wait, ensuring

in-order writes to the NIB. One consequence of this inverse-bypass scheme is that the commit point

83

Bypass Crossbar

cgni

RF

csti

csti2

cmni

ALU FPUWB LD
ST

MUL

ALUout

MULout

LD/STout

FPUout

WBout

0

cgno

csto

cmno

imm/zero
Minor
Xbar

ALUout WBout FPUout MULoutLD/STout

Figure 3-3: Execution Core of the Raw compute processor, comprising the intra-tile SON,
functional units, and network input blocks (“NIB”s) that connect to the external networks.
With the exception of the functional units, all of the logic is part of Raw’s SON.

of the pipeline (i.e., the point at which the instruction can no longer be squashed) is quite early

– as soon as an instruction passes the IS stage, the instruction is considered to have completed.

This is the case for two reasons. First, instruction may have already dequeued elements from the

input NIBs. Second, the inverse-bypass logic may have already forwarded the operand out into the

inter-tile networks, at which point the side-effects of the instruction are no longer containable.

When an instruction targets an output NIB, the output NIB must have sufficient room to receive

the operand when the operand becomes available. On the surface, it seems like this problem could

be solved either by squashing the appropriate instructions, or by stalling the pipeline until the NIB

84

IF ISID
A TL

M1 M2

F P

E

U

X

4 WB

$26

$27

$25

$24

$26

$25

$24Example: add $24, $25, $26

Front End Back End

Figure 3-4: Traditional 8-stage pipeline representation of the tile’s execution core and fetch
unit (collectively called the tile’s “compute processor”). The reserved register numbers are
shown instead of NIB names. The front-end pipeline stages are instruction fetch (IF), in-
struction decode (ID), and instruction stall (IS). The back end of the pipeline is comprised
of the various pipelines stages of the functional units. The passage of an instruction from
the front-end of the pipeline to the back-end marks the point of commit. The intra-tile SON
is shown in the form of the more traditional bypass network representation. An example
instruction, add $24,$25,$26, which reads from two NIBs and writes to a third, is shown.

empties. However, the instructions in the back-end have already technically committed, so squashing

is not a possibility. Furthermore, because there is no upper-bound on how long the NIB may remain

full, stalling would make it unwieldy to implement context-switching in the pipeline – essentially,

the entire state of the pipeline (including whether each instruction has yet to transmit its outputs

to the inter-tile networks) would need to be saved. Instead, we would prefer to summarize the state

of the pipeline with the PC of a single instruction to execute, in addition to the program’s register

file and NIB state.

To address this problem, the issue logic conservatively checks that there will be free space in

the output NIB before allowing the instruction to leave the IS stage (and commit). It assumes

pessimistically that nothing will be removed from the NIB in the intervening cycles, and accounts for

operands that are in-flight in the pipeline but have not been written. The sizes of the corresponding

output NIBs are increased by the bandwidth-latency product of the backend (i.e., 5 elements) so

that the conservative nature of this check does not impact performance in the common case. Using

this system, a context switch cleanly interrupts the execution of the program at the IS stage.

85

3.2.1.2 Arbitration for the trusted core network

The trusted core network presents a challenge because three parties can access it at once: the

instruction cache, the data cache, and the instruction stream. Because messages on the trusted

network are multi-word, there is a need to ensure that one party does not try to write to the

network before another party has finished its message. Although it is easy for the hardware to

ensure that the two caches “take turns”, the interactions with the programmer-specified instruction

stream are more complex. The memory lock (mlk) and memory unlock (munlk) instructions are

used to indicate to the fetch unit that it must prefetch a region of code before executing it in order

to ensure that the instruction cache misses do not occur while the program is in the middle of

transmitting messages to the trusted network. Further, code that accesses the trusted network must

make sure that memory instructions do not cache miss while in the middle of composing a message.

Finally, the (mlk/munlk) instructions disable and enable interrupts in order to ensure that interrupts

do not occur in the middle of message composition.

A few interlocks have been put into place to facilitate cleaner sharing of the trusted core network.

The inverse bypass logic conservatively assumes that load/store instructions may access the trusted

core network, until those instructions pass the stage at which they may cache miss (TL). Further, the

cache miss state machine waits for the older instructions in the pipeline to drain (and all messages

to enter the network) before initiating cache messages on the trusted core.

3.2.2 Raw’s Scalar Operand Network

Raw’s inter-tile SON is implemented using a static router, which is a input-buffered (i.e. with NIBs)

crossbar controlled by a simple processor, the switch processor. The switch processor has a local

instruction cache from which it sequences a series of wide instructions. Each switch instruction

specifies a simple operation (flow control and data movement) and a number of routes. These routes

control the static router’s crossbars, which route values from its receiving NIBs to the inter-tile

network links and/or the compute processor. The static router executes each instruction atomically.

As a result, it must verify that every specified route has data available in the appropriate NIB, and

that the destination NIB on the remote tile has sufficient buffer space to receive the element.

To determine if there is space available in the remote NIB, the tile maintains an internal counter

which conservatively estimates the amount of free space. Every time the tile transmits a value to

a remote tile’s NIB, it decrements the counter. Every time the remote tile dequeues a value from

the corresponding NIB, it sends a credit back to the original sender, which signals the sender to

increment the counter. As long as the counter is non-zero, it is safe to send.

If these checks are successful, then all of the side-effects of the instruction occur atomically – all

values are simultaneously dequeued from their respective NIBs (sending a credit to the neighboring

86

cWi

cSi

cEo

Switch Processor

cSo

cNo

cWo

From North Tile

csto

cNi

cEi
From East Tile

From South Tile

From West Tile

To North Tile

To West Tile

To South Tile

To East Tile

From Compute
Processor csti

To Compute
Processor

N E WS SwP

Instruction
Cache

Fetch Decode
Branch

Unit

O
pe

ra
tio

n
RFPC

Figure 3-5: Basic Static Router Architecture. Raw’s static router is similar, except it has
two such crossbars and sets of network connections. See Appendix A and, in particular,
Figure A-4 for more detail on the crossbars and connections.

tile indicating that one element has been freed up), and routed through the crossbar to the neigh-

boring tile. Typically a single valid bit is routed along with the operand in order to indicate that a

value has indeed been transmitted.

The basic static router architecture is shown in Figure 3-5. Raw’s static router, described in

more detail in Section A.2.2, extends this basic static router architecture by doubling the number of

crossbars and inter-tile networks, thereby providing twice the network bandwidth (these two physical

inter-tile networks are two of the four networks shown in Figure 3-1.)

Although the static router has a memory-backed instruction cache, this alone is not sufficient

to completely inform the static router on the routing patterns it needs to take. It also needs to be

informed of branch-condition values that control the control-flow of the program at hand. For this

purpose, the crossbar can also route values to and from the switch processor. Thus, the crossbar

routes not only between the north, east, south, west directions and the compute processor, it also

routes to and from the local switch processor. These values are typically branch conditions and/or

loop counts.

87

Tile 0

Compute Processor

mtsri BR_INCR, 16

li! $3, kLoopIter-1
addiu $5,$4,(kLoopIter-1)*16

L0:
lw! $0, 0($4)
lw! $0, 4($4)
lw! $0, 8($4)
lw! $0, 12($4)
bnea+ $4, $5, L0

Switch Processor

move $2,$csto route $csto->$cSo
L1:

bnezd+ $2,$2,L1 route $csto->$cSo

Tile 4

Compute Processor

move $6, $0
li $5, -4
mtsr BR_INCR, $5
move $4,$csto

L3:
addu $6,$6,$csti
addu $6,$6,$csti
addu $6,$6,$csti
addu $6,$6,$csti
bnea+ $4, $0, L3

Switch Processor

move $2,$cNi route $cNi->$csti
L2:

bnezd+ $2,$2,L2 route $cNi->$csti

Figure 3-6: An example of two tiles using the inter-tile SON to communicate. The ! symbol indi-
cates that the value should be transmitted from the output of the tile’s functional unit to the csto
NIB, which is the entry point to the inter-tile SON. The inter-tile SON is composed of a mesh net-
work of static routers, which each employ a switch processor that controls the networking resources.
The switch processor sequences an instruction stream that contains flow control instructions (in-
cluding a branch-and-decrement), move operations (for accessing the switch’s local register file) and
route operations (which send values to other tiles, or to the tile’s local compute processor). The
arrows indicate the compile-time specified paths of operands over the inter-tile SON. This example
is explained in more detail in Section A.2.3.

Figure 3-6 shows an example program that employs the SON to communicate between tiles. The

arrows indicate the flow of operands over the SON. Since Raw is an SSS architecture, the assignment

of operations to tiles, the transport of operands between tiles, and the ordering of operations on the

tiles are all specified by the compiler. In order to specify the transfer of an operand from one tile to

a remote tile, the compiler must ensure that there is a corresponding route instruction on every tile

along the path that the operand takes.

88

Figure 3-7: The path taken by an operand when it is routed from the output of an ALU on
one tile to the input of an ALU on another tile. The picture shows a computer-generated
layout of two Raw tiles. The white line is the path taken by the operand. The tick marks
indicate cycle boundaries. The floorplan in Figure 4-10 may be used to correlate features in
the picture.

3.2.2.1 Raw’s 5-tuple Derivation

In this subsection, we examine the 5-tuple derivation for Raw’s inter-tile SON. Figure 3-7 shows

a computer-generated layout (refer to Figure 4-10 for a tile floorplan) of two neighbor tiles on the

Raw chip. The white line is the actual physical path taken by the operand through the silicon as it

leaves the ALU of one tile and is routed to the ALU of another tile. The hash marks indicate cycle

boundaries. The operand is computed by the sender’s ALU, and is reverse-bypassed out to the input

of the csto NIB in the same cycle (0 cycles total send latency “SL”). In the next cycle, it is routed from

the sender’s static router to the east neighbor’s static router (1 cycle network hop latency “NHL”). In

the following cycle, it is routed from the east neighbor’s static router to the east neighbor’s compute

processor csti NIB. Then, in the next cycle, the east neighbor’s compute processor recognizes the

arrival of the operand (“wakes up”) and dispatches the instruction (2 cycles total receive latency

“RL”). Because Raw employs statically-ordered, register-mapped, flow-controlled communication,

there are no additional instructions required to send or receive operands (0 cycles send occupancy

“SO” and 0 cycles receive occupancy “RO”). Thus, Raw’s 5-tuple in total is <0,0,1,2,0>.

Analysis of the Raw design suggests that the last cycle of latency could most likely be eliminated

by sending wakeup logic between tiles earlier, yielding a 5-tuple of <0,0,1,1,0>. Approximately

40% of the network hop latency is due to wire-related (including signal buffering with inverters)

89

delay [112].

3.2.3 Raw’s Trusted Core

The principle purpose of Raw’s trusted core is to provide deadlock-free communication between tiles

and external I/O and memory devices. It employs a single physical wormhole-routed generalized

transport network, called the memory dynamic network (“MDN”) as transport, and uses the message

sinkability deadlock-avoidance discipline. Thus, a message can only be transmitted on the network

if it is known that the recipient will be able to remove it from the network to prevent cycles in the

channel dependence graph. We selected this discipline over using multiple logical networks because

it can be implemented with less area, and as a result, minimizes tile sizes.

Since the tiles’ data caches rely upon the MDN network to access external DRAM, the tiles

themselves do not have enough buffer space to handle the flash mob problem, especially for 1024

tiles systems. The solution we selected to address this issue is to forbid the sending of “unsolicited”

messages to tiles on the MDN. With two exceptions, only messages which are in response to a

tile’s request may be sent to a tile over the MDN. The two exceptions are for two special classes of

messages. The first class, interrupt messages, are sent to a tile on behalf of the interrupt controller,

and serve simply to set a bit in the tile’s interrupt status register. The second class of message,

store acknowledgment messages, increments one of two counters in the tile, and thus is also always

sinkable. Since, in both cases, there is no resource that needs to be reserved inside the tile to process

the message, the message is always sinkable.

Although disallowing unsolicited messages handles the flash mob problem for tiles, tiles still must

make sure that their requests do not result in a flurry of reply messages that they do not have space

to store. In the case of the data cache, this is generally not a problem, because the data cache can

control how many outstanding requests it has, and ensure that it has the necessary resources to

dequeue or buffer the reply messages. In the Raw implementation, the data cache can have only one

outstanding miss request, for which it has evicted the corresponding cache line to create the space

for3. For programmer-based communication with I/O devices and DRAM over the trusted network,

the user must be able to consume the messages as they arrive, or to reserve space in the cache (and

ensure those lines are resident so touching them does not cause cache misses) to buffer replies.

For devices connected to I/O ports, buffer space is more readily accessible, and so communica-

tion is less restricted. Nonetheless, implementing the message sinkability discipline requires careful

accounting. The system needs a facility for tracking buffer space. For protocols that have a request

3Technically, the miss request is sent out before the corresponding line is evicted, so it’s reasonable to imagine
a case where the outgoing network link is blocked, preventing the line from being evicted, which in turn prevents
the miss reply from being consumed. However, the cmno NIB is sized to 16 elements so that it can hold a complete
eviction message (10 words). We can prove that this is sufficient to avoid deadlock because in order for a miss response
to be received by the tile, the miss request must have been processed by a remote device, which means that it has left
cmno completely. Since there are no intervening messages between the request and evict messages, cmno will always
have space to hold the entire evict request – 10 words.

90

packet for every reply packet, it is easy enough for the client to count how many outstanding requests

have been issued. However, some protocol do not inherently have replies – in these cases, the Raw

system uses a store acknowledgment message as a synthetic reply. One such case occurs in the tiles’

data caches. Although a cache line fill request is a request-reply message, a cache line evict request

is not – it simply specifies that cache line should be written to a DRAM. As a result, the number of

fill requests is not inherently rate-limited by the system. To address this issue, Raw tiles maintain

a store acknowledgment counter (“store meter”), which maintains the number of outstanding evict

requests that each tile is allowed to have. When an evict request is injected into the network, this

count is decremented; when the DRAM responds with the store acknowledgment message, the count

is incremented. If the count is zero, then the tile will wait for a store acknowledgment to arrive before

issuing more evict requests (and any dependent fill requests!). This system allows the tile to have

multiple parallel pending evict packets, which improves performance when transferring streams of

data. The store acknowledgment system is also used for direct communication between I/O devices

– for instance between a video camera and the DRAM that it is streaming data to. The ability to

have multiple outstanding packets (and to not wait for reply messages) is an important capability

for high-throughput communication between devices.

The use of store meters creates some scalability concerns. First, we would like to avoid the need

for every node to have a meter for every other node. One technique is to use a single store meter

to bound space usage across multiple destination nodes. For example, if two destination nodes each

have m messages worth of buffer space reserved for the sender node, the sender’s meter would be

initialized with the value of m, indicating that it may have at most m outstanding messages to any

combination of the destination nodes. This conservative approach trades off store meters for buffer

space.

The store meter technique can be extended by associating with each store meter a tag which

indicates the specific ports for which it is associated. This allows the system to configure the store

meter usage. Some meters may be set to a low value but with a tag that covers a large number of

nodes, providing basic access to a large number of nodes. Others may have a high value but a tag

that covers a small number of nodes, providing high bandwidth to a selected subset of nodes.

The Raw tile’s data cache supports two store meters. The first store meter contains a tag which

allows a “partner” I/O port to be selected for high-bandwidth access. The second store meter is

tagless and counts storage acknowledges for all ports that are not handled by the partner store

meter. These store meters are described further in Section B.4. In the Raw system, the memory

management system strives to allocate a tile’s memory objects to those ports that would provide

the highest bandwidth.

In the Raw I/O system, buffers are allocated and de-allocated according to the I/O transactions

at hand. To do this, chipset designers may be required to supplement each I/O device with a number

91

of configurable store meters, which can be configured by the OS or device drivers.

3.2.3.1 Privileged access to Trusted Core’s MDN

As pictured in Figure 3-3 and Figure 3-4, the trusted core’s generalized transport network is ac-

cessible via a register-mapped interface. Thus, instructions such as move $cmno, $csti are legal

instructions. Although Raw does not implement a hardware protection model, access to the MDN

is intended for privileged users (e.g., system and device driver-level programmers) rather than for

end-users. When extending the trusted core, it is the privileged users’ duty to ensure that the con-

glomeration of protocols running on the trusted generalized transport network continues to adhere

to the message sinkability deadlock-avoidance discipline.

3.2.4 Raw’s Untrusted Core

Extending Raw’s trusted core with additional protocols requires users to prove deadlock properties.

In many cases, the burden of formulating deadlock avoidance proofs is too great to place upon

most users. For this reason, the Raw architecture provides the untrusted core, which employs the

GDN wormhole-routed network in conjunction with a spill/restore mechanism like that shown in

Figure 2-26 to implement virtual buffering. Much like the MDN, the GDN is accessible through a

register mapped interface ($cgno and $cgni), which provides low-latency communication between

nodes. When using the GDN, the user does not have to worry about deadlock, or about exceeding

the buffer space in the system.

In the Raw design, we opted to implement the spill/restore virtual buffering mechanism through

a combination of hardware and software. Inspired by the Alewife scheme [76], the Raw tile uses a

deadlock detection heuristic to conservatively4 estimate when deadlock has occurred in the network.

When the heuristic believes a deadlock has occurred, it signals an interrupt. The corresponding

interrupt handler then removes data from the cgno NIB and stores it in a software buffer. This

software buffer resides in the cache, but may be flushed out to DRAM through the normal op-

eration of the cache using the trusted core). It then enables the GDN REFILL control register bit,

which enables the restore mechanism. The restore mechanism maintains a control word, called the

GDN REFILL VAL, which is the value that the next read from $cgni will return. After this word is

read, a GDN REFILL interrupt is fired. The corresponding interrupt handler will then load the next

value into GDN REFILL VAL. If no more values are available in the local buffer, then the GDN REFILL

control register is cleared, and reads from $cgni will once again return values from cgni. More detail

is given in Section B.4.

The deadlock detection heuristic in the Raw machine is implemented using per-tile watchdog

4Conservative in the sense that it triggers upon a condition which is a necessary but not sufficient condition for
deadlock.

92

timers5. The watchdog timer can be programmed to fire an interrupt based on the number of cycles

that data has sitting untouched in cgni. It also can be set to fire an interrupt based on the number

of cycles that the processor has been blocked on an instruction. Each tile may use its watchdog

timer in isolation from other tiles, or as a building block for a more sophisticated inter-tile deadlock

detection algorithm that synchronizes using interrupts over the trusted core.

3.2.4.1 Context switching on the untrusted core

Since the untrusted core is a user primitive, we would like to be able to context switch the network,

i.e., save and restore the state of the network. Fortunately, the spill/refill mechanism used for virtual

buffering can be easily adapted for this purpose. Upon a context switch interrupt, the operating

system can interrupt all of the tiles in a process and drain their cgni NIBs into the corresponding

software buffers. Upon returning, the operating system can enable the refill mechanism so that the

tile reads from the software buffers instead of cgni.

There is, however, one minor catch, which is that tiles may be in the middle of transmitting

a message. In order to clear the network for the next process to run, it is necessary to complete

the corresponding messages and free up the corresponding wormhole channels. To handle this case,

the system provides a counter, GDN PENDING which tracks the number of remaining words require to

finish the current message. Upon a context-switching interrupt, the OS checks to see if the thread is

in the middle of a message send. If it is, then it enables a GDN COMPLETE interrupt, which fires when

the message is completed. It also enables a timer which is used to bound the number of cycles that

the thread has to finish the message. When the thread completes its message, context switching can

proceed.

In order for this mechanism to work, user threads have to be constructed such that they can

eventually complete a pending message even if other tiles have been interrupted for context switch.

If the user process does not make sufficient progress in completing a pending GDN message, it can

be killed, and the OS will send the appropriate number of words to clear the network. As a result,

the necessary condition is that completion of a GDN message, once started, cannot depend on other

tiles’ forward progress. A simple exception to this case, which is useful in practice, is that a tile may

depend on the completion of a GDN message that is already in progress.

An alternative to this approach, which is somewhat cleaner, is to employ a commit buffer, which

buffers the words of a message until it has been finished, and then allows it to enter the network.

Although this alternative is more user-friendly (because it does not place restrictions upon the users),

it increases the latency of messages in comparison to the approach used in Raw.

5The watchdog timer is controlled by the WATCH VAL, WATCH MAX, and WATCH SET registers described in B.4. These
determine the conditions that trigger the TIMER interrupt.

93

3.3 The Raw I/O System

The Raw I/O system is implemented as a series of I/O ports, which connect the edges of the on-

chip networks to the external pins. Since the full exposure of the on-chip networks would require

16 links × 4 networks × (32 data + 1 valid + 1 credit) × 2 directions = 4352 pins (see

Section 3.2.2 for descriptions of valid and credit lines), and the Raw package only has 1052 available

pins, some mechanism is required to address the mismatch. There are two basic approaches, both

of which are employed in Raw. The first approach is simply to drop connectivity; to eliminate

networks links. In the case of Raw, we also wanted Raw chips to be gluelessly connectible to form

larger virtual Raw chips. This eliminates the possibility of dropping links in the dimension-ordered

wormhole routed networks (i.e., the MDN and GDN), because the absence of links can prevent tiles

on different chips from messaging each other. However, in the case of the static router, this was more

tolerable, because the compiler can simply chose not to use the corresponding links6. The second

approach, shown in Figure 3-8, is to multiplex networks over the physical links. On the sender side,

a round-robin arbiter can alternate between networks with are ready to transmit, forwarding each

available word with a tag that indicates which network it originates from. On the receiver side,

the tag is examined and the data placed in the appropriate input NIB. It is the responsibility of

the arbiter and demux logic to manage the credit-based flow-control system to prevent overflow of

buffers.

The final Raw design does not expose the second physical static network to the periphery I/O,

relying upon the compiler to avoid the use of these links. It furthermore multiplexes the three

networks - GDN, MDN, and static network down onto one set of physical pins. This brings

the pin requirements down to 16 links × (32 data + 2 valid + 3 credit) × 2 directions

= 1184 pins. In order to bridge the remain shortage of pins, the chip further multiplexes two

such multiplexed links, effectively creating two 6:1 multiplexed links on the top and bottom center

tiles. This sharing is depicted in Figure 3-1. The final pin requirements of this configuration are

12 links × (32 data + 2 valid + 3 credit) × 2 directions +

2 links × (32 data + 3 valid + 6 credit) × 2 directions = 1052 pins, which was within the

package capabilities.

Generally, because of the ability to drop connections, tiled microprocessors are fairly flexible in

terms of the number of I/O ports they support, and thus scale relatively well with varying technology

parameters. However, as tiled microprocessor are scaled up through Moore’s Law, glueless intercon-

nection of separate chips may require higher and higher levels of multiplexing which eventually may

motivate more sophisticated dynamic networks that allow partial connectivity between chips.

6The resulting non-uniformity of the multi-chip array does create some limitations for an OS which is trying to
map applications to a subset of tiles on the array.

94

credit

data[31:0]

data[31:0]

data[31:0]

dequeue

dequeue

sn1

mdn

gdn

Arbiter

tag[1:0]

data[31:0]

sn1 credit

mdn credit

gdn credit

data[31:0]

valid

dequeue

valid

credit

valid

valid

data[31:0]

valid

credit
data[31:0]

valid

credit
data[31:0]

enq,deq

credit

credit

valid

valid

valid

FIFO

FIFO

FIFO

NIB

NIB

NIB

Demux

sn1

mdn

gdn

Output portInput port

Figure 3-8: Multiplexing of I/O ports. A 3:1 output port and 1:3 input port are depicted,
communicating across the pins between two chips. The 3:1 output port’s job is to multiplex
three networks across one physical set of pins, using a tag to indicate which network the
current data word corresponds to. The role of the 1:3 input port is to demultiplex the
three networks from the one set of physical pins. The arbiter and demux are responsible for
managing the credit-based flow control system to prevent overflow of buffers.

3.3.1 Raw I/O Programming

The Raw system controls off-chip I/O devices by sending them messages. Request messages travel

through the on-chip networks, through the I/O ports, and over the pins to the I/O device. Reply

messages travel in the opposite order. Each I/O device has the support logic to interpret these

messages, turn them into the appropriate device behavior, and emit the reply message.

In the Raw system, I/O devices may receive data via the first static network, via the GDN, and

via the MDN. Which network is used when? Typically, any message which is not-compile predictable

(such as a cache-miss) is transmitted via one of the dynamic networks. The static network is best

suited for compile-time predictable data streams. This is because the static network guarantees

the arrival order and routing paths of messages. As a result, the static network can be scheduled

to provide high levels of network utilization (relative to networks with dimension-ordered wormhole

routing, which have suboptimal routing, and tend to have poor fairness properties under heavy load)

and tiles do not have to execute code to de-multiplex incoming packets as they arrive. Furthermore,

the use of the message sinkability discipline and virtual-buffering provide challenges for streaming

95

models.

In practice, we’ve found that the MDN and GDN are useful for controlling I/O devices and

routing non-compile time predictable requests. The static network has been most useful for routing

compile-time predictable streams of data that the devices emit or consume. The MDN network

is used for high-priority traffic, such as cache misses. An example device that we employed is a

streaming DRAM controller, which accepts packets over the GDN that specify a starting address, a

stride, and a number of words. The program can queue these packets up in the DRAM controller’s

queue, and then it can branch to the portion of the code that routes the resulting words in over the

static network, and consumes and computes on them. An important constraint is that the tile may

have instruction or data cache misses that are required to process the incoming streams. In this

case, it is vital to ensure that these misses are not stuck behind the streaming memory requests;

otherwise deadlock will occur. This could in theory be solved by implementing separate queues at

the I/O controller for each level of priority (cache misses being of highest-priority), but in practice

it is easier to rely on the fact that cache misses are routed over the MDN network. Messages that

arrive at I/O devices over the MDN are of higher-priority than those that arrive over the GDN.

I/O devices thus must be able to guarantee that MDN requests will not be blocked behind GDN

requests.

3.3.1.1 Avoiding deadlock with I/O devices

For communication with I/O devices over the MDN, the message sinkability discipline must be

obeyed, as with all parts of the trusted core. For communication with I/O devices over the GDN,

there are two choices. The device itself may choose to implement virtual buffering – this is in a sense

the most consistent with the philosophy of the untrusted core. However, in some cases, implementing

virtual buffering may be a large burden to place on some I/O devices. In these cases, it may be

more practical for the system to require that I/O programmers employ the message sinkability

discipline with respect to the I/O devices themselves. In this case, virtual buffering will apply to

all messages sent to tiles, but message sinkability applies for all messages sent to I/O device. This

hybrid scheme ensures deadlock-avoidance by ensuring that all endpoints are able to sink incoming

messages (through whichever mechanism.) Over the static network, the occurrence of deadlock is a

deterministic affair and the result of incorrect scheduling.

3.3.1.2 User-level I/O Devices

The use of I/O devices over the untrusted core raises some complex questions about the system

stability guarantees that we intend to provide. If a user process is killed in the middle of a series

of I/O requests (over the GDN or static network) to devices, the devices would need to support a

mechanism through which these requests can be aborted or completed. Further, in a system that

96

is expected to support context switching, we would need to be able to interrupt and resume these

I/O requests. The Raw system optimizes performance over some of these usability constraints (as

might be appropriate for a high-performance embedded processor); in some cases context-switching

programs that employ direct I/O may be a possibility; but generally we expect that these applications

will be mapped to the Raw array until they complete.

3.4 Summary

In this chapter, we examined the Raw, the tiled architecture that we implemented at MIT. We

examined how Raw addresses the seven criteria of physical scalability to scale to systems with

1024 tiles. Raw’s Scalar Operand Network attains an 5-tuple of <0,0,1,2,0> through aggressive

architectural optimization. According to the AsTrO taxonmoy, Raw employs an SSS SON; thus it

uses the compiler to determine instruction assignment, operand routing and instruction ordering.

More details on the Raw architecture can found in Appendices A and B. In the next chapter, we

examine Raw’s 180 nm VLSI implementation.

97

98

Chapter 4

The Raw Implementation

This chapter examines the Raw VLSI implementation. It begins with an analysis of the 180 nm

VLSI process in which the Raw microprocessor chip was implemented (Section 4.1). After this

analysis, the chapter describes the Raw chip (Section 4.2), as well as the Raw systems that are

constructed using the Raw chip (Section 4.3). The chapter concludes by quantifying, relative to

the Intel Pentium 4, the benefits that tiled microprocessors carry for design, implementation, and

verification (Section 4.4).

4.1 The Building Materials

The properties of the underlying building materials – propagation delays, area, and power – ulti-

mately determine many of the properties of a microprocessor. The first step in building a novel

system out of silicon is to examine the available resources and estimate their impact on the archi-

tectural and micro-architectural design. In the following subsection, we briefly overview the basics

of the standard-cell abstraction, a common VLSI design style that we employed in constructing the

Raw prototype.

4.1.1 The Standard-Cell Abstraction

Basic digital design classes typically teach the gate-level abstraction - that is, the representation

of a logic function as a graph (or netlist) of gates. Each gate implements a simple logic function.

Figure 4-1 shows an example of a netlist of gates. AO22 is a compound gate composed of several

basic AND and OR gates. DFF is an edge-triggered flip-flop, used to hold state.

The gate-level abstraction is useful in representing the logical structure of a digital circuit. How-

ever, it is limited in its ability to express physical properties of a digital circuit. To effectively design

a VLSI chip, we need to specify where gates are physically located on a VLSI chip, the size and

99

AO22

DFF

Figure 4-1: An example of some digital logic represented in the gate-level abstraction.

electrical drive strength of the gates, and the topology of the wires that connect the gates. Chip

designers use the standard-cell abstraction to express this.

Figure 4-2 shows the same AO22 and DFF gates, represented in the standard cell abstraction.

Unlike in the gate-level abstraction, the dimensions and position of the gates actually reflects their

relative sizes and positions in the final VLSI design. As is evident from the diagram, the two gates

(called standard cells in this context) have significantly different sizes. The sizes are measured in

terms of wiring tracks. A wiring track is a space wide enough to contain a minimum width wire

and the spacing around it that separates it from other wires. In the 180 nm IBM SA-27E process

that the Raw microprocessor was implemented in, a wiring track is .56 microns wide. With a few

exceptions, standard cells in the IBM SA-27E are 12 wiring tracks high. Thus, the dimensions of

IBM’s standard cells vary principally in their width. The AO22 standard cell shown in Figure 4-2 is

13 wiring tracks wide. On the other hand, the DFF standard cell is 24 tracks wide. In the standard

cell process, wires are aligned to wiring tracks, and standard cells are aligned to circuit rows, which

are groups of 12 horizontal wiring tracks.

Each standard cell has a number of pins, which correspond to the gate’s inputs and outputs.

These pins have fixed locations on the standard cell1. To connect these pins, it is necessary to route

wires between the pins. These wires conform to the boundaries of the wiring tracks. A wire is often

said to be composed of wire segments, portions of the wire that are straight.

VLSI processes typically offer a number of wiring (or “interconnect”) layers. These layers, sep-

arated by an insulator, increase the number of wiring tracks that an integrate circuit can employ.

Figure 4-3 shows an example of wire segments on 3 metal layers with alternating directions. Along

with these layers, VLSI processes also provide metal vias that are used to connect wires segments

on different layers.

1Many processes allow standard cells to be reflected across the Y axis, so this would change the effective locations
of the pins.

100

0
1
2
3
4
5
6

8
7

9
10
11

Wiring
Track #

Circuit
Row

Wire Segment (M3) Standard Cell (AO22)

Standard Cell
Pin

Wire Segment (M4)

Standard Cell
(DFF)

Circuit
Row

0
1
2
3
4
5
6

8
7

9
10
11

13 tracks wide

24 tracks wide

Via

Figure 4-2: The AO22 and DFF gates, represented in the standard-cell abstraction.

101

Figure 4-3: 3-D representation of wire segments at different interconnect layers. Alternate
metal layers are typically run perpendicularly. The insulator between the metal layers is not
depicted.

4.1.2 Examining the Raw Microprocessor’s “Raw” Resources

The resources of a VLSI process can be expressed in terms of wiring, gate, and pin resources.

Accordingly, in this subsection, we examine Raw’s VLSI process in terms of these three classes of

resources. Table 4.1 shows the resources available on the Raw die and package. Raw is implemented

using an 18.2 x 18.2 mm, 331 mm2 die in IBM’s 180 nm 6-layer copper SA-27E ASIC process.

Much as Intel targets large die sizes for new designs in anticipation of future size reductions due to

Moore’s law2, we selected SA-27E’s largest die size in order to demonstrate the applicability of tiled

microprocessors in future process generations. We also selected SA-27E’s largest pin count package

– a 1657 pin CCGA (ceramic column grid array) package – for the same reason. In this section, we

analyze the implications of these parameters on the design space.

2anecdotally, 100 mm2 has been suggested as the ideal die size for desktop microprocessor economics

102

Chip Parameters

Die Dimensions 18.2 mm x 18.2 mm

Metal Layers 6

Package Pins 1657

Gates
Chip Dimensions 18.2 mm x 18.2 mm

Logic Area (Chip area minus perimeter I/O buffers) 17.56 mm x 17.56 mm

Available Circuit Rows 2612

DFF Cells per Circuit Row 1306

∴ Chip’s Maximum Gate Capacity (measured in DFF) 3.4 Million

Wires
Total Metal Layers 6

Available Wiring Tracks (per Metal Layer) 31,350

Free Horizontal Layers (M3, M5, 1
2 M1) 2+

Free Vertical Layers (M2, M4) 2

∴ Chip’s Free Wire Capacity (measured in 4 mm wire segments) 501,600

Pins
Total Package Pins 1657

Used for GND -204

Used for Vdd -119

Used for I/O Vdd -92

Dummy -90

Net Usable Signal I/Os 1152

Used for testing, I/O reference, JTAG, etc. -100

∴ Available Pins 1052

Table 4.1: Resources available on the Raw die and package. Each subsection “Gates”, “Wires”, and
“Pins” shows some of the overheads associated with the resource, and the net available resource to
the end chip designer.

103

4.1.2.1 Wires

The Raw Microprocessor employs 6 metal layers, the most offered through SA-27E, because we

wanted to most closely match the number of interconnect layers found in future generations. Overall,

the number of metal layers available in VLSI processes has been increasing with subsequent process

generations. For example, 65 nm processes are forecasted to have up to 10 layers.

The use of SA-27E’s metal layers comes with two classes of restrictions. The first class of

restriction deals with the directionality of wire segments on a given metal layer. Of the six metal

layers, the routing tools reserve the odd-numbered layers (M1, M3 and M5) for horizontal wires,

and the even-numbered layers (M2, M4 and M6) for vertical wires. Since metal layers are typically

dedicated to either horizontal or vertical wiring direction, wires with turns are composed of multiple

wire segments spanning two or more metal layers along with the vias necessary to connected these

segments. Figure 4-2 shows a few examples of wires that require multiple segments and vias.

The second class of restrictions emerges from wiring resources that are implicitly consumed by

various functions of the VLSI chip. In the SA-27E process, standard cells utilize much of M1, so

wires passing over standard cells have limited ability to take advantage of M1. Memories utilize all

of M1 and M2 and approximately half of M3. Finally, M6, which is typically thicker than the others,

is largely reserved for wide, vertical, power and ground buses [14, 10]. Additionally, M6 is used to

route from the I/O buffers located on the perimeter of the die to the C4’s (“Controlled Collapse

Chip Connection”) that are used to connect to the flip-chip package the encloses the die. Figure 4-4

shows a picture of the surface of the Raw die, in which M6 is clearly visible.

4.1.2.2 Gates

The SA-27E process also offers a menu of die sizes. The die size determines how many wiring tracks

and standard cells could theoretically fit on the chip. The Raw die size was selected as 18.2 mm x

18.2 mm, which, after subtracting perimeter area for I/O buffers (.645 mm), is approximately 31,350

x 31,350 wiring tracks. This is enough for approximately 2612 circuit rows. If filled with the DFF’s

shown above, we could fit 1306 per row, for a total of 3.4 Million DFF. Furthermore, we could route

in excess of 501,600 4 millimeter wire segments – the length of a Raw tile – assuming 4 of the 6

metal layers were free. In practice, such a dense design would be so atypical that it would evoke

many implementation and testing issues in the ASIC flow.

4.1.2.3 Pins

Along with the choice of die sizes comes the choice of packages. A package is the interface between

the silicon die and the motherboard it connects to. It serves two purposes. first it protects the

silicon die from damage. Second, it connects the C4’s (“Controlled Collapse Chip Connections”) on

the top-most layer of the silicon die to a set of solder columns. These solder columns are in turn

104

Figure 4-4: The left image is a photograph of the Raw die. Metal Layer 6 is visible, as are the C4’s.
The image on the right is the upper left hand corner of the same image. The Vdd/Gnd rails, C4’s
and I/O-Buffer-to-C4 wiring are indicated. The Vdd/Gnd rails are the vertical wires that run the
length of the chip. The C4’s are the small dots. The I/O-Buffer-to-C4 connection wires are the
mass of wires that run from the edges of the chip to the C4’s located near the periphery of the chip.
Note that they do not appear to adhere to the M6-is-vertical discipline.

105

Figure 4-5: Ten Raw microprocessors in a chip carrier tray. Photograph: Jason Miller.

106

soldered to the motherboard which is used to connect the different chips. Inherently, it is performing

a widening function; the pitch of solder columns on the package is 1 mm, while the spacing between

C4’s is as little a .25 mm. To perform this, Raw’s package itself is composed of 19 ceramic layers,

much like a PC board.

4.2 The Raw Chip

Figure 4-5 shows a picture of a chip carrier tray containing ten Raw tiled microprocessors. Each

Raw microprocessor consists of a 18.2 mm x 18.2 mm silicon die enclosed in a 1657-pin 42.5 mm x

42.5 mm CCGA package, as detailed in the previous section.

A computer generated layout of the Raw chip is shown in Figure 4-6. Clearly visible are the

sixteen 4 mm x 4 mm tiles. Around the periphery of the chip are the NIBs for the I/O ports and

multiplexers, the PLL, and the I/O buffers for the HSTL (High Speed Transceiver Logic). Metal 6

is used to route from these buffers on the periphery to the C4’s (such as in Figure 4-4) that connect

to the page.

Gate Type Quantity Percentage

flip-flops 20,385 26.08%

muxes 16,608 21.25%

2-input nand 10,874 13.91%

inverters 10,345 13.24%

clk-related 4,913 6.29%

2-input and 3,956 5.06%

3-input nand 3,348 4.28%

buffers 2,911 3.72%

i/o related 1,346 1.72%

other 3,475 4.44%

Total 78,161 100%

Table 4.2: Gate types in the Raw “top-level”; includes all logic not included inside tiles, such as I/O
ports, wire buffers, and other miscellaneous (such as clock and PLL) logic. The ports themselves
comprise 45,118 instances, including 17,770 flip-flops, 13,836 muxes, 6,644 inverters, 2,754 2-input
and gates, 911 buffers, and 529 2-input nand gates. The origins of the additional 10,345 2-input
nand gates, which were automatically inserted by the ASIC toolchain, are somewhat mysterious.

There is a fair amount of “dust” logic around and in-between the tiles. This logic includes the

clock tree, which is composed of a tree of SCBs (structured clock buffers), which are long, narrow

arrays of wired-input wired-output inverters, and a variety of inverters and other logic for buffering

signals, and for implementing scan and JTAG. Table 4.2 shows the break-down of gate types at

the top-level of the design. This includes all standard cells not found inside the tiles themselves.

74% of the cells at the top-level are either flip-flops, muxes or 2-input nand gates. 57% of the gate

107

I/O Port
PLL

Tile

HSTL I/O Buffer
I/O Port Mux/DeMux

Figure 4-6: Computer-generated layout of Raw chip. The major components are 16 tiles, 16
I/O port multiplexers, 16 I/O port demultiplexers and a PLL. The remaining “dust” logic
implements the clock tree, JTAG, LSSD scan and buffering of long wires.

108

Figure 4-7: Photomicrograph of the 18.2 mm x 18.2 mm 16-tile Raw chip, after the top layers
have been removed via a wet etch (i.e., acid.) The etch is somewhat imperfect and left some
traces of the upper levels of metal (especially metal 6). The resolution of the apparatus (3000
pixels x 3000 pixels) at this magnification is approximately 11 wiring tracks per pixel. The
16 tiles are clearly visible. Around the periphery, the multiplexing logic for the I/O ports is
also visible.

109

count comes from I/O port logic. Note that most of the perimeter around the tile array is empty. In

retrospect, given that the die size could not be reduced because the design was pin- rather than gate-

limited, it would have made sense to increase the size of the I/O port’s FIFOs (from 4 elements)

to reduce the burden on the I/O ports of the external chipset (implemented by FPGAs) to process

credit signals at chip speed.

One surprise that arose out of the generation of the clock tree for Raw is that although the array

of tiles lends itself to a structure clock, the I/O buffers around them also need a clock, and are not

quite as regular.

After the chips returned from IBM’s fab in October 2002, we received a few samples of unpackaged

Raw die, which allowed us to produce die photomicrographs. We quickly found however that the

resulting photos (such as in Figure 4-4) did not reveal much about the structure of the chip. As a

result, we contracted a lab to remove successive layers of the chip via a wet etch and to photograph

the die using a microscope and a 4x5 inch large format analog camera. The negative was then

scanned using a film scanner to produce a digital image. This image is shown in Figure 4-7.

Pictured in Figure 4-9 is a computer generated layout of a single tile. Most of the Raw design

was done hierarchically, i.e., only a single tile was coded, synthesized to gates and placed. Then, at

final stages of the backend, wiring, and signal buffering passes were done “flat”, treating each tile

as an independent and non-identical entity. The final stages were done flat because this was the

standard flow that IBM ASIC engineers were accustomed to. Not surprisingly, we found that the

compute times and memory footprints of the flat runs were an order of magnitude larger than then

the hierarchical ones, and since Raw was one of IBM’s largest ASIC chips at the time, it strained

the infrastructure. For larger tiled designs, it seems likely that tiled microprocessors, combined with

a hierarchical backend flow, will produce great labor savings in the backend.

Source code statistics for the Raw design are shown in Figure 4-8. Generally, the quantities

counted are lines of verilog. Overall, Raw was implemented with 33,981 lines of source code, plus

12,331 lines of TCL code. These counts do not include IBM-provided back-end TCL scripts, or IBM-

provided structural verilog used to implemented most datapath operators such as adders. Overall,

this is significantly less verilog than contemporary industrial designs. The Pentium 4 design, for

instance, consisted of 1 million lines [12] – over 30x as many as the Raw design – even though the

Pentium 4 chip has less than half the number of transistors (42 Million) as the Raw chip (over 100

Million). This is a testament to the significantly reduced design complexity and validation effort of

tiled microprocessors relative to traditional superscalars. Raw was also designed with a small team

of graduate students turned first-time microprocessor designers, significantly less than the Pentium

4’s 500 engineers [12].

Basic gate type counts are shown in Table 4.3. Somewhat surprisingly, 60% of a Raw tile is

flip-flops, muxes, or inverters. Approximately 24% of a tile’s gate count is in FIFOs (network input

110

Component Lines Words Characters % (by words)
Main processor - Control 8998 28538 321422 28.50%
FPU 3104 11349 92806 11.33%
Static Network 3175 9433 108366 9.42%
Main processor - Datapath 2590 7731 94774 7.72%
Data Cache 1947 5954 69429 5.95%
I/O Ports 2039 5701 57262 5.69%
Dynamic Network 1693 5163 64131 5.16%
Test Network 703 1998 17463 2.00%
Integer Divider 457 1101 10700 1.10%

Datapath Module Wrappers 3526 11936 134185 11.92%
Top-level Glue (Signal Routing) 5749 11244 244708 11.23%

Total - Logic generation 33981 100148 1215246 100.00%
Placement Scripts (tcl) 12331 50279 386899

Total 46312 150427 1602145

Figure 4-8: Lines of source (generally, verilog) to describe Raw processor. Does not include
testing code. The datapath was generally described with structural verilog, while control
used higher-level RTL and synthesis. Wide-word Datapath operators (such as multipliers,
adders and multiplexers) were instantiated from an IBM library, so although these items
were specified at the gate-level (by IBM developers), they are not include in the counts.
The entry Datapath Module Wrappers corresponds to the source code used to wrap these
components for portability purposes. The entry Top-level Glue corresponds to the source
code used to instantiate and connect the base components into tiles and then into an array
of tiles and I/O ports.

Gate Type Quantity Percentage

muxes 16,094 24.41%

flip-flops 12,023 18.24%

inverters 11,796 17.90%

2-input nand, nor, xnor 11,277 17.11%

2-input and, or, xor 3,970 6.02%

buffers 2,702 4.10%

3-input and, nor, or, nand, xor 2,414 3.66%

clk-related 1,166 1.77%

4-input and, nand, nor, or 877 1.33%

other 3,591 5.45%

Total 65,911 100%

Table 4.3: Gate types in the Raw tile. > 90% of the inverters are high-drive inverters, for driving
long signals. The 26 NIBs (containing space for 128 elements) alone comprise 15,719 instances
(23.85% of the gates), including 5,315 flip-flops, 5,519 2- or 3-input muxes, 2,156 inverters and 435
buffers.

111

Figure 4-9: Computer-generated layout of 4 mm x 4 mm Raw tile. For color renderings,
green cells are multiplexers, orange cells are registers, cyan cells are clock tree, and yellow
cells are buffers. In the .pdf version of this thesis, the reader may zoom in up to 64x, examine
individual cells, and print close-up views. In some cases it may be convenient to select “Print
as Image”.

112

Static Router (SR)
Fetch Unit

SR Control

Compute Processor
Data Cache

Event
CTRS

Compute Processor
Fetch Unit

MULT FPU ALU.S
SPRs

CONTROL

BYPASS NET IN-FIFOS

R
F

DN #1 Crossbar

DN #2 Crossbar
DN #1 Control

DN #2 Control

SR Crossbar #2

SR Crossbar #1

ALU.C

ALU.M

INT

Figure 4-10: Floorplan of a Raw tile. The networks, including the static router (“SR”)
and dynamic networks (“DN”), comprise approximately 40% of the tile area. The register file
(“RF”) is quite small relative to conventional superscalar designs. ALU.S, ALU.C, and ALU.M
implement the single-cycle instructions and are grouped according to criticality (C = critical,
M = moderately critical, S = simple, not critical). The bypass network is approximately the
same area as one of the network datapaths. SPRs is the unstructured logic that implements
Raw’s status and control registers. The Raw tile has 16 event counters (Event CTRS) for
detecting and summarizing network and compute processor events.

113

Figure 4-11: Photomicrograph of a 4 mm x 4 mm Raw tile. The top layers have been
removed. The resolution of the apparatus (3000 pixel x 3000 pixel) at this magnification is
approximately 1.3 microns per pixel, or around 2 wiring tracks per pixel. This is approaching,
but not reaching the limits, imposed by the wavelength of light. Much of the detail of the
tile is readily correlated against the tile floorplan diagram.

114

blocks) alone. Much of this overhead could be reduced if full-custom design were employed, or if the

ASIC vendor provided custom FIFO macros.

Figure 4-10 shows a floorplan of the Raw tile, while Figure 4-11 shows a photomicrograph of a

single tile. Both of these pictures can be readily correlated against the computer-generated layout

in Figure 4-9. The Scalar Operand Networks (including the bypass networks) and Generalized

Transport Networks (labeled “DN” for dynamic network) take up approximately 50% of the chip.

Approximately 40% of the chip is 6-transistor SRAM. Generally, the placement of objects relative to

the bypass network reflects their relative criticality. Blocks that are less critical may be placed further

away. Thus, from the layout, we can see that the ALU.C (“critical ALU”) and dynamic networks

were the most critical. The 32-element, 2 read port, 1 write port register file of the system is a

relatively small fraction of the total area3. Overall, the critical path was designed in to be the path

through the fetch unit’s SRAM, through a 2-input mux, and back into the SRAM – a typical path

found in next-line predictors of superscalars. A higher frequency design would have to make this path

take two cycles4. The FPU and Integer Multiplier (“INT-MULT”) were non-critical because they

were multicycle functional units and the wire delay was incorporated as part of the latency. Another

indicator of relative criticality in terms of performance or density (or at perhaps research interest)

is visible in Figure 4-9. Areas that appear regular are either SRAMS (the large red blocks) or were

placed using a series of placement libraries that members of the Raw team wrote. In particular, the

networks, ALU, and control logic for branch prediction and static router stall determination were

placed in a data-path style. The IBM CAD flow’s automatic placer was congestion-driven rather

than timing-driven, which made this work necessary to meet timing. It is quite possible that more

recent placement tools are now sufficient for the job, given reasonable floorplanning. Based on our

flow, a synthesized and placed Raw chip could be automatically generated from source Verilog in 6

hours: 4 hours of synthesis on a Pentium-4 2 GHz, and 2 hours of placement (via IBM’s ChipBench,

which did not run on x86) on a 750 MHz UlraSparc IV.

4.3 The Raw Systems

The Raw chip was designed to be used in conjunction with two types of systems. The first system

employs a single Raw chip and a custom-built workstation-style motherboard (the “Raw mother-

board”). The other system integrates multiple Raw chips onto a single board (the Raw “array

board”), which can be connected to other array boards to form supercomputer-style Raw systems

with up to 1024 tiles.

Figure 4-12 shows a picture of the Raw motherboard. In the center of the board is the Raw

3One of the P4 architects, upon inspecting the Raw tile, asked surprised, “Where is the register file?!” – he had
forgetten that since Raw wasn’t wide issue, it would be tiny.

4A surprising result, as at least some high-frequency superscalars appear to be able to do this in one, indicating
full-custom SRAMs (as measured in FO4) are faster.

115

chip. It is a surrounded by a number of FPGAs which implement the chipset, the glue-logic that

interprets messages coming off the on-chip networks over the pins and converts them into control

signals for peripherals. The motherboard has a number of standard SDRAM slots, PCI slots, a USB

card, and various other peripherals5. The system is standalone; however, we typically attach a PC

to the USB cable, which runs code to simulate I/O devices, or to interface to framebuffer boards for

input or output video streams6. We ran a number of applications on the system, including real-time

video applications including audio beamforming on a 1020-microphone array, and blue-screen video

substitution.

As shown in Figure 4-13, the system fits in a standard PC case and runs off of a standard PC

power supply. A heat-sink is necessary as the chip consumes approximately 17 W during average

load (at 425 MHz) and up to 38 W with pathological programs [62]. Approximately 10 W of power

is burned in the clock alone. We spent very little effort on optimizing power in the Raw system

because the IBM tools generally did not support it, and because we were already within our thermal

envelope, 80 W. Nonetheless, tiled microprocessor designs are easy to optimize for power, as detailed

in [62].

Figure 4-12: The Raw Motherboard.

Figure 4-14 depicts the Raw array board. The array board leverages the Raw chip’s ability to

gluelessly interconnect with other Raw chips. When the chips are connected, they act as a larger

5When the USB board is plugged into a windows machine, it says “Windows has detected a Raw Architecture
Workstation”!

6In general, the use of PCI cards in the Raw system was difficult because of the lack of open standards and the
cards’ general use of embedded x86 BIOS code to initialize undocumented I/O registers. Finally, the latest generation
of FPGA device does not allow 5 V signaling, which further reduced the selection of candidate cards.

116

Figure 4-13: The Raw Workstation.

117

Figure 4-14: The Raw Array Board

118

Figure 4-15: The Raw Array Board, connected to an I/O board for DRAM and PCI support.
Visible in the picture are the fansinks for cooling the Raw chips, and a number of high-speed
cables, which are used to connect the array boards to other array boards and I/O boards.

119

virtual Raw chip – with one exception: the second static network does not cross chip boundaries.

Thus, a single array board implements a 64 tile system. The boards themselves can be tiled using

high-speed ribbon cables to create systems of up to 1024 tiles7. In addition to the array board, the

Raw group has created I/O boards, which support DRAM and PCI devices. Figure 4-15 shows the

Raw array board connected to one such I/O board. Collectively, a 1024 tile system would with little

doubt make Raw the widest-issue ILP-based microprocessor ever built.

Frequency (MHz)
420 430 440 450 460 470 480 490 500

2.20 OK OK OK OK OK OK OK OK OK

2.15 OK OK OK OK OK OK OK OK FAIL
2.10 OK OK OK OK OK OK OK FAIL FAIL
2.05 OK OK OK OK OK OK FAIL FAIL FAIL
2.00 OK OK OK OK OK FAIL FAIL FAIL FAIL
1.95 OK OK OK OK FAIL FAIL FAIL FAIL FAIL
1.90 OK OK OK FAIL FAIL FAIL FAIL FAIL FAIL
1.85 OK OK FAIL FAIL FAIL FAIL FAIL FAIL FAIL
1.80 OK FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

 V

ol
ta

ge
 (V

)

Figure 4-16: Shmoo plot of 16-tile Raw core. Plot shows frequency-voltage relationship during
core operation at an ambient temperature of 20◦ C. The Raw core operates without error at
420 MHz at the nominal voltage of the IBM process, 1.8 Volts, and as high as 500 MHz at
2.2 Volts.

Figure 4-16 depicts a Shmoo plot, which shows the relationship between voltage and maximum

possible frequency of operation of the Raw chip. The chip reaches 425 MHz at 1.8 V and 500 MHz

at 2.2 V8.

4.4 Conclusions from Building the Raw System

Design, implementing and booting the Raw system was a rewarding experience. Figure 4-17 shows

the timeline of the effort. On the right are given design milestones and dates, while on the right are

given verification milestones. Much of the time between the first behavioural model and the final

netlist was bottlenecked by our knowledge of the tools. Our verification effort was extensive and

7The principal impediments to scalability in the system beyond 1024 tiles are the use of ten-bit addresses for
dynamic network packets, the use of 32-bit address (limiting the system to 4GB of address space), and increasing
ratio of tiles to I/O ports.

8The estimate lifetime of a Raw chip is approximately 6 months at this voltage. Other academic groups [66, 93]
have proven more daring at increasing voltages to higher levels; however because the Raw chips are attached with
solder columns, rather than with sockets, replacing a chip is a more costly proposition.

120

consisted of many months of simulation time and hundreds of thousands of lines of code, including

randomly generated tests. Our bug-finding and bug-fixing efforts are detailed in Figure 4-18. In

all, we found less than 150 bugs before tapeout, significantly less than the 7,855 bugs found in the

P4 before it taped out [11]. After tapeout, we found three bugs, none of them show-stoppers9, in

contrast to the P4’s 101 errata in the released product. Although the P4 is a commercial system

and has some necessary complexity over the larger Raw design, the vast difference in lines of verilog

(30x), design team size (∼100x), pre-tapeout bugs (50x), and post-tapeout bugs (33x) is consistent

with our claim that tiled microprocessors are easy to design, build, and verify.

9For instance, our first bug resulted from a test mode (“extra power burn mode”) which disables gating of functional
units so that we can measure the power impact. We left this untested and only discovered the night of a paper deadline
that in this mode, during a cache miss, instructions would continue to march down the pipeline and fall off the end!

121

Raw
Timeline

6/98

12/99

6/03

12/02

6/02

12/01

6/01

12/00

6/00

6/99

12/98

12/97

First .v behavioral model

First Raw Simulator

Tile Synthesis: 7.37 ns
Tile Synthesis: 5.68 ns

Repipelining done;
Tile Synthesis: 4.8 ns

Placement scripts;
Tile Synthesis + Placement: 4.5 ns

Raw design mostly done,
no clock, scan or I/Os.

Final netlist: Tile clocks at 4.0 ns

IBM finished physical design

Chips return

Raw system runs at 2 MHz

Raw runs “Hello World”, 200 MHz

Raw tested at 500 MHz @ 2.19V

Group-wide testing
effort begins

Raw running in
logic emulation

Last RTL bug fixed

Back end bug found!

Massive final
gate-level
simulation

6/04

12/03

Raw Evaluation Published

6/97

Figure 4-17: Raw timeline

122

0

20

40

60

80

100

120

140

160

0 365 730Days

N
um

be
r

Bugs fixed
Bugs found

312963 6 9 12 3 6

2000 2001 2002

9

Figure 4-18: Bug finding and fixing timeline.

123

124

Chapter 5

Performance Evaluation

This chapter evaluates the tiled microprocessor design paradigm by analyzing the Raw microproces-

sor. Sections 5.1 introduces the methodology that we use to evaluate the performance of the Raw

design. Our methodology compares the Raw system to the Intel Pentium 3, which was implemented

in the same (180 nm) process generation. In general, we organize the results according to the compi-

lation methodology, and describe the compilers, algorithms or languages that were employed along

with the performance results.

The results are given in the following order. We first examine Raw’s single tile performance

on conventional desktop applications in Section 5.2. This establishes the baseline performance of a

single tile versus a conventional superscalar like the Pentium 3. We continue by examining Raw’s

performance as a server-farm on a chip, using the same set of benchmarks. Then, in Section 5.4, we

evaluate Raw’s performance using multiple tiles to execute automatically-parallelized sequential C

and Fortrain programs. Section 5.5 explores Raw’s performance on multiple tiles using StreamIt, an

parallel language for expressing computations. Section 5.6 examines Raw’s performance on hand-

coded streaming applications. Finally, in a what-if exercise, Section 5.7 examines Raw’s performance

on sequential single tile applications if it had been implemented with 2-way issue tiles. Section 5.8

concludes.

5.1 Evaluation Methodology

The following two sections examine the methodology that this dissertation uses to evaluate the

performance of the Raw microprocessor. Section 5.1.1 explains the two major options in evaluation

metholodogy, and our reasons for choosing the second option, a comparison with a third-party

system. Section 5.1.2 examines our decision to compare against the Intel Pentium 3 processor.

Section 5.1.3 describes how this methodology was put into practice.

125

5.1.1 Challenges in Evaluation Methodology

Self-speedups vs. Comparison against 3rd-party System One of the great challenges in

microprocessor design research is the issue of performance evaluation. The traditional methodology

in parallel processing is to express the performance of a system in terms of “self-speedups” – that is,

by dividing the runtime of the system in a baseline configuration (for instance, on one node) by the

run-time of the system in the proposed configuration (for instance, on 16 nodes.) This is by far the

easiest methodology, because it carries the advantage that it does not require examination of other

reference systems unrelated to one’s own system.

Unfortunately, this advantage is also one of the major limitations of the approach - self-speedups

do not show how the approach compares to other approaches. Self-speedups do not expose perfor-

mance problems that may be systematic of the research and common to both research configurations.

Worse, self-speedups lead to moral hazard - they penalize the system implementor for performing

due diligence. For instance, many compiler optimizations act to reduce the effective amount of

work that needs to be performed (such as common sub-expression elimination and register allo-

cation.) Unfortunately, reducing the effective amount of work also reduces the opportunities for

self-speedup. Thus, researchers are put in the unenviable position where the most moral action will

entail additional work and worsen their performance numbers.

An alternative choice is to compare against existing systems implemented by 3rd parties that

have an interest in creating the best system. In this case, inherent inefficencies in the proposed design

will be exposed. This approach is, however, more difficult to carry out. First, there is the challenge

that the systems will have non-identical aspects (for instance, differing VLSI processes and logic

families) that will require normalization. Second, it places a greater burden on the completeness

of the experimental prototype. Non-research aspects of the system may need complete industrial-

strength implementations, even though the implementations themselves are not part of the research

agenda. For instance, FPU architecture is not a central component of this dissertation’s focus;

however an inefficient FPU would have significantly hurt the outcome of performance results in the

system, and could have obscured otherwise positive findings of the research.

This dissertation takes the 3rd-party-comparison approach, despite the inherent difficulty in doing

so. The comparison system, the Intel Pentium III (“P3”), was selected for its wide-spread availability,

and for the relative closeness of its implementation parameters to the Raw design. Although in an

ideal world, the P3 and Raw implementation parameters could be closer, this approach exposes the

research “to the open light” better than self-speedup numbers alone. Furthermore, for those who

feel comparison with another system is more appropriate, it gives them the means to do so: they

can compare the run-times on another system to the P3 and by extension, to Raw.

126

5.1.2 Developing a Comparison with the Pentium III

In order to implement the methodology of comparing Raw to a third party system, two key steps

were taken. First, a comparison system, the P3, was selected based on an evaluation of its imple-

mentation parameters. Second, the Raw and P3 systems were configured so as to match as much

as possible. The evaluation further employs BTL, the Raw cycle accurate simulator, in order to

perform normalizations that would not be possible in hardware.

Selection of a Reference Processor The selection of a comparison (or reference) third-party

system led us to reflect upon the properties that such a comparison system would have. For fairness,

the comparison system must be implemented in a process that uses the same lithography generation,

180 nm. Furthermore, the reference microprocessor needs to be measured at a similar point in its

lifecycle, i.e., as close to first silicon as possible. This is because most commercial systems are

speedpath or process tuned after first silicon is created [17]. For instance, the 180nm P3 initial

production silicon was released at 500-733 MHz and gradually was tuned until it reached a final

production silicon frequency of 1 GHz. The first silicon value for the P3 is not publicly known.

However, the frequencies of first-silicon and initial production silicon have been known to differ by

as much as 2x.

The P3 is especially ideal for comparison with Raw because it is in common use, because its

fabrication process is well documented, and because the common-case functional unit latencies are

almost identical. The back ends of the processors share a similar level of pipelining, which means

that relative cycle-counts carry some significance. Conventional VLSI wisdom suggests that, when

normalized for process, Raw’s single-ported L1 data cache should have approximately the same area

and delay as the P3’s two-ported L1 data cache of half the size. For sequential codes with working

sets that fit in the L1 caches, the cycle counts should be quite similar. And given that the fortunes

of Intel have rested (and continue to rest, with the Pentium-M reincarnation) upon this architecture

for almost ten years, there is reason to believe that the implementation is reasonable. In fact, the

P3, upon release in 4Q’99, had the highest SpecInt95 value of any processor [41].

Itanium and Pentium 4 (P4) came as close seconds in the final choice. The selection of the

P3 over these possibilities stemmed from the need to match the lifecycle of the reference system

to Raw’s. Intel’s market pressures cause it to delay the release of new processors such as P4 or

Itanium until they have been tuned enough to compete with the existing Pentium product line.

Consequently, when these processors are released, they may be closer to final-silicon than first-

silicon. For example, it is documented in the press that Itanium I was delayed for two years between

first-silicon announcement and initial production silicon availability. Finally, Raw’s implementation

complexity is more similar to that of the P3 than to that of the P4 or Itanium.

127

5.1.2.1 Comparing Raw and P3 Coppermine VLSI Characteristics

Table 5.1 compares the two chips and their fabrication processes, IBM’s CMOS 7SF [77, 94] and

Intel’s P858 [125]. CMOS 7SF has denser SRAM cells and less interconnect resistivity, due to copper

metalization. P858, on the other hand, compensates for aluminum metalization by using a lower-k

dielectric, SiOF, and by increasing the dimensions of wires at highers level of metal.

Parameter Raw (IBM ASIC) P3 (Intel)
Lithography Generation 180 nm 180 nm
Process Name CMOS 7SF P858

(SA-27E)
Metal Layers Cu 6 Al 6
Dielectric Material SiO2 SiOF
Oxide Thickness (Tox) 3.5 nm 3.0 nm
SRAM Cell Size 4.8 μm2 5.6 μm2

Dielectric k 4.1 3.55
Ring Oscillator Stage (FO1) 23 ps 11 ps
Dynamic Logic, Custom Macros no yes
(SRAMs, RFs)
Speedpath Tuning since First Silicon no yes
Initial Frequency 425 MHz 500-733 MHz
Die Area1 331 mm2 106 mm2

Signal Pins ∼ 1100 ∼ 190
Vdd used 1.8 V 1.65 V
Nominal Process Vdd 1.8 V 1.5 V

Table 5.1: Comparison of Implementation Parameters for Raw and P3-Coppermine.

The Ring Oscillator metric measures the delay of a fanout-of-1 (FO1) inverter. It has been

suggested that an approximate FO4 delay can be found by multiplying the FO1 delay by 3 [46].

Thus, P858 gates appear to be significantly (2.1x) faster than the CMOS 7SF gates. This is to be

expected, as IBM terms CMOS 7SF a “value” process. IBM’s non-ASIC, high-performance, 180 nm

process, CMOS 8S, is competitive with P858 [27], and has ring oscillator delays of 11 ps and better.

Furthermore, production 180 nm P3’s have their voltages set 10% higher than the nominal process

voltage, which typically improves frequency by 10% or more. Overall, the P858 is a significantly

higher-performance process than CMOS 7SF, with speed advantages for both transistors and long-

haul wires. However, CMOS 7SF has some advantages in terms of density.

A recent book, [17], lists a number of limitations that ASIC processor implementations face

versus full-custom implementations. We mention some applicable ones here. First, because the

ASIC flow predetermines aspects of a chip, basic overheads are relatively high in comparison to

full-custom designs. Two of Raw’s largest overheads were the mandatory scan flip-flops (18%), and

clock skew and jitter (13%). Second, ASIC flows tend to produce logic that is significantly less dense

1Note that despite the area penalty for an ASIC implementation, it is almost certain that the Raw processor is a bigger
design than the P3. Our evaluation does not aim to make a cost-normalized comparison, but rather seeks to demonstrate
the scalability of our approach for future microprocessor designs.

128

Latency Occupancy
Operation 1 Raw Tile P3 1 Raw Tile P3
ALU 1 1 1 1
Load (hit) 3 3 1 1
Store (hit) - - 1 1
FP Add 4 3 1 1
FP Mul 4 5 1 2
Mul 2 4 1 1
Div 42 26 42 26
FP Div 10 18 10 18
SSE FP 4-Add - 4 - 2
SSE FP 4-Mul - 5 - 2
SSE FP 4-Div - 36 - 36

Table 5.2: Raw versus P3 Functional unit timings. Commonly executed instructions appear first.
FP operations are single precision.

than corresponding custom flows. Third, ASIC flows prevent use of custom or dynamic logic, except

for a limited menu (up to 2 read ports and 2 write ports) of fixed pipeline-depth register files and

SRAMs, which are machine-generated. A 40-80% improvement in frequency often is attributed to

the use of dynamic logic. Process and speedpath tuning account for 35%. Finally, speed-binning

yields approximately 20%.

In order to compensates for the last two factors, we selected as reference processor the 600

MHz P3, which was released prior to process tuning, and after limited speedpath tuning. Thus, it

is solidly in the middle of the P3 initial production frequency range, presumably representing an

average-speedbin part.

A Raw implementation with the same engineering effort and process technology as the Intel P3

would be smaller and significantly faster. Because the results are typically favorable towards Raw,

we do not generally try to adjust the Raw results to normalize for the Intel P3’s advantages. In

some cases, however, we show the simulation results for Raw running at the higher frequency of the

P3 to show the relative impact of greater cache miss times.

5.1.2.2 Comparing Raw and P3 Microarchitectural Parameters

One of the reasons that we selected the P3 as the comparison processor is because the functional unit

latencies and occupancies were quite similar to those found in Raw. These latencies and occupancies

are shown in Table 5.2. Most operations except divides are pipelined on both processors. Unique to

P3 are the SIMD instructions (“SSE”) that execute four single-precision floating point operations

every two cycles. Whenever possible, we enable the use of SSE in the P3 benchmarks that are run.

The closeness of these latencies suggests a similar level of aggressiveness applied to pipelining the

two chips. Of course, the P3 has more total pipeline stages due to the extra logic levels incurred

by implementing out-of-order execution and implementing a more complex instruction set. These

129

additional front-end pipeline stages are evident in the substantially larger misprediction penalty (10

to 15 cycles average case) of the P3. This larger misprediction penalty creates the need for the P3’s

512-entry BTB and dynamic branch prediction hardware, in contrast to Raw’s small and simple

static branch predictor.

The difference in functional unit latencies was one reason why the P4 was not selected as a

comparison system. The P4 is much more aggressively pipelined and has greater functional unit

latencies, despite the use of advanced dynamic logic circuit techniques to reduce datapath circuit

delay.

Table 5.3 compares the salient execution and memory system parameters of the two systems. The

Raw system runs at a lower frequency, due to slower transistors, less aggressive static-logic circuit

implementation technology, and lack of speedpath tuning. The P3 manifests its microarchitectural

approach to microprocessor scalability via its out-of-order 3-operation-per-cycle implementation.

The Raw tile on the other hand, sticks to a more spartan single-issue in-order pipeline.

The L1 caches of the system are comparable, with the P3 opting for more ports (via banking)

and the Raw system opting for more capacity. Surprisingly, examination of the two processors’

die-photos indicates that the P3’s L1 SRAM cache banks are almost twice as large as the Raw Tile’s

L1 data cache. Anecdotal evidence suggests that the L1 cache was ultimately a major speed-path

limiter in the P3 design.

The P3 holds over the Raw tile the advantage of having a 7-cycle latency 256 KB L2 cache.

A single Raw tile has the edge over the P3 for working sets between 16 and 32 KB, while the P3

has the edge for between 32 KB and 256 KB. Of course, when multiple tiles work in concert, their

collective L1 capacity can be much larger.

As will be seen in the next section, the DRAM timing parameters of the Raw system have been

normalized through the BTL simulation to match those of the Dell P3 system in terms of time.

5.1.3 Normalization with the P3

5.1.3.1 Validated, Cycle Accurate Simulator

The evaluation in this chapter uses the BTL validated cycle-accurate simulator of the Raw chip.

Using the validated simulator as opposed to actual hardware allows us to better normalize differences

with a reference system, e.g., DRAM memory latency, and instruction cache configuration. It also

allows us to explore alternative motherboard configurations. We verified that the simulator and the

gate-level RTL netlist have exactly the same timing and data values for all 200,000 lines of our

hand-written assembly test suite, as well as for a number of C applications and randomly generated

tests. Every stall signal, register file write, SRAM write, on-chip network wire, cache state machine

transition, interrupt signal, and chip signal pin matches in value on every cycle between the two.

130

1 Raw Tile P3
CPU Frequency 425 MHz 600 MHz
Sustained Issue Width 1 in-order 3 out-of-order
Mispredict Penalty 3 10-15 ave.
Branch Predictor Static 512-entry BTB
DRAM Freq (RawPC) 100 MHz 100 MHz
DRAM Freq (RawStreams) 2 x 213 MHz -
DRAM Access Width 8 bytes 8 bytes
L1 D cache size 32K 16K
L1 D cache ports 1 (1 Load, 1 Store) 2
L1 I cache size 32K 16K
L1 miss latency 54 cycles 7 cycles
L1 fill width 4 bytes 32 bytes
L1 / L2 line sizes 32 bytes 32 bytes
L1 associativities 2-way 4-way
L2 size - 256K
L2 associativity - 8-way
L2 miss latency - 79 cycles
L2 fill width - 8 bytes

Table 5.3: Comparison of execution resources in a Raw tile and the P3.

This gate-level RTL netlist was then shipped to IBM for manufacturing. Upon receipt of the chip,

we compared a subset of the tests on the actual hardware to verify that the chip was manufactured

according to spec.

5.1.3.2 Instruction Caching Normalization

We observed that Raw’s software-managed instruction-caching system introduced significant differ-

ences between the two systems. To enable comparisons with the P3, the cycle-accurate simulator

was augmented so that compute and switch processors employed conventional 2-way associative

hardware instruction caches. These instruction caches are modeled cycle-by-cycle in the same man-

ner as the rest of the hardware. Like the data caches, they service misses over the memory dynamic

network. Resource contention between the caches is modeled accordingly. Of all of the differences in

the system, this was the one which mostly greatly motivated the use of the validate cycle-accurate

simulator for the evaluation study.

5.1.3.3 Motherboard Normalization

With the selection of a reference CPU implementation comes a selection of an enclosing computer.

We used a pair of 600 MHz Dell Precision 410’s to run our reference benchmarks. We outfitted these

machines with identical 100 MHz 2-2-2 PC100 256 MB DRAMs, and wrote several microbenchmarks

to verify that the memory system timings matched.

Although the Raw system has a complete motherboard implementation, that motherboard’s

131

chipset is implemented using FPGAs to reduce cost in the system. The Dell motherboard chipset,

on the other hand, is implemented using custom ASICs. As a result, the memory access times on the

Dell motherboard are faster than the Raw motherboard. Although this difference is not enormous,

we decided that it was relatively easy to normalize. To compare the Raw and Dell systems more

equally, we used the Raw simulator’s extension language to implement a cycle-matched PC100

DRAM model and a chipset3. This model has the same wall-clock latency and bandwidth as the

Dell 410. However, since Raw runs at a slower frequency than the P3, the latency, measured in

cycles, is less. We use the term RawPC to describe a simulation which uses 8 PC100 DRAMs,

occupying 4 ports on the left hand side of the chip, and 4 on the right hand side.

Because Raw is also designed for streaming applications, it was desirable to examine applications

that use the full pin bandwidth of the chip. In this case, the results employ a simulation of CL2

PC 3500 DDR DRAM, which provides enough bandwidth to saturate both directions of a Raw

port. This configuration includes 16 PC 3500 DRAMs, attached to all 16 logical ports on the chip,

in conjunction with a memory controller, implemented in the chipset, that supports a number of

stream requests. A Raw tile can send a message over the general dynamic network to the chipset to

initiate large bulk transfers from the DRAMs into and out of the static network. Simple interleaving

and striding is supported, subject to the underlying access and timing constraints of the DRAM.

We call this configuration RawStreams.

The placement of a DRAM on a Raw port does not exclude the use of other devices on that port

– the chipsets have a simple demultiplexing mechanism that allows multiple devices to connect to a

single port.

5.1.3.4 Operating System and I/O Hardware Normalization

One of the sources of deviation between two systems is the operating system and underlying I/O

hardware. To normalize these factors, two approaches were taken.

C standard I/O For C or Fortran stdio call, the same version of the C standard library routines,

newlib 1.9.0, was employed for Raw and P3. Furthermore, to eliminate the impact of differing

file systems and operating system layers, the results of I/O system calls for Spec benchmarks were

captured and embedded into the binaries as static data using a tool that I developed called the

Deionizer [109]. In this system, two runs of the application are performed. In the first run, the I/O

calls are logged into a file. Then, a new version of the application is created, in which the POSIX

system calls like open, read, write, and close are replaced with a customized version that has the

“answers” to the particular I/O calls embedded as static data in the binary. When this application

is run, no I/O calls are actually performed, just accesses to DRAM. This substitution eliminates an

important difference between the Raw and P3 systems.
3The support chips typically used to interface a processor to its memory system and I/O peripherals.

132

Streaming I/O In other cases, the applications model a series of streams coming in from a data

source, such as a video camera. On Raw, these streams arrive via an I/O port, while in the P3,

the conventional I/O mechanism is via direct memory access (DMA) through DRAM. To compare

these systems, we place the input data set in DRAM before running the benchmark. Thus, the P3

results are in a sense optimistic for this case, because no DRAM contention or I/O system overhead

is simulated.

5.1.3.5 Compiler and Custom Library Normalization

Another source of variation between the two systems are the compiler and customized libraries. The

P3 system has more mature compilers and libraries than the Raw system. On the other hand, many

of our applications have been optimized by Raw graduate students.

For standard C and Fortran single-tile programs, we normalize by using the same compiler and

standard libraries. In this case, C and Fortran code were compiled with gcc 3.3 -O3 for both Raw4

and the P35. We chose against employing the Intel C compiler for this set of comparisons because

its performance on the Spec benchmark suite is not representative of typical performance [34]. The

Intel compiler is heavily tuned for Spec, due to the commercial importance of Spec numbers.

In cases where more customized code was run on Raw, we sought out the most optimized versions

available for the P3. For example, we used the tuned ATLAS [124] SSE-based implementation, and

custom convolution codes from the Intel Integrated Performance Primitives (IPP). We also hand-

tweaked the P3 benchmarks to improve their performance; for instance, we modified the STREAM

benchmark to use the SSE instruction set, which greatly improved performance.

5.2 Evaluation of a Single Tile using SpecInt and SpecFP

To establish the baseline performance of a single Raw tile, we ran a selection of Spec2000 benchmarks,

compiled with gcc 3.3, on both Raw and the P3. For each benchmark, two Raw simulations were

performed. One simulation (“425”) uses Raw’s actual frequency, and the other uses the assumption

that Raw runs at the same frequency (600 MHz) as the P3. Both simulations use the same RawPC

motherboard timings; thus, cache-miss latencies, when measured in cycles, are greater in the 600

MHz simulation.

As shown in Table 5.4, one 16 mm2 Raw tile is surprisingly close to the 106 mm2 P3. At 425

MHz, Raw has 52% of the performance of the P3. At 600 MHz, Raw has 65% of the performance.

The impact of cache misses is evident: a 41% increase in frequency results in only a 25% increase in

performance. The ability to use other tiles as a L2 cache could serve to reduce this penalty, especially

4The Raw gcc backend, based on the MIPS backend, targets a single tile’s compute and network resources.
5For P3, we added -march=pentium3 -mfpmath=sse

133

Raw Cycles on Speedup Cycles on Speedup
Benchmark Source Tiles Raw vs P3-600 Raw vs P3-600

(425 MHz) Time (600 MHz) Time
171.swim SPECfp 1 1.27B 0.87 1.49B 1.05
172.mgrid SPECfp 1 .240B 0.69 .263B 0.89
173.applu SPECfp 1 .324B 0.65 .359B 0.82
177.mesa SPECfp 1 2.40B 0.53 2.42B 0.74
183.equake SPECfp 1 .866B 0.69 .922B 0.91
188.ammp SPECfp 1 7.16B 0.46 9.17B 0.51
301.apsi SPECfp 1 1.05B 0.39 1.12B 0.52
175.vpr SPECint 1 2.52B 0.49 2.70B 0.64
181.mcf SPECint 1 4.31B 0.33 5.75B 0.34
197.parser SPECint 1 6.23B 0.48 7.14B 0.60
256.bzip2 SPECint 1 3.10B 0.47 3.49B 0.59
300.twolf SPECint 1 1.96B 0.41 2.23B 0.50
Geometric Mean 0.52 0.65

Table 5.4: Performance of SPEC2000 programs on one tile on Raw. MinneSPEC [63] LgRed data
sets were used to reduce simulation time.

in memory-bound applications like mcf. Overall, these single-tile results demonstrate the degree to

which the P3’s microarchitectural approach to scalability has met with diminishing returns.

5.3 Multi-tile Performance as a “Server Farm On A Chip”

Tiled microprocessors can also serve as chip-multiprocessors. Like a chip-multiprocessor (CMP), fully

tiled microprocessors, as exemplified by the ATM and Raw6, are composed of autonomous and largely

self-sufficient computing elements linked by one or more communication networks. This allows

these fully-tiled microprocessors to efficiently execute many independent programs simultaneously,

operating as a server-farm-on-a-chip (“SFOC”). This is an important advantage relative to more

centralized designs like wide-issue superscalars and partially-tiled microprocessors.

As this chapter transitions from evaluating single-tile performance to evaluating multi-tile perfor-

mance, we start by evaluating Raw’s abilities as a server-farm-on-a-chip. We employ a SpecRate-like

metric by running multiple copies of the same Spec application on all tiles. In this section, we report

only numbers for Raw running at 425 MHz. Raw, running at 600 MHz, would have even better

performance.

Table 5.5 shows the throughput of Raw running 16 copies of an application relative to the

performance of the same application run 16 times in a row on a single P3. In the table, the column

labeled “Efficiency” shows the ratio between the actual throughput and the ideal 16x speedup

attainable with 16 tiles. The column labeled time incorporates the 425 versus 600 MHz clock

difference.
6In partially-tiled architectures such as TRIPS [96], tiles have more limited ability to operate autonomously.

134

Cycles Speedup vs P3-600
Benchmark on Raw Time Efficiency

(425 MHz) (425 MHz) (425 MHz)

172.mgrid .240B 10.6 96%
173.applu .324B 9.9 96%
177.mesa 2.40B 8.4 99%
183.equake .866B 10.7 97%
188.ammp 7.16B 6.5 87%
301.apsi 1.05B 6.0 96%

175.vpr 2.52B 7.7 98%
181.mcf 4.31B 3.9 74%
197.parser 6.23B 7.2 92%
256.bzip2 3.10B 7.1 94%
300.twolf 1.96B 6.1 94%
Geometric Mean 7.36 93%

Table 5.5: Performance of Raw on server-farm workloads relative to the P3.

Deviation from the ideal 100% efficiency is caused by interference of memory requests that

are passing over the same network links, DRAM banks, and I/O ports. The efficiency averages

93%, which suggests that a microprocessor with more tiles and the same RawPC memory system,

containing eight memory banks, would scale to even higher throughputs.

Eventually, as the number of tiles increases, one of the shared resources will become a bottleneck.

This point can be deferred by using all 14 DRAM ports instead of the 8 used in the RawPC

configuration. Eventually, as even those additional resources become insufficient, it makes sense to

allocate more than one tile to a process. The memory resources of additional tiles can be used as

caches to reduce the traffic to the external memory system.

Overall, Raw, even at 425 MHz, has a geometric mean of 7.36x improvement over the Spec

throughput of the 600 MHz P3. Normalizing for Raw’s larger die area, Raw’s throughput per mm2

is 2.3x better. These results suggest, in a parallel to [90], that fully-tiled architectures composed of

simpler tiles can indeed offer higher threaded performance than conventional chip multiprocessors

composed of wider-issue superscalars.

5.4 Multi-tile Performance on

sequential C and Fortran applications

In contrast to current-day chip multiprocessors, tiled microprocessors focus on cheap communica-

tion between remote ALUs. To provide this kind of communication, it is necessary to provide fast,

generalized transport networks and thin, tightly-coupled, low-overhead interfaces (as measured by

135

the 5-tuple, described in Section 2.4.4) for data transport and synchronization. In tiled micropro-

cessors, this communication can facilitate both the traditional message passing and shared memory

parallel programming models as well as finer grained parallel models, such as streaming and ILP

(instruction-level parallelism), that are enable by an SON.

In this section, we continue the examination of multi-tile performance on Raw by considering

traditional C and Fortran applications that have been automatically parallelized using the Rawcc

compiler [72, 8, 7, 71]. Rawcc relies extensively on the low-cost communication provided by Raw’s

SON to exploit ILP. Rawcc takes as input a sequential C or Fortran program and compiles it so that

it executes in a parallel fashion across the Raw tiles, using the inter-tile SON. Rawcc simultaneously

tries to extract both instruction and memory parallelism from sequential programs.

5.4.1 Memory Parallelism

Rawcc enhances memory parallelism by analyzing and transforming the high-level program in order

to increase the number of alias equivalence classes (“AECs”) [8, 9]. To do so, Rawcc operates on

memory objects, which refer to either a static program object (such as a statically declared array), or

the set of run-time objects created from the same program location (e.g., stack or heap objects). The

AECs form a compile-time partitioning of memory objects into sets such that each memory access

(load or store) instruction is proven to access memory objects from at most one set. To this end,

Rawcc’s pointer analysis allows Rawcc to accurately determine which load and store instructions

may point to which memory objects. In order to increase the number of memory objects in the

system, Rawcc subdivides array objects into multiple subarrays and divides structures (and arrays

of structures) into their constituent fields. Because subdivided arrays often remain in the same AEC,

array subdivision is performed simultaneously with modulo unrolling. Modulo unrolling selectively

unrolls loops and replicates memory access instructions so that individual instructions can be proven

to access different subarrays.

In some cases, the lack of memory dependence information for a particular memory access would

require the compiler to assign many objects to the same AEC. For instance, a void * pointer which

is returned from an unanalyzed routine(e.g., a library routine) may, from the compiler’s perspective,

be able to point to almost any memory object. Ordinarily, this would cause the collapse of all

of the AEC partitions into a single partition, eliminating memory parallelism. To deal with these

kinds of problems, Rawcc creates two types of AEC partitions. The first is the common-case AEC

partition, which is formulated ignoring these problem accesses. The second, the total AEC partition,

is formulated with the problem accesses7. The basic idea is to improve program performance by

allowing the common-case to run more quickly at the expense of making a small number of problem

7Rawcc’s “problem accesses” currently are selected only in the context of accesses from modulo-unrolled regions.
The loop bodies are formulated to contain only disambiguated accesses (i.e., members of the common-case AEC),
while the ramp-up and ramp-down code contains non-disambiguated accesses that require special treatment.

136

accesses run more slowly.

For each AEC in the common-case partition, Rawcc assigns the corresponding memory access

instructions to the same tile. When the program executes, the corresponding memory objects will be

accessed only through that particular tile’s cache. This is an important property, both because the

tiles are not cache-coherent and because accessing a memory object solely from a given tile’s cache

reduces penalties due to memory coherence traffic. Furthermore, because the tile’s instructions have

been compiled in an order that respects program dependences (and the tile implements in-order

memory semantics for its local instruction stream), there is no need for explicit locking or synchro-

nization with other instructions that may access the same memory location. This synchronization

would be necessary even in a cache-coherent system (to respect memory dependences) if instructions

in the same AEC were mapped to different tiles.

Common Case Accesses In the regions of the program that do not contain problem accesses,

memory accesses occur with little overhead. Each tile issues the load and store instructions that were

assigned to it in-order, based on the common-case AEC partition. The addresses and store-values

may be specified by other tiles, in which case they will be routed over the inter-tile SON into the

tile that was assigned to access that memory object. If the load-result-value is needed by another

tile, the load is performed on the tile that owns the memory object, and the result is sent out over

the inter-tile SON.

Problem Accesses In regions of the program that contain problem accesses, there are two types

of issues that must be dealt with: enforcing memory dependences and enforcing cache coherence.

These issues stem from the fact that we do not know at compile time which AEC the memory object

referenced by a problem (or non-disambiguated) memory access belongs to. To correctly deal with

these issues, the compiled program must employ the on-chip networks to ensure the enforcement of

dependences and to avoid cache coherence hazards.

The enforcement of memory dependences is potentially the more difficult of the two. Because non-

disambiguated memory accesses are not located on the tiles that own the memory objects in question,

they are not automatically synchronized (through the semantics of sequential single-tile execution)

with respect to other accesses to the same memory objects. Rawcc employs the serial static ordering

technique, where all problem accesses belonging to the same AEC in the total AEC partition are

assigned to the same tile, and then dispatched, in-order, over the GDN from the same tile. Because

the GDN respects message ordering for messages with the same sources and destinations, these

problem accesses are guaranteed to occur in order and will not violate dependences. Then, all that

remains to be done is to obey dependence constraints between problem memory accesses and the

common case accesses, which can be performed through compile-time multicast messaging over the

inter-tile SON.

137

In order to avoid cache coherence hazards, it is necessary to transmit the request to the tile

that owns the memory location so that the owner tile can process that request on the behalf of the

sender. In Rawcc, this request is transmitted over the GDN in a point-to-point message destined

only for the tile that owns that particular memory address.

Section 5.4.4 examines some modifications to the existing system that could improve the en-

hancement of memory parallelism versus the baseline Rawcc system.

5.4.2 Instruction Parallelism

In addition to trying to achieve parallelism during accesses to memory objects, Rawcc also strives to

achieve parallel execution of instructions. To achieve this, the Rawcc backend, called Spats, performs

a series of program transformations that map an input program across a set of tiles. We summarize

these transformations here, and refer the reader to [71] for further detail.

Spats examines each procedure individually. Spats starts by performing SSA renaming across

the procedure, in order to eliminate unnecessary anti- and output- dependences. It then divides

the procedure into a group of scheduling regions through a process called region identification; each

region is a single-entry, single-exit portion of the control flow graph that contains only forward

control-flow edges. Finally, it inserts a number of “dummy” read and write instructions that are

used to manage persistent scalar variables that must be communicated between scheduling regions.

Figure 5-1a shows these steps.

Intra-Region code generation Afterwards, Spats builds a data dependence graph to represent

the region, shown in Figure 5-1b. The nodes of the graph represent instructions, while the arrows

represent data dependences. In the diagram, the numbers to the right of the instruction are the

latency of the instruction, in cycles. The alphanumeric values to the left of the instruction are a

unique identifier for the instruction, that allows the reader to track an instruction across subsequent

phases of compilation.

Subsequently, Spats performs instruction partitioning and scalar partitioning, followed by in-

struction assignment and scalar assignment. These phases are collectively responsible for assigning

each instructions in a scheduling region to a tile. This assignment tries to spread instructions across

multiple tiles in order to increase parallelism. At the same time, it tries to allocate communicating

instructions to the same tile or to a nearby tile to minimize the impact of communication on the

critical path of the program. The assignment furthermore respects the load and store constraints

determined by the AEC partitions, and makes sure that the dummy read and write instructions for

a given scalar variable are mapped to the same “home” tile8. Figure 5-1c shows the assignment of

both instructions and scalar values to tiles.
8Much like function linkages, the home location of a variable facilitates the “handoff” of scalar values that persist

across regions.

138

x = B[i]

i = i+1

y = x*i+2

z = x*i+4
add addr,B,i

ld x, 0(addr)

add y,tmp1,2

add z,tmp2,4

1

2

3

4

5

6

7

read B

read i

add i2,i,1

mul tmp1,x,i

mul tmp2,x,i2

a

b

write yc

write zd

write i,i2e

add addr,B,i

ld x, 0(addr)

mul tmp1,x,i

add y,tmp1,2

add z,tmp2,4

1

2

3

4

5

6

7

add i2,i,1

mul tmp2,x,i2

write yc write zd

write i,i2e

b

ld x, 0(addr)

mul tmp1,x,i

add y,tmp1,2

add addr,B,i1

2

a

add i2,i,1

add z,tmp2,4

6

7

mul tmp2,x,i2

read i

3

4

5

read B

write yc write zd

write i,i2e

b

ld x, 0(addr)

mul tmp1,x,i

add y,tmp1,2

add addr,B,i1

2

a

add i2,i,1

add z,tmp2,4

6

7

mul tmp2,x,i2

read i

3

4

5

read B

Tile 0 Tile 1{i,y} {B,z}

Tile 0 Tile 1

a move $csto,i

1 add addr,$csti,i

2 ld! x, 0(addr)

b move $csto,B

add y,tmp1,2

mul tmp1,x,i

add z,tmp2,47

Switch 0 Switch 1 6 mul tmp2,$csti,i2

add! i2,$csti,1

3

4

5

c mov y,y

mov i,$cstie

mov z,z

route $csto>$cWo

route $cWi>$cstiroute $cEi>$csti

route $csto>$cEo

route $csto>$cEo

route $cEi>$csti

route $csto>$cWo

route $cWi>$csti

Tile 0

a

Tile 1

move $csto,i

1 add addr,$csti,i

2 ld! x, 0(addr)

b move $csto,B

add y,tmp1,2

mul tmp1,x,i add z,tmp2,47

6 mul tmp2,$csti,j

add j,$csti,1

Switch 0 Switch 1

5

3

4

mov i,$cstie

route $csto>$cEo route $csto>$cWo

route $cWi>$cstiroute $cEi>$csti

route $csto>$cEo

route $cEi>$csti route $cWi>$csti

route $csto>$cWo

1 1

2

1 1

1

2 2

1 1

11

d

(a)

(c)

(d)

(e)

(b)

Figure 5-1: Sequence of transformations performed by Rawcc on a single region: a) The region
undergoes renaming and region identification, b) A data dependence graph is constructed, c)
Instruction partition, scalar partition, and scalar and instruction assignment are performed,
d) Route assignment is performed and e) The instructions are scheduled. Source: [71].

139

At this point, the locations of objects in the scheduling region have been determined. Spats now

can perform route assignment. Route assignment, shown in Figure 5-1d, is responsible for generating

the switch processor communication instructions that route values between dependent compute

processor instructions that reside on different tiles. Spats allocates one switch instruction to each tile

along the path that the operand takes over the inter-tile SON. Because Spats allocates dependent

compute processor instructions in a way that minimizes inter-tile communication, contention is

seldom a problem Accordingly, Spats uses a simple dimensioned-ordered algorithm (e.g, perform

all X routes, then all Y routes) for determining the path that operands take between distant tiles.

The Spats algorithm also implements multicasting over the inter-tile SON. In this phase, Spats also

converts dummy read and write instructions into corresponding move instructions.

After route assignment, the assignment of instructions (whether switch or compute processor)

to tiles for the region has been almost completely determined. All that remains is to schedule them.

Spats uses a list scheduling algorithm that maintains a list of instructions that are ready to be

scheduled. It repeatedly chooses the highest priority instruction that is ready and assigns it an issue

slot on the tile that it has been assigned to. In the case of switch processor routing instructions,

Spats schedules all switch processor instructions for the entire route atomically. This guarantees

that all routes can make forward progress, and avoid the need for the scheduler to backtrack.

Inter-Region code generation After the regions have been scheduled, the task remains to

generate the code that transitions between regions. Stitch code is code that transfers scalar values

from their home locations in one region to their home locations in another region. This stitch code

consists of additional route or move instructions.

Finally, the register allocator is run on each procedure. The register allocator is designed to

allocate the same physical register to the sources and destinations of move instructions in order to

allow them to be eliminated. This is helpful in eliminating the move instructions that result from

the dummy read and write instructions and stitch code.

5.4.3 Results

With an understanding of how Rawcc maps programs to the Raw microprocessor, we can look

towards the performance that it is able to attain. The set of benchmarks used to evaluate Rawcc

performance on Raw is shown in Figure 5.6. The benchmarks generally fit into two classes; the first

class are the dense-matrix scientific applications, which have ample parallelism that can be revealed

by loop unrolling. The second class of benchmarks consists of sparse matrix and irregular benchmarks

which have more limited parallelism and require the compiler to manage locality-parallelism trade-

offs carefully. More details can be found in [71, 112]. Raw, at 425 MHz, attains a geometric mean

speedup of 2.23x over the 600 MHz P3. This speedup comes from instruction level parallelism, and

140

Lines Raw Cycles Speedup Cycles Speedup
Benchmark Origin of Tiles on vs. on vs.

Code Raw P3-600 Raw P3-600
425 MHz 600 MHz

Dense-Matrix Scientific Applications
Swim Spec95 618 16 14.5M 2.9 16.2M 3.7
Tomcatv Nasa7:Spec92 254 16 2.05M 1.3 2.17M 1.7
Btrix Nasa7:Spec92 236 16 516K 4.3 545K 5.8
Cholesky Nasa7:Spec92 126 16 3.09M 1.7 3.22M 2.3
Mxm Nasa7:Spec92 64 16 247K 1.4 248K 2.0
Vpenta Nasa7:Spec92 157 16 272K 6.4 305K 8.1
Jacobi Raw bench. suite 59 16 40.6K 4.9 40.6K 6.9
Life Raw bench. suite 118 16 332K 2.9 335K 4.1

Sparse-Matrix/Integer/Irregular Applications
SHA Perl Oasis 626 16 768K 1.3 778K 1.8
AES Decode FIPS-197 102 16 292K 0.96 306K 1.3
Fpppp-kernel Nasa7:Spec92 735 16 169K 3.4 181K 4.5
Unstructured CHAOS 1030 16 5.81M 1.0 5.83M 1.4

Geometric Mean 2.23 3.01
Average 344

Table 5.6: Performance of sequential programs on Raw and on a P3.

Rawcc’s ability to exploit memory parallelism to increase the number of cache ports and effective

L1 cache size (16 banks of 32KB each).

We can also examine how the speedups vary with the number of tiles in order to see how perfor-

mance characteristics would change as Raw processors with more tiles are constructed. Figure 5.7

shows how application performance varies with tile count. The numbers are all normalized to the

performance on one tile, compiled with Rawcc. Generally, the sparse matrix applications have mostly

reached their maximum speedup by 16 tiles. On the other hand, many of the dense matrix appli-

cations still have increasing speedups as the number of tiles is increased. Many of the applications

have super-linear speedups due to the increase in effective register and cache storage as the number

of tiles increases.

We have also included the single tile performance using gcc 3.3. This effectively is a measurement

of Rawcc’s single-threaded code quality. It is evident from the data that gcc’s code quality is generally

much better than Rawcc’s. In Rawcc, a number of compiler phases were omitted in the interests

of focusing on the key research aspects of tiled microprocessor compilation. Despite this, Rawcc’s

ability to exploit parallelism to a large degree compensates for any losses in performance due to

omitted passes. A commercial Rawcc implementation that implemented these passes would likely

result in better speedups, or equal speedups with fewer tiles.

141

Number of tiles
Benchmark gcc 3.3 1 2 4 8 16 32 64

Dense-Matrix Scientific Applications
Swim 2.4 1.0 1.3 2.7 5.3 10.0 22.2 34.7
Tomcatv 1.9 1.0 1.3 3.2 5.7 8.4 10.2 10.9
Btrix 1.5 1.0 1.8 6.2 18.3 41.9 75.7 -
Cholesky 1.7 1.0 1.8 5.1 9.8 12.4 12.6 11.3
Mxm 1.3 1.0 1.6 4.8 6.9 8.7 9.9 10.5
Vpenta 1.5 1.0 2.8 12.0 34.5 63.8 132.0 -
Jacobi 1.1 1.0 3.0 6.3 14.4 24.8 45.4 62.9
Life 1.5 1.0 1.0 2.2 5.9 13.5 23.3 49.5

Sparse-Matrix/Integer/Irregular Applications
SHA .9 1.0 1.5 1.5 1.7 2.3 1.9 2.0
AES Decode 1.1 1.0 1.6 2.5 3.1 3.2 2.5 2.3
Fpppp-kernel 1.3 1.0 0.9 1.9 3.5 6.6 7.7 11.8
Unstructured 1.8 1.0 1.8 3.2 3.6 3.3 3.0 3.2

Table 5.7: Speedup of the ILP benchmarks relative to Rawcc targeting a single 600 MHz Raw tile.
The following results are shown: gcc 3.3 on 1 tile, and Rawcc on 1, 2, 4, 8, 16, 32, and 64 tiles, in
that order.

5.4.4 Future Improvements

Looking back, there are a few improvements of this compilation and execution model that would

be interesting to examine. Many of these aspects result from the way in which the architecture has

evolved since the compiler was initially designed.

Improving the AEC model Rawcc creates two partitions, the common case AEC partition and

the total AEC partition. The “problem accesses” are determined only in the special case of unrolling.

Thus, a single problem pointer that defies pointer analysis could cause AEC collapse relatively easily

and greatly reduce memory parallelism. This makes the performance of the system more brittle.

A more general approach reuses the concept of a common-case AEC partition. However, instead

of determining this partition by selecting problem accesses through solely modulo-unrolling, a more

general analysis could be performed. By annotating the estimated number of times each instruction

is executed, the compiler could determine those accesses that are relatively unimportant in the

execution of the program. These accesses would be used to determine the set of problem accesses

that would be excluded from the formulation of the “common-case” AEC. This set would be larger

than that provide by modulo unrolling alone. Then, the common-case AEC could be used for

determining the mapping of memory objects to tiles, and for most loads and stores.

Furthermore, there are a few alternatives that merit examination with respect to the way in

which problem accesses are handled. Instead of using the software-serial-ordering (“SSO”) technique

in combination with the total AEC partition, the compiler can instead use a dependence-based

142

approach. Problem accesses are multicasted over the inter-tile SON to all possible tiles that may

need to service the access. Then, the receiving tiles conditionally dispatch on the address – either

ignoring the request, or processing the request. This check could be performed with a branch,

predicted unlikely to minimize the cost to tiles that do not need to process the request. In the case

of stores, the recipient tile performs the store and continues. In the case of loads, the recipient tile

sends the result to a known tile over the GDN. That tile can then forward the result to wherever it

needs to go. Because all loads and stores are still ordered on each tile, dependences are automatically

respected. At first glance, the multicast of memory access requests to all possible recipient tiles seems

like a potential disadvantage versus the serial static ordering technique. However, the multicast

technique actually requires the same set of multicasts as the SSO technique because of the need to

manage dependences. Also, the cost of dynamic network requests ends up being much higher than the

corresponding requests over the SON due the cost of synchronization. The multicast approach also

allows the possibility for more parallelism than the total AEC approach, because equivalence classes

are a more conservative serialization than strict dependence ordering. This is because the total

AEC incorporates all possible dependences in the entire program, while the dependence ordering

only looks locally. For example, a pointer in the startup portion of a program may cause the total

AEC to merge two AECs in the common-case partition. However, in a region of code where that

pointer is not used, the total AEC will still cause accesses to the two AECs to be serialized where

as the dependence approach would be able to process them independently.

There is one case in which the use of the GDN for sending requests could still improve perfor-

mance. In this case, it is known that a set of memory accesses are all independent; however the

destinations are unknown. In that case, multicast over the SON would be inefficient. Instead, it

makes sense to issue these requests from arbitrary locations over the GDN, and to bookend the

requests with a barrier over the inter-tile SON. These barriers are quite efficient in the Raw micro-

processor, taking only the number of cycles for a message to travel from one corner of the Raw array

to the opposite corner.

Incorporating Dynamic Memory Object Placement Another extension which merits future

examination is the possibility of allowing dynamic memory object placement; in other words, allowing

the memory object to tile mapping to vary over time. This allows the compiler to alter the memory

assignment to improve performance, for instance in a case where two major loops have differing access

patterns that merit different data layouts. It would seem that having static memory is ultimately a

limiter to performance because as programs get larger, they may be more likely to have significant

regions of execution that access memory in different ways.

In dynamic memory object placement, a global common-case AEC partition is no longer employed

for assigning memory objects to tiles. Instead, a common-case AEC partition is created for each code

region. When memory objects are migrated between regions, the compiler routes a value over the

143

inter-tile SON between the old and new owners of the memory objects to synchronize the transfer of

ownership and ensure that memory dependences are respected9 In this case, algorithms would need

to be developed to introduce an affinity model that incorporates the notion that there is a penalty

for changing the tile-memory object mapping. Or, the compiler could compile a few versions of the

code that employ different mappings, so that it can decide using run-time information whether to

perform migration.

Although this memory migration could be performed statically through an explicit copy or by

flushing the cache of the owning tile, this may cause the system to a penalty higher than it needs

to, especially in cases where most of the data may have already vacated the cache. An alternative

which leverages prior multiprocessor research is to implement cache-coherence in the system. As

long as dependences are respected in the program, using the techniques described in the previous

paragraph, the system could allow the cache-coherence hardware to manage the migration of data

automatically and with potentially lower cost. In the context of dynamic memory object placement,

it may be necessary to have finer grained cache lines inside the Raw tile, so as to eliminate cache

line ping-ponging that occurs when words in the same cache line are mapped to different AECs.

Control flow speculation One of the performance limiters in the Raw system is the multicast

communication implicit in global control-flow operations. In some cases the control flow operations

(such as the incrementing of a counter) can be distributed across the tiles, and they can operate

mostly autonomously. However, in other cases, the control flow unfolds as part of the computation.

In this case, the transmission of the branch condition amounts to a multicast to all of the tiles,

which end up stalling. An alternative is still support a limited form of speculation that allows tiles

to assume a particular direction of control flow, and continue execution until the branch condition

arrives. If it turns out that predicted direction is incorrect, the tile can then undo the changes that

it speculatively made.

In such a system, we need to examine all forms of state in the system and determine a way of

rolling back for each one. This state includes register state, memory state, and network state. Many

of the issues in this arena are similar to those in conventional VLIWs and out-of-order superscalars.

Multiple simultaneous copies of variables stored in registers (one copy for each loop iteration) can

be accomplished through hardware register renaming, or through unrolling/pipelining and code

duplication, with fix up code on loop exit. In both cases, it would help to have a large number

of registers available, even within a tile. Arrays of Raw tiles effectively have very long latencies to

hide because of the cost of inter-tile communication. The longer these latencies, the more copies of

each variable are needed to hide the latency, and the more registers would be helpful in hiding that

latency10.

9Or, if there are many such synchronizations, a barrier could be performed over the inter-tile SON.
10Ultimately, systems that have enough local state to perform perfect latency hiding are unscalable, but the tech-

nique would provide at least a constant factor improvement in performance.

144

Memory state would need non-excepting loads so that loads could be hoisted above the branches

that guard them. In Raw, this might require some simple hardware that filters out cache misses to

addresses that would cause messages to get sent to I/O ports that don’t even have DRAMs on them.

For stores, a store buffer with some form of commit mechanism would be useful. This change is

not inordinately problematic in the current implementation, as the Raw compute processor already

has a store buffer in order to allow stores to be pipelined. However, one significant difference is

that Raw’s store buffer is currently always written back before a cache miss is issued; thus the store

buffer is designed with the invariant that the applicable cache lines are in the cache, and it never has

to check cache tags. In the case where the store buffer contains speculative accesses, these values

cannot be drained on a cache miss, because that would effectively cause them to be committed.

Thus, the store buffer would need to be able to cause cache misses to occur.

Network state is also important issue that needs to be considered during speculative operation.

For scheduling purposes, different tiles may schedule loop exit branches in different locations. As a

result, a sender tile may transmit a value before evaluating the branch that it depends on. On the

other hand, the receiver tile may schedule the receiving instruction after the same corresponding

branch. Now, some method must be created to dequeue the spurious element from the network.

One such approach would have the tile inject the results of the branches into the inter-tile SON, so

that the switch processors can branch appropriately. However, this incurs additional complexity. A

simpler solution is to require that all network sends and receives in the unrolled compute processor

code be retained, and to keep one schedule for the static network. Thus loop exit fix up code will

potentially contain sends and receives that are there just to satisfy the expectations of the static

network.

SON Efficiency Improvements One of the tensions that became apparent as the Raw micro-

processor and Rawcc compiler were developed is the issue of operand arrival ordering. In many

cases the optimal time for producing a value at a sender node is independent of the optimal time

for the receiver to receive it. We can take insight into this problem from the way that postal mail

is delivered from sender to receiver. Most people would find it extremely disruptive to their lives

if they had to be around to read their mail exactly as it comes off the airplane that transported it

over the long haul. Similarly, although the compiler can strive to schedule code so that the receiver

issues instructions in the same order that corresponding operands arrive, this reduces performance

and increases the complexity of the scheduler. In many cases, the scheduler cannot match operands

appropriately and is forced to introduce additional move instructions that transfer the value of csti

or csto to the compute processor’s register file in order to clear the FIFO for other operands to come

in. We call this move instruction an inter-tile SON spill, in analogy with the traditional intra-tile

SON spill (i.e. to the stack) which is also used to time-delay operands. Inter-tile SON spills also

occur when the tile needs to use an operand that it dequeues from a NIB more than once.

145

SON Operand Classification

Intra−tile, Zero Occupancy
Intra−tile and Inter−tile, Non−zero Occupancy

Inter−tile, Zero Occupancy

02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32

sha aes fpppp unstruct moldyn btrix cholesky vpenta mxm tomcatv swim jacobi life

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Figure 5-2: SON Operand classification. The shaded regions are operands that traveled
through the system without incurring any occupancy. The top region is the percentage of
operands that traveled between tiles over the inter-tile SON without a inter-tile SON spill.
The bottom region is the percentage of operands that traveled only within a tile without an
intra-tile SON spill. The white middle region is the percentage of operands that had some
form of spill.

In order to get more insight into this issue, and in general, into Rawcc’s use of the SON, we

instrumented our simulation infrastructure to track operands on both the inter-tile and intra-tile

SONs. In the data collected, each unique operand is counted only once per generating event (i.e.,

result from functional unit, arrival via transport network, or reload from cache). Figure 5-2 shows

for each of the benchmarks, and varying from 2 to 64 tiles: 1) the percentage of operands that

traveled between tiles without an inter-tile SON spill, 2) the percentage of operands that traveled

only within a tile without an intra-tile SON spill, and 3) the percentage of operands that had some

form of spill. Thus, the third category, in white, represents an opportunity for improvement. Spat’s

efforts to reduce inter-tile communication are evident here; the majority of operands travel only over

the intra-tile SON, represented by the bottom part of the figure. We note that as the number of

tiles increases, and the degree of parallelism also increases, the number of inter-tile operands rises.

To understand the impact of inter-tile SON spills, we look to Figure 5-3. In some cases, a

significant percentage of operands required the insertion of move instructions, either because they

needed to be time-delayed, or to be used multiple times.

A natural response to this inefficiency is to try to solve the problem by reserving encoding space

in the compute processor instruction set. This space could implement free transfers from NIBs to

146

Percentage of SON Operands that incurred inter−tile receive−side occupancy

02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32

sha aes fpppp unstruct moldyn btrix cholesky vpenta mxm tomcatv swim jacobi life

 0%

 10%

 20%

 30%

 40%

 50%

Figure 5-3: Percentage of all operands that both 1) traveled inter-tile and 2) were inter-tile
SON spilled.

the register file, or to allow random access or selective dequeuing of NIB contents, or to specify one

of a greater number of NIBs. For the Raw microprocessor, this would require increasing the compute

processor instruction word size, which although not an insurmountable issue, is undesirable.

An alternative is to give the switch direct access to the compute processor’s register file, so that it

can deposit values directly there. Exploration of this scenario quickly reveals the need to synchronize

the switch processor with the compute processor in order to preserve dependences.

In the Raw design, one promising solution is to use the existing switch processor’s local register

file. Each switch processor in the existing design has a 4-element 1R 1W register file for holding local

loop counts and return addresses. The switch processor instruction set allows values to be routed

from the networks into the register file, or out of the register file to any network output. Values that

need to be time-delayed or multicasted can be held there, and then injected into the csti or csti2

NIBs each time the compute processor needs it. A register allocator can determine which register

file slots the switch processor uses. Because the NIBs are synchronized with Raw, dependences can

be easily preserved.

Unfortunately, the limited number of read and write ports, and limited register file size caused

us to doubt the utility of implementing this functionality in our existing infrastructure. Future Raw

designs might consider increasing the size and number of ports in these switch processor register

files.

Figure 5-4 shows the percentage of operands that required intra-tile SON spills. As can be seen,

a relatively large number of spills occur in some of the benchmarks. These spills typically are a

by-product of the compiler’s efforts to exploit parallelism. The same transformations that increase

parallelism in the program often increase the number of live values that need to be maintained in the

computation. Future versions of Rawcc could try to incorporate the notion of register pressure into

the instruction and scalar assignment and scheduling phases. However, as discussed in the section

on Control Flow Speculation, the addition of more registers generally increases the architecture’s

147

Percentage of SON Operands that were spilled

02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32

sha aes fpppp unstruct moldyn btrix cholesky vpenta mxm tomcatv swim jacobi life

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

Figure 5-4: Percentage of all operands that both 1) traveled only intra-tile and 2) were
intra-tile SON spilled.

ability to perform latency hiding, exploit more parallelism and alleviate phase-ordering problems in

the compiler.

5.5 Multi-Tile Performance on Streaming Applications with

StreamIt

Stream computations The previous section examined Raw’s performance on traditional sequen-

tial applications written in C or Fortran, using a parallelizing compiler. We transition to examine

performance characteristics on the class of stream computations. Stream computations typically

operate on large or even infinite data sets. However, each output word (or group of words) typically

depends on only a selected region of the input. Thus, typical stream programs need only buffer

a certain portion of the input in local storage until the given output words have been computed;

then the inputs can be discarded. For these types of applications, conventional cache heuristics

often perform suboptimally, so it is frequently profitable to explicitly manage the transport of data

as it flows over the on-chip networks and between ALUs and memories. Some computations may

not be strictly stream computations, for instance, repeatedly rendering triangles to a frame buffer,

but are close enough that the model works well [16]. Stream computations often occur naturally in

embedded and real-time I/O applications.

5.5.1 The StreamIt Language

As in the previous section, this section examines Raw’s performance when the computation is ex-

pressed in a high level language. In this case, the benchmarks employ StreamIt, a high-level,

148

pipeline

splitjoin

feedbackloop

Figure 5-5: StreamIt filter composition. Filters can be combined linearly, in the form of
a pipeline. Special splitter and joiner filters can be used to fanout and fanin the stream.
Finally, feedback loops can be created for filter feedback. Source: MIT StreamIt Group.

architecture-independent language [115]. StreamIt allows the programmer to expression the ap-

plication as a collection of filters that are connected by communication channels in a hierarchical

graph. Each filter has its own control-flow, its own address space, and independent sense of time.

Furthermore, filters have an input stream and an output stream, each of which consists of a sequence

of typed records. The types of the input and output streams do not have to be the same.

The composition of filters into a stream graph is accomplished through three keywords: pipeline,

splitjoin, and feedbackloop. Figure 5-5 shows these keywords and an example of a stream graph

that uses that keyword. To provide hierarchy, the three keywords can also be applied to subgraphs in

addition to filters. We use the term node to refer to an entity that is either a subgraph or a filter. The

pipeline keyword connects a number of single-input single-output nodes serially. The splitjoin

distributes the elements of a single input stream to a collection of nodes, and then merges the outputs

of the nodes together into an output stream. For splitting the elements, split duplicate copies

the input stream to all interior nodes, while split roundrobin spreads the elements across the

nodes. The join roundrobin command is used to gather the elements of the interior splitjoin

nodes. Finally, the feedbackloop construct can be used to create structured cycles in the stream

graph.

Figure 5-6 shows one example filter that processes an input stream of floats and generates an

output stream of floats. Each instantiation has its own independent copy of the local array weights.

Unlike for Rawcc, the communication between program components is explicit, so StreamIt can

assume that memory objects are not shared between filters. The init function is run once, when

the filter starts. The work function is run repeatedly as the filter runs. Each filter examines its

input stream via the peek command, which allows the filter to look a bounded depth into the input

stream without dequeuing. In the case of Figure 5-6, the parameter N is specified at compile-time by

149

peek N

LowPassFilter

float->float filter LowPassFilter(int N) {
float[N] weights;

init {
for (int i=0; i<N; i++)

weights[i] = calcWeights(i);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<N; i++)

result += weights[i] * peek(i);
push(result);
pop();

}
}

push 1

pop 1

Figure 5-6: An example StreamIt filter. Each execution, it peeks at N elements of its input
stream, enqueues one element onto the output stream and then dequeues one element from
its input. Source: MIT StreamIt Group.

the code that instantiates the filter. StreamIt filters employ the push command to emit a value onto

its output. Finally, StreamIt filters can use the pop command to dequeue a value from the input.

The signature of the filter, work push 1 pop 1 peek N gives the StreamIt compiler the number of

pops, pushes, and peeks that the filter work function performs on each execution. The StreamIt

compiler uses this information to generate a compile-time schedule of filters according to their data

rates and connectivity.

Figure 5-7 shows a hierarchically-implemented beamforming pipeline that employs the StreamIt

splitjoin construct. The construction routine takes as a parameter the number of channels and

beams, and generates a pipeline with the corresponding number of channels and beams.

5.5.2 StreamIt-on-Raw Compiler Backend

Along with the StreamIt language comes a StreamIt compiler that targets Raw. In addition to the

functionality that maps StreamIt programs across a tiled microprocessors, the StreamIt compiler

features a number of novel signal-processing-oriented features. For instance, linear analysis is used

to reduce the number of floating point computations required [70, 3] and teleport message enables

programmer-friendly stream control [116]. Because these components apply to both legacy and tiled

microprocessors, we refer the reader to the original publications for descriptions of these features.

Instead, this section focuses on the StreamIt backend [37], which shares with Rawcc the same basic

partitioning, assignment and routing phases.

Partitioning The StreamIt filter construct simultaneously aids the programmer and the com-

piler. It provides the user with a convenient and natural way to express a stream computations.

At the same time, it provides the compiler with a basic unit of parallelism with easy-to-analyze

150

Splitter

FIRFilterFIRFilter FIRFilter FIRFilter

FIRFilterFIRFilter FIRFilter FIRFilter

RoundRobin

Duplicate

Detector

Magnitude

FIRFilter

Vector Mult

Detector

Magnitude

FIRFilter

Vector Mult

Detector

Magnitude

FIRFilter

Vector Mult

Detector

Magnitude

FIRFilter

Vector Mult

Joiner

complex->void pipeline BeamFormer(int numChannels, int numBeams)
{

add splitjoin {
split duplicate;
for (int i=0; i<numChannels; i++) {

add pipeline {
add FIR1(N1);

add FIR2(N2);
};

};
join roundrobin;

};

add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {

add pipeline {
add VectorMult();

add FIR3(N3);

add Magnitude();

add Detect();
};

};
join roundrobin(0);

};
}

Figure 5-7: Implementation of a beamforming application. Demonstrated are the use of the
splitjoin, duplicate, pipeline, join, add, and roundrobin keywords.

properties. Unlike for Rawcc, the dependences between filters are limited to those implied by the

stream graph. StreamIt does not need to perform pointer analysis or modulo unrolling in order to

distribute different filters to different tiles in order to preserve cache coherence and exploit memory

parallelism. Furthermore, StreamIt can execute filters in parallel, which would be difficult with

Rawcc because of the complexity of analyzing control dependences in a sequential representation of

the program.

Although StreamIt has an easier time of discovering parallelism, there is still the need to divide

the computation into equal portions, one portion per tile, so that the tiles are load balanced. The

aim is to transform the stream graph so that it contains one node per tile, where each node has

approximately the same amount of work. If one node has substantially more work than other tiles,

then it would become the bottleneck in the pipeline. To this end, StreamIt’s partitioner uses running

time estimates of each filter’s work function in order to guide a series of filter fusion, and filter fission

151

Splitter

FIRFilterFIRFilter FIRFilter FIRFilter

FIRFilterFIRFilter FIRFilter FIRFilter

Joiner

Splitter

Detector

Magnitude

FIRFilter

Vec Mult

Detector

Magnitude

FIRFilter

Vec Mult

Detector

Magnitude

FIRFilter

Vec Mult

Detector

Magnitude

FIRFilter

Vec Mult

Joiner

Splitter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

Joiner

Splitter

Joiner

Vec Mult
FIRFilter
Magnitude
Detector

Vec Mult
FIRFilter
Magnitude
Detector

Vec Mult
FIRFilter
Magnitude
Detector

Vec Mult
FIRFilter
Magnitude
Detector

Original After fusion

Figure 5-8: StreamIt Fusion transformation. The StreamIt compiler merges (“fusion”) and
splits (“fission”) filters in order to partition the work evenly across the tiles.

transformations. Filter fusion, shown in Figure 5-8, merges together filters in order balance them.

Fusion can be applied to nodes that are sequentially connected (“vertical fusion”), or to nodes that

are connected through the splitjoin construct (“horizontal fusion”). Both cases are shown in

Figure 5-8, which demonstrates the partitioner as it works to map the beam forming algorithm to

eight tiles.

Filter fission, on the other hand, breaks a filter into multiple sub-filters. In the current StreamIt

implementation, fission is performed under limited circumstances, such as for stateless filters, i.e.,

filters which do not maintain local state. Future research could apply the same algorithms found in

Rawcc to parallelize individual filters.

At the end of the partitioning phase, the StreamIt compiler merges splitters into the upstream

filter, and separated out joiners into their own node. Upon exiting from the partitioning phase, the

stream graph now contains a number of nodes that is less than the number of tiles.

Assignment The next stage of the StreamIt compiler takes the filters and assigns each one to a

tile. Joiners occupy their own tiles, while splitters are merged into the tile of the upstream filter.

Each tile is assigned only one filter. The assignment phase chooses the mapping between filter

152

and tiles in way that reduces the communication distances between tiles, as well as the number of

intersecting streams. Intersecting streams are undesirable because they lead to false synchronization

between otherwise independent filters. To that end, the assignment algorithm performs a modified

simulated annealing algorithm with a specialized cost function, which we describe below:

TYPES
e : (pair node-id node-id) stream graph edge pair (src, dest)

eSet : set of edges in stream graph

eWeight : e �→ int number of values routed on stream graph edge per work fn execution

a : node-id �→ tile-id assignment of stream graph nodes to tiles

p : list of tile-ids a path between two assigned nodes

HELPER FUNCTIONS

(path e a) → list of tiles along XY dimension-ordered path from e.src to e.dst given a

(sync eSet a p) → |(range a) ∩ (∪ p)| + ∑
e∈eSet |(∪ (path e a)) ∩ (∪ p)|

MAIN FUNCTION

(cost eSet eWeight a) →∑
e∈eSet (eWeight e) × |(path e a)| + 10 × (sync eSet a (path e a)))

The assignment phase assumes that routing is performed using XY dimension-ordered routing.

The cost function, shown above, sums all of the inter-tile communication distances and uses the

helper function sync to estimate interference with other streams. The sync function incorporates

the number of active tiles that are crossed, and the number of intersections with other streams. As

is evident from the 10x weighting of the sync function, the StreamIt compiler is generally more

worried about inter-stream contention than routing distances.

The results of the application of the assignment phase to the beam forming stream graph are

shown in Figure 5-9.

Scheduling and Code Generation After the nodes of the stream graph have been assigned to

tiles, it remains to schedule and generate the code. Each StreamIt program has two phases that

require scheduling and code generation: initialization and steady state. Steady state corresponds to

the regime of execution where the filters in the pipeline are executing in parallel. The initialization

code brings the program from the point where the pipeline is empty to the point where it is about

to enter the steady state. In order to compute the schedules for the initialization and steady-state

phases, the StreamIt compiler performs an internal, high-level simulation of the filters executing

in the StreamIt graph. StreamIt employs a push schedule approach, wherein the schedule fires the

furthest downstream filter in the graph that is ready to be fired11. The scheduler simulates and

11A filter is ready to fire if, among other things, it has received enough data that all peek commands can be
processed.

153

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

Joiner

Joiner

Vec Mult
FIRFilter
Magnitude
Detector

Vec Mult
FIRFilter
Magnitude
Detector

Figure 5-9: StreamIt filter assignment phase. The StreamIt compiler assigns filters to tiles,
striving to minimize stream communication congestion and false synchronization between
streams.

records the firing of filters until the executing stream graph repeats its state – that is, the number of

elements in the buffers between filters is the same as at some previous time. This region of firings is

the steady state. The firings that precede this region form the initialization phase of the program.

From there, it remains for the compiler to generate the actual code that corresponds to the

schedule. This code includes compute processor code for filter execution and inter-tile SON code for

communication between filters.

The StreamIt compiler emits C code for compute processors and uses GCC to compile it. Al-

though most of the code is straightforward, the code generation of peek, push, and pop require

special attention. First, each steady-state work function expects to receive pop elements before fir-

ing (for the first firing, it expects to receive peek elements). Thus, the beginning of the work function

includes code which transfers these elements from the inter-tile SON to a software-managed circular

buffer that is peek elements large. Then, peek(index) and pop() are translated into buffer accesses

and updates. push(value) is translated into inline assembly code that injects data into the inter-tile

SON. Finally, the corresponding switch processor code is generated to perform the inter-filter routes

over the inter-tile SON.

5.5.3 StreamIt-on-Raw Results

In order to examine the performance of StreamIt applications compiled to Raw, a collection of

benchmarks were written and run both on Raw and on the P3. Table 5.8 shows these benchmarks

and the number of lines of code. The benchmarks are relatively small in size. This is due to the

154

Lines Cycles Speedup

of
Per Output vs

Raw Pentium 3 P3
Benchmark Code 425 MHz 600 MHz Time

Beamformer 402 2074.5 15144 5.2
Bitonic Sort 266 11.6 57 3.5
FFT 169 16.4 110 4.8
Filterbank 156 305.6 4706 10.9
FIR 52 51.0 592 8.2
FMRadio 163 2614.0 23526 6.4

Geo. Mean 6.1

Table 5.8: StreamIt performance results.

lack of an existing code base for StreamIt and as well as the high expressiveness of the StreamIt

language. These StreamIt benchmarks are refreshingly free of the ugliness often found in typical

parallel programs. Furthermore, the StreamIt versions of these benchmarks on average exceed the

performance of straight-forward hand-coded C versions on both P3 and single-tile Raw. This is due

to aggressive signal-processing specific optimizations in the StreamIt compiler.

The results in Table 5.8 show the performance of the 425 MHz 16-tile Raw prototype relative

to the Pentium 3 running at 600 MHz. Raw at 425 MHz has a geometric mean speedup of 6.1x

versus the 600 MHz Pentium 3. A commercial version of Raw, implemented with the same level of

design effort as the P3 and the same process would do even better. Because these applications do

not experience many cache misses, the improvement would be approximately linear with frequency.

StreamIt StreamIt on Raw-425: n tiles
Benchmark on P3-600 1 2 4 8 16

Beamformer 4.2 1.0 4.1 4.5 5.2 21.8
Bitonic Sort 1.8 1.0 1.9 3.4 4.7 6.3
FFT 1.6 1.0 1.6 3.5 4.8 7.3
Filterbank 2.1 1.0 3.3 3.3 11.0 23.4
FIR 3.7 1.0 2.3 5.5 12.9 30.1
FMRadio 1.7 1.0 1.0 1.2 4.0 10.9

Geo. Mean 2.3 1.0 2.1 3.2 6.4 14.1

Table 5.9: Speedup (in time) of StreamIt benchmarks relative to a 1-tile 425 MHz Raw configuration. From
left, the columns indicate the StreamIt version on a 600 MHz P3, and on 425 MHz Raw configurations with
one to 16 tiles.

We also examined the StreamIt performance as a function of tile count. Table 5.9 shows these

results, normalized to performance on one tile. Many of the benchmarks continue to exhibit in-

creasing speedups with increasing tile counts at 16 tiles. The left-most column shows the relative

performance of the P3-600. As can be seen, the P3’s performance lies somewhere between that of

155

two to four tiles, closer to two. Once again, Raw is more efficient per unit area than the P3 on this

class of benchmarks. More details on these experiments can be found in [113].

5.5.4 Future Improvements

Examination of the StreamIt generated code reveals a number of areas of potential improvement.

In many ways the usage model of the inter-tile SON is quite different for StreamIt than for Rawcc.

StreamIt kernels tend to be courser grained and have independent control flow. They operate on data

streams rather than individual operands. The performance results that we’ve attained demonstrate

that the Raw is quite effective at performing both classes of applications. However, it is instructive

to see what sources of overhead remain, especially in the management of operands that flow through

inter-tile SON.

Space-Time Scheduling One of the possible improvements to the system is to integrate Rawcc-

style parallelization into the filter fission passes. Individual filters can be processed by Rawcc to

parallelize them across multiple tiles. This will allow for better load balancing, because the par-

titioner can start with finer-grained chunks. Additionally, Rawcc-style fine grained co-scheduling

(instead of passing C code through to gcc) of compute processor and switch processor instructions

could better overlap communication and computation.

Support of the Peek Construct Perhaps the greatest source of overhead is the buffering code

that is inserted into each StreamIt filter. This code copies incoming inter-tile SON values into a local

buffer so that the peek command can repeatedly select among a window of incoming values. This

creates an effective receive-side occupancy for each value received. This is a typical operation in signal

processing applications that are trying to extract information from a time-domain signal. Clearly,

the existing inter-tile SON FIFO abstraction, which only allows the head value to be examined,

does not perfectly match this usage pattern. This deficiency is similar but not the same to the

challenges Rawcc experiences with arrival ordering of operands. However, StreamIt programs may

peek hundreds of values into a stream, and may reuse a value hundreds of times, which is quite

different from Rawcc usage, which typically reuses values a few times and does not have such

a long window for most operands. On one hand, for such large numbers of operands, a typical

microprocessor would also be forced to perform load and store operations. On the other hand, since

the values are coming in via a stream, there is a sense that there is an opportunity to reduce this

overhead. Certainly, one mechanism that would be useful is the enlarged switch processor register

file (“ESPRF”) proposed for improving Rawcc performance. However, this mechanism ties operands

to register names, which would require a lot of code unrolling to implement the “sliding window”

semantics of a queue.

In the StreamIt model, most of the peek window has already arrived at the destination. It is

156

merely waiting for the last pop values to arrive. These values, however, do not necessarily require

sliding window semantics, since they are all dequeued and stored from the NIBs immediately when

the filter executes.

Thus, in the common case where peek >> pop, the major performance overhead is not so much

the storing of values to the buffer, but the repeated loading of values from the circular buffer. We

could imagine implementing this functionality using a circular variant of a vector load. In this

implementation, we would add a new NIB, ldsti to the processor pipeline. Then, a circular vector

load could be issued to the load/store unit. These values would appear in the ldsti, to be accessed

as register mapped values. Of course, this requires that values be stored in use-order, which is not

uncommon in these classes of applications. This approach could also be used to load constant-valued

taps used in local filters. Of course, more such input NIBs would allow more of these streams to be

processed.

In the case where peek ∼ pop, the overhead of buffer stores becomes more important and the

overhead of buffer loads less important. In this case, the ESPRF mechanism becomes more appro-

priate. However, if the number of values that need to be reordered exceeds the size of the ESPRF,

it may still be necessary to buffer values in memory. In this case, a similar vector store mechanism

could be implemented, with a similar register mapped NIB, ldsti to which instructions could write

their outputs. However, since the values are actually coming in from csti and csti2, to truly eliminate

the overhead, we would either want to implement a NIB that connects the static router and the

load-store unit, or to have some sort of way for the load store access to share the cst or csti2 NIBs.

One problem that would limit the performance benefits of this feature is if the ESPRF is insufficient

to reorder the operands so that they can be stored in the order of their use via the vector store.

False Synchronization Another source of overhead which is somewhat specific to the use of

a statically-routed SON is the issue of false synchronization. Crossing streams on the inter-tile

SON create synchronization points between other-wise unrelated components of the program. If the

compiler is unable to predict or compute the timing of filters, then there may be additional stalls

that would not exist if the program were dynamically routed. This concern for false synchronization

is evident in the sync function in the StreamIt’s assignment phase, described in Section 5.5.2.

iWarp, another system optimized for streaming computation [38], addresses this system by al-

lowing the route paths of streams to be determined at compile-time, but utilizes separate NIBs for

separate streams. Values traveling through the network contain a tag that determines the NIB that

they are placed into. At each hop, the values would be demultiplexed into the appropriate NIB. This

system effectively removes the synchronization constraints. However, it carries with it the significant

usability problem that it places a fixed upper-bound on the number of streams that can exist in

the system at one time. Raw’s SON, on the other-hand, interleaves streams, allowing an essentially

unbounded number of streams in the system.

157

A recent experiment[35] measured the impact of eliminating false synchronization, load balancing

and joiner overheads. It improved performance by 22%, which is relatively small in comparison to

the overhead of buffering, and the magnitude of the improvements. Of course, as the system is

optimized, this proportion may become more significant, but there is also the possibility of improving

the communication scheduling algorithm in the compiler. At least theoretically, a set of filters with

static data rates should be amenable to a static schedule.

An alternative is to use a dynamic transport SON that uses a receive-side hardware to demultiplex

and reorder incoming messages, especially useful for splitjoin and feedback nodes. Generally,

this will increase latency relative to a static transport SON; the latency generally will not impact

performance except in short running filters, or filters with tight feedback loops. The use of a dynamic

transport SON might also enable filters with variable rates. However, variable data rates are likely

also to require filter migration in order to keep the system load balanced.

Another alternative is to provide a mechanism in the static transport SON by which certain

streams can cross each other without incurring synchronization. For instance, a switch processor

could be instructed to route any (or a certain number) incoming values from the east to the west.

This essentially creates a local relaxation of the static ordering property. This will work for streams

which cross but do not share channels. However, streams that share the same links ultimately must

be synchronized in order to maintain the static ordering property. Ultimately, this may undermine

the efficacy of such a mechanism.

5.6 Multi-Tile Performance on Hand-Coded Streaming Ap-

plications

We now transition from examining streaming programs that have been automatically parallelized

to those that were hand-parallelized. Typically, these applications are mostly written in C, and are

augmented with assembly language to program the switch processor and perhaps to optimize inner

loops. Often the bulk of the execution time of these programs resides in a few loops, making the

effort of hand-parallelization worthwhile. Ideally a compiler would be able to automatically produce

code with the same level of quality as the hand-coded versions; continued compiler research will

advance this goal. In the mean time, hand-parallelization for a tiled architecture remains a desirable

alternative to implementing the same application in an FPGA or custom ASIC.

5.6.1 Linear Algebra Routines

Table 5.10 shows Raw’s performance on a selection on linear algebra routines, implemented using the

Stream Algorithms [47] pattern for tiled microprocessors. Stream Algorithms operate by streaming

158

MFlops Speedup vs P3
Benchmark Problem Size on Raw Cycles Time
Matrix Multiplication 256 x 256 6310 8.6 6.3
LU factorization 256 x 256 4300 12.9 9.2
Triangular solver 256 x 256 4910 12.2 8.6
QR factorization 256 x 256 5170 18.0 12.8
Convolution 256 x 16 4610 9.1 6.5

Table 5.10: Performance of linear algebra routines.

data from peripheral memories, processing it with the array of tiles, and streaming the data back into

the peripheral memories. The tiles operate on the data as it comes in from the interconnect, using

a small, bounded (with respect to the input size and number of tiles) amount of storage. Stream

Algorithms achieve 100% compute efficiency asymptotically with increasing numbers of tiles.

With the exception of Convolution, we compare against the P3 running single precision Lapack

(Linear Algebra Package). We use clapack version 3.0 [4] and a tuned BLAS implementation,

ATLAS [124], version 3.4.2. We disassembled the ATLAS library to verify that it uses P3 SSE

extensions appropriately to achieve high performance. Since Lapack does not provide a convolution,

we compare against the Intel Integrated Performance Primitives (IPP).

As can be seen in Table 5.10, Raw performs significantly better than the P3 on these applications

even with optimized P3 SSE code. Raw operates directly on values from the network and avoid loads

and stores, thereby achieving higher utilization of parallel resources than the blocked code on the

P3.

Raw is also able to reach its peak efficiency for much smaller data sizes than the P3. This is

shown in Table 5-10 which shows the scaling trends for a Triangular Solver. Each line represents

the MFLOPS performance relative to performance for each processor on the 2048x2048 configura-

tion. Raw’s speedup over the P3 increases as input sizes are decreased, because Raw achieves peak

efficiency earlier.

5.6.2 The STREAM Benchmark

John McCalpin created the STREAM benchmark to measure sustainable memory bandwidth and

the corresponding vector kernel computation rate [80]. This benchmark has been used to evaluate

thousands of machines, including PCs and desktops as well as MPPs and other supercomputers.

The Raw implementation of the STREAMs benchmark is handcoded and employs the Raw-

Streams configuration. To improve the quality of the comparison, the performance of the P3 was

improved by adjusting compiler flags to use single precision SSE floating point. The Raw imple-

mentation employs 14 tiles and streams data between 14 compute processors and 14 memory ports

through the static network. The floating point instructions on the compute processors access the

network directly. For instance, the add portion of the benchmark is implemented by a unrolled

159

64x64 128x128 256x256 512x512 1024x1024 2048x2048

0

0.2

0.4

0.6

0.8

1

Raw 425 MHz 16 Tiles
P3 600 MHz

Figure 5-10: Triangle Solver Efficiency for Different Input Sizes. Performance is given relative
to the MFLOPS with an input size of 2048x2048. In many linear algebra computations, larger
input sizes are required in order to attain peak efficiency. The data shows that Raw is efficient
even at smaller input sizes, in contrast to the P3.

Bandwidth (GB/s)
Problem Size P3-600 Raw-425 NEC SX-7 Raw/P3

Copy .567 47.6 35.1 84
Scale .514 47.3 34.8 92
Add .645 35.6 35.3 55

Scale & Add .616 35.5 35.3 59

Table 5.11: Performance (by time) of STREAM benchmark.

loop containing “add.s $csto, $csti2, $csti” instructions. The local data memory is unused.

Table 5.11 displays the results. Raw at 425 MHz is 55x-92x better than the P3 at 600 MHz. The

table also includes the performance of STREAM on NEC SX-7 Supercomputer, which has the high-

est reported STREAM performance of any single-chip processor at the time the data was gathered.

With the RawStreams configuration, Raw surpasses that performance. This attainment of this per-

formance is achieved by taking advantage of three Raw architectural features: pin bandwidth, the

ability to precisely route data values in and out of DRAMs with minimal overhead, and a good

match of floating point and DRAM bandwidth.

5.6.3 Signal Processing Applications

Table 5.12 shows a selection of other signal processing applications implemented on Raw. Shown in

the table are the application name, the memory system used, and the number of lines of code used in

the two versions: the P3’s version (in C), and Raw’s version (in C, assembly, and/or other language).

In some cases, the switch processor code had enough structure that it was most convenient to write

160

Tile 0

Tile 5

Tile 9

Tile 12

Tile 8 Tile 13 Tile 14 Tile 11

Tile 4 Tile 1 Tile 2 Tile 7

Tile 3

Tile 6

Tile 10

Tile 15

Figure 5-11: Tile-to-DRAM assignment for RawStreams configuration.

Figure 5-12: Corner Turn (Matrix Transpose) communication patterns. If the data were
stored in the tiles, then the communication pattern would be that shown on the left. However,
the array is so large that the bulk of it is stored in external DRAM. As an optimization, the
static network is used to route data directly between the DRAMs that hold the data, resulting
in the communication pattern shown on the right.

a “generator” program that generates the relevant code. In all cases, the performance gains far

exceeded the increase in code size. This is in contrast to the P3, where the effort of improving

performance (given the complexity of optimizing for the P3 microarchitecture) is high but the

potential performance gains only moderate (given the limited issue width of the P3).

The Acoustic Beamforming application processes a stream of audio data coming in from an array

of 1020 microphones. It uses this data to determine the sound signal that is emitted from a particular

location. The FFT and FIR are hand-coded implementation of the classical algorithms.

CSLC, Beam Steering, and Corner Turn are signal processing algorithms selected and imple-

mented in a third-party study of three architectures, including Raw [103]. All three of these bench-

marks use the RawStreams memory configuration, shown in Figure 5-11, to maximize performance.

161

Beam Steering streams data in over the static network from external DRAM, processes it and

streams it back. Thus, the communication patterns over the static network match those shown in

Figure 5-11. Corner Turn implements a matrix transpose on a matrix that is too large to fit in the

on-chip caches and is distributed as 16 sub-matrices across the DRAMs of the system. The imple-

mentation streams blocks of data over the static network from the source DRAMs to destination

DRAMs, using the local memories of intermediate tiles to transpose the data blocks. The communi-

cation pattern is shown in 5-12. The implementation performs one load and one store for each data

value transposed, and manages the simultaneous constraints of I/O ports, network bandwidth, and

instruction bandwidth. CSLC has coarse-grained parallelism and does not require communication

between tiles.

Lines of Source Cycles Speedup

Benchmark
Machine P3 Raw on vs
Config-

C C Asm
Switch Gen- Raw-425 P3-600

uration Asm erator (Time)

Acoustic RawStreams 1459 1709 166 0 435 7.83M 6.9Beamforming
16-tap FIR RawStreams (lib) 0 34 116 0 548K 7.7
CSLC RawPC 1809 2119 0 0 0 4.11M 12.0
Beam Steering RawStreams 302 470 12 66 0 943K 46
Corner Turn RawStreams 123 546 0 0 112 147K 174
512-pt RawPC 331K 3.3Radix-2 FFT

Table 5.12: Performance of hand-written stream applications.

5.6.4 Bit-level Communications Applications

A final class of applications that were studied were bit-level communication applications [122, 123].

These applications were selected in an effort to understand how Raw performed on bit-level applica-

tions in comparison to FPGAs and ASICs. Like Raw, FPGAs and ASICs can also exploit fine-grained

parallelism. However, Raw focuses on word-level computations. Thus, we expected that FPGAs and

ASICs would hold an advantage for bit-level computations like the 802.11a convolutional encoder

and the 8b/10b encoder.

Raw came unexpectedly close in performance, due in part to the anticipated benefits of direct

I/O access, tile parallelism and fast communication. However, it was also due to the presence of

rotate-and-mask bit-manipulation instructions (rlm, rlmi, rlvm (see Chapter B) that had been

introduced to assist in bit-level operations. These instructions, combined with the use of 8-input

lookup tables (which are equivalent to up to a large number of 4-input CLBs) reduced the impact

of critical feedback loops in these computations. However, on the other hand, the ASIC and FPGA

162

Lines of Code Speedup vs P3-600
Problem P3 Raw Cycles Time

Size C C Asm on Raw Raw FPGA ASIC
802.11a 1024 bits 65 0 290 1048 7.8 6.8 24
ConvEnc 16408 bits 65 0 290 16408 12.7 11 38

65536 bits 65 0 290 65560 23.2 20 68

8b/10b 1024 bytes 236 244 347 1054 5.8 3.9 12
Encoder 16408 bytes 236 244 347 16444 8.3 5.4 17

65536 bytes 236 244 347 65695 14.1 9.1 29

Table 5.13: Performance of two bit-level applications: 802.11a Convolutional Encoder and 8b/10b
Encoder. The hand coded Raw implementations are compared to reference sequential C implemen-
tations on the P3.

implementations generally occupied orders of magnitude less silicon area.

Table 5.13 compares the performance of Raw-425 (RawStreams memory configuration), an 180

nm SA-27E ASIC, and 180 nm Xilinx Virtex-II 3000-5 FPGA, relative to C written for a P3-600. The

180 ASIC was synthesized (but not placed) on the same ASIC process as Raw. For each benchmark,

three problem sizes were used, selected to fit in the P3’s three levels of memory hierarchy: the

L1 cache, the L2 cache and DRAM. The input sequences are randomized. As is evident, the P3’s

performance relative to Raw drops because the P3 is pulling data across its memory hierarchy, rather

than streaming it in directly from DRAM as in the case of Raw.

Table 5.14 shows the same applications, running in configuration that emulates a base-station

processing many streams in parallel. For this test of throughput, we used versions of the algorithms

that provided the most performance per tile, rather than the highest absolute performance.

Cycles Speedup vs P3-600
Benchmark Problem Size on Raw Time

802.11a 16*64 bits 259 32
ConvEnc 16*1024 bits 4138 51

16*4096 bits 16549 92

8b/10b 16*64 bytes 257 24
Encoder 16*1024 bytes 4097 33

16*4096 bytes 16385 56

Table 5.14: Performance of two bit-level applications for 16 streams: 802.11a Convolutional Encoder
and 8b/10b Encoder. This test simulates a possible workload for a base-station which processes
multiple communication streams.

163

5.7 The Grain Size Question:

Considering a 2-way Issue Compute Processor

One tension that arises in the design of a tile’s compute processor is the question of grain size.

How powerful should a tile be? We can employ a larger and more powerful tile, but have fewer of

them, or we can have more simple tiles and have more of them. Programmatically, the idealized

superscalar presents a desirable model because it offers free inter-instruction communication and

few restrictions on instruction execution. However, implementation-wise, superscalars must expend

transistors to overcome the challenges of multiple-issue - tracking branches when fetching multiple

instructions per cycle, dealing with structural hazards involving register file ports, cache ports and

functional units, and managing data dependences. Finding area- and frequency- efficient solutions

to these challenges not only incurs transistor overhead but often results in constraints that deliver

less than ideal performance transparency – for instance, using banking instead of multiporting, and

imposing rules on the types of instructions that can issue together. For instance, the P3 does not

allow two stores or two loads to execute in a cycle.

Considering a superscalar compute-processor However, a narrow-issue superscalar compute

processor implementation is still an attractive possibility, because it would boost application perfor-

mance on applications whose inter-instruction communication is too fine-grained to effectively utilize

the inter-tile SON. Although an analysis of this could be arbitrarily detailed, we explore some of

these issues here. To advance the discussion, we examine a 2-way issue compute-processor, because

the performance advantages and efficiency of superscalars on Spec drops off quickly with higher issue

rates.

Figure 5-13 shows the intra-tile SON of one such 2-way issue superscalar compute processor. The

SON shown allows two instructions to be issued each cycle to different functional units. The number

of functional units has not increased. In this example, we maintain the rate of operand delivery to

csto, cgno and cmno to one per NIB per cycle.

The superscalar’s intra-tile SON shares the same basic design and structure as the Raw compute

processor SON, shown previously in Figure 3-3. However, it requires additional resources to support

the ability to fetch and retire two instructions per cycle.

First, a more heavily ported 4R 2W (4-read ports, 2-write ports) register file is necessary to

prevent register file structural hazards caused by the register file needs of the two instructions. In

the IBM SA-27E process, a 4R 2W register file made from two 2R 2W register files is 2.9x the size of

the 2R 1W register file in the Raw tile. Such a register file would have little impact on the existing

tile design, because the register file occupies little area and poses little risk to the cycle time.

Additionally, a second operand pipeline is needed to manage the additional operands flowing

in the system. This second operand pipeline is shown on the right hand side of the figure. The

164

Bypass Crossbar

cgni

RF

csti

csti2

cmni

Demux Crossbar

ALU FPUWB LD
ST

MUL

ALUout

MULout

LD/STout

FPUout

WBout

0

cgno

csto

cmno

imm/zero

ALUout

MULout

LD/STout

FPUout

WBout

0

Minor
Xbar

ALUout WBout FPUout MULoutLD/STout

Figure 5-13: Intra-tile SON of a 2-issue superscalar tile. It performs bypassing and operand
management on two instructions for each cycle. This version does not increase the number of
functional units, but rather allows two instructions to be issued to different functional units
each cycle.

operand pipeline gathers operands that are completing from the functional units, presents them to

the bypass network for bypassing, and delivers them to the register file on instruction retirement.

The most significant impact on the intra-tile SON is the impact on the bypass crossbar, which

went from being a 7-input, 5-output 32b crossbar to being a 14-input, 7-output 32b crossbar. This

is actually less worse than it could be, because it allows only one operand to be delivered to csto,

cgno and cmno per cycle. Assuming that crossbar area is related to the product of input and

output ports, the bypass path area is 2.6x as large. Furthermore, the bypass paths are often on

the critical path of the compute processor, so the additional delay through this structure could

be a problem. One alternative to reduce the impact of this structure is to only allow long-latency

165

instructions to be paired with shorter latency ones, and to always assign the long-latency instruction

to the second operand pipeline. Then, the first few stages of the second operand pipeline (and

the corresponding inputs into the bypass network) could be eliminated. For instance, one bypass

crossbar input could be eliminated by disallowing the simultaneous execution of ALU and multiply

instructions. However, the decimation of crossbar inputs moves the design further from the goal of

performance transparency, and bears the additional control complexity of tracking which instruction

is the oldest or youngest at symmetric positions in the two operand pipelines.

The demux crossbar is necessary because each functional unit needs to choose between one of two

issuing instructions to receive its operands from. This crossbar, although relatively small, is also on

the critical path of the processor and has a high risk of impacting cycle time. If the functional units

were duplicated rather than shared between the two operand pipelines, this demultiplexing crossbar

would not be necessary.

Intra-tile SON Control and Fetch Unit Of course, there are also other parts of the system

that will change. The control logic that manages the intra-tile SON will also have to be changed.

However, most of these calculations can be performed soon after the instructions are fetched in the

front end of the processor. Generally, front-end modifications (excepting the fetch unit) are relatively

cheap because they can be pipelined, using branch prediction to mitigate performance effects.

The fetch unit would need more bandwidth to sustain delivery of two instructions per cycle. To

smooth out performance artifacts due to cache line granularities and branch prediction bubbles, it

would probably fetch four instructions at a time and buffer them up in a queue. A branch target

buffer (BTB) would be essential for mitigating the cycle impact, by predicting the next address to

fetch from.

Duplicating Functional Units Beyond these modifications lies the question of whether any of

the functional units should be duplicated to allow instructions that use the same functional units to

issue in parallel. The more duplicated functional units, the more close to the ideal superscalar model.

In practice, functional duplication is expensive because it increases the area of the tile. Eventually,

if everything is duplicated, with the overhead of superscalar execution, the one new tile likely to be

larger than two original tiles. Generally, we look to duplicate the less-area intensive functional units,

such as the ALU12. Duplicating the LD/ST unit is also desirable. However, it greatly complicates

the data cache design, due to the interdependence of memory operations, and risks increasing cycle

time. Such a LD/ST would have to be implemented using banking, because the cycle time and area

(2x) penalty of a full 2-ported data cache are too high.

Cost Estimate By using the floorplan of the existing compute processor, we can estimate the

12Although, since the ALU is a one-cycle operation, it requires a maximum length operand pipeline, which requires
the full-sized 14-by-7 bypass crossbar.

166

additional area cost of the 2-way issue superscalar. Given the general trend that structures for the

2-way superscalar are a little under 3x larger, we add overhead for wiring constraints and assume

that the intra-tile SON, decode and fetch-related items (excluding SRAMs) triple in size. Including

a smallish 512-entry BTB, we arrive at an estimated ∼20% increase in the area of a tile. The change

in frequency is more difficult to predict. At this point, the addition of a simple ALU (∼2%) has

neglible area and frequency impact.

Cycles Speedup Speedup Cache Miss
Benchmark on Raw-2I-1L Raw-2I-2L Cycle

Raw Raw-1I-1L vs vs %
Raw-1I-1L Raw-1I-1L Raw-1I-1L

Tiles (600 MHz) (600 MHz) (600 MHz) (600 MHz)
171.swim 1 1.49B 1.118 1.133 56%
172.mgrid 1 .263B 1.087 1.141 33%
173.applu 1 .359B 1.155 1.178 37%
177.mesa 1 2.42B 1.138 1.202 2%
183.equake 1 .922B 1.189 1.230 23%
188.ammp 1 9.17B 1.036 1.037 83%
301.apsi 1 1.12B 1.125 1.160 26%
Geometric Mean (SpecInt) 1.120 1.153
175.vpr 1 2.70B 1.009 1.041 25%
181.mcf 1 5.75B 1.011 1.015 95%
197.parser 1 7.14B 1.084 1.096 48%
256.bzip2 1 3.49B 1.107 1.123 43%
300.twolf 1 2.23B 1.039 1.025 46%
Geometric Mean (SpecFP) 1.049 1.059
Geometric Mean (All) 1.090 1.113

Table 5.15: Performance of SPEC2000 programs on a 2-way issue superscalar compute processor.
Raw-1I-1L is the baseline single-issue Raw compute processor, running at 600 MHz. Raw-2I-1L is a
two-way issue compute processor that can issue two instructions per cycle, but only one load/store
per cycle. Raw-2I-2L is a two-way issue computer processor that can issue two instructions per
cycle, including two load/stores per cycle. In all cases, only one floating point divide and one integer
divide can be sustained at a time. The estimated percentage of total cycles spent on cache misses
(data and instruction) is shown in the last column.

Performance Estimate To estimate the performance improvement of two-way issue, we simulated

the benchmarks in Table 5.4, on an augmented version of the BTL simulator. The simulation

executes two instructions, of any type, per cycle. However, at most one branch will be executed

per cycle. It has an idealized fetch unit, which can fetch instructions from different cache blocks in

the same cycle, with the same 3-cycle mispredict penalty as in the Raw hardware. The application

was compiled with gcc 3.3, which was modified to use the issue-width and number of load/store

units as an input to the scheduler. Disassembly of the output confirmed that the intra-basic block

scheduling was competitive with what could be achieved by hand. We simulated both a two-way

issue compute processor with 1 load-store unit (“2I-1L”) and a two-way issue compute processor

167

with 2 load/store units (“2I-2L”). As such, these results present a reasonable upper estimate of 2-way

in-order performance. The results, shown in Table 5.15 suggest that the performance improvement

(over the baseline Raw single-issue compute processor, 1I-1L) is around 11.3% for a 2I-2L and a 9.0%

for a 2I-1L. A 1995 study [118] reports an improvement of 14% for a non-duplicated 2-way issue in-

order superscalar, with an additional 7% for a second ALU13. The greater cost of cache misses (also

shown in Table 5.15) relative to 1995-era technology is a likely culprit for the performance decrease.

The implementation of virtual-caching using other tiles could yield a greater overall improvement

on single-threaded performance.

Overall, a 2-way issue compute processor would add complexity to the system, and is likely

to decrease efficiency slightly in terms of Spec throughput per mm2. On the other hand, the

efficiency drop is relatively low. Assuming that it can be implemented without a cycle time penalty,

the improvement in peak performance and corresponding increases in hand-coded and streaming

applications are probably an area-performance win – up to twice the performance at ∼22% cost14.

Inter-tile SON System Balance Along with the decision to increase the grain size of the

tile comes the need to rework the inter-tile properties of the system. First, bigger tiles will likely

have larger inter-tile communication costs. Further, the tiles are now capable of generating more

operands per cycle. Should the inter-tile network bandwidth be scaled up accordingly? Of course,

if the bandwidth is scaled up, then the tile size gets even bigger. Clearly, it is a slippery slope.

The general question of the appropriate balance of resources and grain size is an interesting area

of research. Some early work on this subject was performed by Moritz et al [84].

5.8 Conclusion

In this chapter, we evaluated the performance of the 16-tile Raw microprocessor versus a Pentium 3

implemented in the same process generation. Surprisingly, a single Raw tile, implemented in ASIC

technology, comes within a factor of 2x of the P3, even though the Raw tile occupies only 16% of the

area. Implemented in the same process, and with a more efficient caching system, the performance

gap would be even less. This is a testament to the limitations of the microarchitectural approach to

scaling microprocessor performance.

As a server-farm-on-a-chip, Raw exceeds the performance of the Pentium 3 by a factor of 7.36x,

or a factor of 2.3x when normalized for area. On automatically parallelized codes, Raw beats the P3

by a factor of 2.23x. On streaming programs parallelized over the SON using StreamIt, Raw beats

13The paper also reports improvements of 46% and 64% when a rescheduling profile-based compiler is employed,
with aggressive cross-block scheduling, on an architecture with non-blocking loads. Although profile-based compilation
is used only infrequently for shipping software today, we should not discount the possibility that a better scheduling
backend could allow greater benefits for 2-way issue.

14The ability to perform load and store instructions in parallel with FPU instructions, which is possible even with
the non-duplicated superscalar, seems particularly useful for streaming applications.

168

the P3 by a factor of 6.1x. On hand-coded applications, the performance gains are even greater.

Only modest benefits on single-threaded non-parallelized programs are observed when moving to

a 2-way issue compute processor (9%), likely because of caching. Employing virtual caching could

improve performance.

Overall, Raw excels over the P3 on those programs that have modest to large amounts of paral-

lelism. As the support systems and compilation environments for tiled architectures mature, and as

the amount of silicon area and number of tiles realizeable increases, we can expect that the scope of

programs that achieve speedup will broaden, that the effort of parallelization will continue to fall,

and that the performance benefits of tiled architectures over conventional superscalars will continue

to increase.

169

170

Chapter 6

Related Work

In this section, we examine the relationship between the research described in this thesis and other

efforts in three related research areas: microprocessor scalability, tiled microprocessors, and scalar

operand networks.

6.1 Microprocessor Scalability

The challenge of microprocessor scalability given modern technology constraints (e.g., billion tran-

sistors on a single chip) is widespread and there are both industry and academic efforts.

Industrial superscalar efforts have striven to maintain backwards compatibility while increas-

ing the issue width. However, the sustained issue rates of recent leading-edge designs like Alpha

21264 [59] (4-issue), Pentium 4 [44] (3-issue), Core 2 Duo (4-issue), and Power4 [114] (4-issue plus 1

branch) have stopped increasing, and hover around 3-5 issue. The Intel Itanium 2 [85, 81] is 6-issue

but runs at half the frequency of the 3-issue Pentium 4 in the same lithography generation, clearly

pushing against the limits of frequency scalability.

6.1.1 Decentralized Superscalars

A number of recent academic publications have explored approaches to extending the lifetime of

superscalar microprocessor designs through decentralization – such as Kim’s ILDP [61], Palacharla’s

Complexity Effective Superscalar Processors [91], Tseng’s RingScalar [119], and Farkas’s Multicluster

Architecture [33]. Overall, these research efforts seek to extend the scalability of existing designs by

reducing over-provisioned capabilities (such as widely-ported, centralized register files) that are not

used in average-case programs. These ad-hoc approaches, while enabling backwards compatibility

and increasing overall average performance (usually expressed as “a small reduction in IPC versus

an ideal machine of the same width”), tend to decrease the performance transparency of the system

171

and increase the complexity of the microarchitecture. They offer limited design adaptivity and do

not present a long term solution to the scalability problem. Tiled microprocessors, on the other

hand, are regular and offer performance transparency and scalability at the cost of a richer (and

non-backwards compatible) architectural interface.

6.1.2 Non-Tiled Parallel Microprocessors

In contrast to approaches which try to extend the life of superscalar designs, some recent projects

have proposed alternatives to superscalar designs in order to utilize large quantities of VLSI re-

sources. In this subsection, we examine those approaches which are generally not considered to be

tiled, such as VIRAM [65], CODE [64], Stanford Imagine [93, 57], Tarantula [31], and GARP [42].

The VIRAM project proposed that large portions of the die area be dedicated to on-chip DRAM

banks, replacing the traditional hierarchies of caches. The relatively long latency of the DRAM

banks was to be hidden through the use of a vector architecture. Unlike the Raw architecture, VI-

RAM does not directly address the issue of scalability, instead focusing on consuming a fixed number

– one billion – of transistors. A follow-on proposal, CODE, examines vector scalability issues, and in

a fashion that parallels decentralized superscalar research efforts, applies decentralization techniques

to vector ISAs, including the use of an on-chip communication network between clusters. CODE’s

scalability is ultimately bounded by its centralized instruction fetch mechanism and restrictive exe-

cution model due to its requirement that parallel computations be expressed as vector operations.

Tiled architectures, on the other hand, can exploit any form of parallelism using either the SON or

the dynamic transport networks.

The Stanford Imagine processor proposes an architecture which might be described as a SIMD-

of-VLIWs. It includes the Stream Register File as a staging mechanism for streaming data. Like

CODE and VIRAM, its focus is on stream and vector computations, and it employs a centralized

fetch unit, which restricts its applicability for parallel models other than streaming or vector.

In many cases some of the previous projects could be scaled by composing systems out of multiple

such vector or streaming processors. Tiled microprocessors benefit by offering a smooth continuum

of communication costs (as measured by the 5-tuple), exposed through a uniform programming

model as the system is scaled up. This simplifies the compilation model versus systems which are

composed out of hierarchical out of components that use different modalities of communication at

different grains (e.g., vector machines connected by shared memory or message passing).

The Tarantula research proposes a heterogeneous architecture composed of a wide-issue su-

perscalar processor coupled with a vector unit. This allows it to exploit both ILP and vector

computations. The GARP architecture integrated bit-level (FPGA-style) and ILP-style processing

components. The logical limit of these forms of architecture is to compose processors out of many

heterogeneous entities, each specialized for a class of processing. Tiled architectures, in contrast, seek

172

to reduce complexity (in the architecture, microarchitecture and compiler) by providing modeless

primitives mechanisms (e.g., the scalar operand network and the dynamic transport network) that

can address many types of computations rather than many specialized computational subsystems,

each specifically designed for a particular class.

6.1.3 Classical Multiprocessors

A number of late 80’s and early 90’s parallel machines strived for and attained many of the same

elements of physical scalability as the ATM and Raw. However, unlike tiled microprocessors, these

systems could not offer low-latency, low-occupancy communication (i.e., Criterion 5: Efficient Inter-

node Operation-Operand Matching) like that provided by the Scalar Operand Network found in

tiled microprocessors. These systems include MIMD message passing systems like the Connection

Machine CM-5 [73], and J-Machine [88], cache-coherent distributed shared memory systems like

DASH [74], DMA/Rendezvous-based multicomputers like Transputer [1] and systolic systems like

Warp [5] and iWarp [38]. The conventional wisdom that emerged from these efforts was that mas-

sively parallel systems were low-volume and only economically feasible if they were constructed out

of commercially-available off-the-shelf microprocessors (for instance, as in the Cray T3E [98]). Now

that it is possible to integrate many processors on a single die, most processors of the future are

likely to be parallel processors; thus parallel processing is now a high-volume industry.

As a result, the requirement that parallel processors must be constructed out of largely unmod-

ified superscalar processors is less important. This thesis proposes tiled microprocessors as a design

choice in this new engineering regime. The principal difference between tiled microprocessors and

hypothetical on-chip versions of these earlier parallel systems (including current-day shared-memory

multicore microprocessors) is the presence of a scalar operand network to support low-latency and

low-occupancy communication between nodes. Of these early systems, iWarp bears the most simi-

larity and will be addressed in further depth.

6.1.4 Dataflow Machines

Some of the earliest investigations into distributed, large-scale, fine-grained ILP-style program exe-

cution can be found in the dataflow work of the 1970’s and 1980’s. Of these, one of the earliest was

Jack Dennis’s Static Dataflow [26]. The dataflow model can be viewed as an extension of Tomasulo’s

execution model [117] in that it also permits the instructions of a program to execute dynamically as

their inputs arrive (i.e., dynamic ordering of instructions as in the AsTrO taxonomy). The dataflow

work logically extends Tomasulo’s algorithm by 1) eliminating the centralized front-end (e.g., PC,

and issue logic), 2) allowing for many functional units to be used simultaneously, 3) replacing the

CDB with a more general SON, 4) virtualizing the reservation stations – effectively creating one or

more reservation stations per static instruction – and 5) replacing operand broadcasts with point-

173

to-point operand communication. Von Neumann-style tiled microprocessors, as discussed in this

thesis, do not necessarily support out-of-order execution, but do share with the dataflow work the

elimination of front-end scalability problems (but through the duplication of the front-ends rather

than through elimination of program counters), the usage of many parallel functional units, the

presence of a more parallel SON, and the employment of point-to-point operand communication.

Generally, tiled microprocessors inherit many of the scalability goals of the dataflow machines,

but adhere more closely to conventional imperative programming languages, which 1) makes them

more applicable with mainstream programming, 2) enables the compiler to control the execution of

the program more tightly and 3) exploits the locality that is often implicit in imperative program

representations. Von Neumann-style tiled microprocessor inter- and intra- tile SON latencies are

generally lower than the corresponding dataflow latencies because they do not have large associative

wakeup windows. These lower latencies allow tiled microprocessors to perform better in programs

for which available parallelism is not much larger than the number of ALUs. On the other hand, like

tiled microprocessors, the dataflow machines typically enjoy zero send and receive occupancy costs.

Some follow-on dataflow research, such as [48], attempts to reduce the latency impact of dataflow by

coarsening the model and employing threads of instructions with explicit communication instructions

for inter-thread communication. This bears some resemblance to some of the recent dynamically-

ordered tiled microprocessor work (especially TRIPS, and Wavescalar), which are dynamic but try

to allocate dependent instructions on the same node to reduce latency. However, these more recent

efforts are able to support low-cost back-to-back communication of dependent instructions at the

microarchitectural rather than architectural level, which retains some of the cleanliness of the earlier

dataflow models.

Both tiled microprocessors and dataflow processors need to attain the seven criteria for physical

scalability described in Section 1.2.1 in order to be effective. In many ways, tiled microprocessor

research distinguishes itself from previous dataflow efforts in the degree to which the fulfillment of

these criterias is facilitated through at the architectural level rather than at the implementation level.

Tiled microprocessors directly and explicitly address these requirements through the application of

tiling and full distribution of architectural structures.

The WaveScalar tiled dataflow processor re-examines dataflow processors in the context of tiled

microprocessors executing von-Neumann style programs. In particular, WaveScalar extends earlier

dataflow work by adding support for von-Neumann style codes and by allowing back-to-back instruc-

tions at the same node to execute without paying a penalty for accessing the instruction window

(e.g. 0-cycle SON for local bypass). A thorough examination of dataflow-related work can be found

in [104].

174

6.1.5 Tiled or Partially-Tiled Microprocessors

Over the last few years, a number of research efforts have begun to examine tiled or partially-tiled

microprocessors. These include Multiscalar [101], TRIPS [87, 96], WaveScalar [105], Scale [66],

Synchroscalar [89] and Smart Memories [78].

Multiscalar might be considered to be one of the earliest precursors of a partially-tiled micropro-

cessor. It featured a one-dimensional Scalar Operand Network that was used to forward operand

values between ALUs.

TRIPS explores the benefits of a partially-tiled design in an effort to decrease the 5-tuple cost

among a subset of ALUs. It employs an SDD (Static assignment, Dynamic transport and Dynamic

ordering) Scalar Operand Network (according to the AsTrO taxonomy) to tolerate memory latency.

Unlike the ATM and the Raw microprocessor, TRIPS has a centralized fetch unit, and a centralized

load/store memory system, which makes it only partially tiled and thus only partially scalable.

Beyond the 16 ALUs of a single core, TRIPS programs must employ shared memory or message

passing for communication. WaveScalar explores the implications of dataflow execution in a fully-

tiled design that employs a hierarchical SDD SON.

Scale, like TRIPS, is a partially-tiled microprocessor design. It employs the Vector-Thread ISA as

the interface to an SSS SON-connected array of ALUs. At the cost of routing flexibility, and support

for floating point, it offers extremely dense integer-only operation for low-power applications. The

Synchroscalar architecture is a partially tiled architecture with a reconfigurable static SON that

supports SIMD execution and voltage scaling on columns of tiles. The picoChip [30] architecture

is special-purpose system composed of 430 16-bit MIMD processors for use in 3G base-stations. It

employs a time-multiplexed, circuit-switched SON for communication. As a result of the lengthy

connections in the systems formed by the circuit-switching, the frequency of the system is relatively

low (160 MHz in 130 nm). The use of circuit switching provides low-latency communication but

raises both frequency scalability and programmability concerns.

6.2 Scalar Operand Networks

Tiled microprocessors are distinguished from parallel systems by the presence of a scalar operand

network, which provides low-latency, low-occupancy communication between dependent instructions.

In this section, we examine related research along this dimension.

Seitz’s 1983-era MOSAIC systems [75] can be considered to contain an early instance of an SSS

scalar operand network. MOSAIC systems were composed of a number of MOSAIC chips, each

containing a processor that had connections to four ports; each port was connected to one input and

one output pin1. The pins could be connected at the system level to form arbitrary topologies. The

1MOSAIC employed bit-serial links due to a low number of pins in the package.

175

instruction set, predating the RISC efforts, offered a number of addressing modes, include those that

allowed direct access to the input and output ports in addition to standard memory and register

address modes. Move instructions could target one input and one output port, while computation

instructions could employ at most one input or output port. This tightly coupled network access is

quite similar to Raw’s register-mapped network interface. Unlike Raw, MOSAIC systems did not

employ separate switch processors; the compute processor was directly connected to its neighbor.

Like Raw’s SON, the SON offered blocking semantics, so if an output or input port were blocked,

the instruction would stall. Tiled microprocessors such as Raw deploy MOSAIC-style SONs in the

context of pipelined microprocessors that 1) implement complete memory systems with caching, 2)

utilize generalize transport networks for more dynamic communication modes that can efficiently

support non-statically analyzable communication patterns, and 3) provide support for automatic

parallelization.

Corporaal’s TTA [19, 20, 56] was an early effort that sought to address microprocessor register

file scalability issues by making SON interconnect explicit, and allowing operand routing to occur

directly between functional units. Tiled microprocessors inherit some of these basic ideas, but

consider the challenge of extending scalability to all parts of the system, including the SON itself.

Sankaralingam’s Routed Inter-ALU Networks [95] examines tradeoffs between routed and broadcast

SONs.

Both NuMesh [99] and iWarp [38] support fast, statically orchestrated communication, but focus

on stream communication. In both cases, the architecture can switch between a fixed number of

hardware determined communication patterns (in the form of streams) very quickly. The diversity of

communication patterns is bounded by the number of hardware buffers (NuMesh) or logical channels

(iWarp) that is contained in a node. In these systems, each stream is given a dedicated set of

hardware buffers which serves to decouple the streams. In contrast, in the Raw system, there is only

one set of buffers for all communication patterns; however, all communication patterns (and use of

the buffers) is scheduled by the compiler, and specified collectively by the router instruction streams.

As a result, there is no practical architectural limit on the number of communication patterns that

can be supported; however it does require that the compiler be able to determine a statically ordered2

communication schedule for all communications that cross. As a result, the architecture can cycle

through new communication patterns very easily, which is necessary both for control-flow intensive

code and for effective exploitation of the relatively unstructured communication patterns in ILP

programs.

2Note that the routers support flow control and will stall if an expected words has not arrive. As a result, the
schedule does not have to be cycle-accurate. This is important for handling unpredictable events like cache misses
and interrupts.

176

6.3 Conclusion

Tiled microprocessor research efforts are positioned at the intersection of three concerns – scal-

ing microprocessor systems, building parallel microprocessors that support versatile programming

models – including steams, ILP, message passing and shared memory – and the desire to provide

low-latency, low-occupancy communication through scalar operand networks.

177

178

Chapter 7

Conclusion

This thesis presents a new class of microprocessor design, the tiled microprocessor, which seeks to

address the scalability concerns caused by advances in VLSI fabrication technology. Toward the goal

of understanding the issue of scalability in the context of microprocessors, we formalized seven cri-

teria for physically scalable microprocessors. These criteria included frequency scalability, bandwidth

scalability, usage-proportional resource latencies, exploitation of latency, efficient operation-operand

matching, deadlock and starvation management, and support for exceptional events.

In Chapter 2, we explored the ramifications of meeting these seven criteria through an archety-

pal tiled microprocessor, the ATM. In Chapter 3 and Appendices A and B, we turned the abstract

conceptualization of the ATM into a concrete architecture, Raw, which is an 180 nm VLSI imple-

mentation of a tiled microprocessor.

The results of this research are compelling. With a team of a handful of graduate students,

we were able to design and build a tiled microprocessor prototype (described in Chapter 4) that

meets the seven criteria and scaled to larger issue widths (16-issue) than any current-day commercial

superscalar. Although Raw has over 2x as many as the P4’s 42 million transistors, the P4 required

30x times as many lines of Verilog, 100x the design team size, had 50x as many pre-tapeout bugs,

and 33x times as many post-tapeout bugs. We believe this speaks strongly as to the benefits of

tiled microprocessors when it comes to reducing complexity, design and verification cost, and risk of

product recalls.

After describing the Raw artifact and surrounding systems, this thesis continued on to evaluation

and performance analysis. In Chapter 5, we examined and analyzed Raw’s performance on a variety

of application classes, including ILP, stream, bit-level and server-farm-on-a-chip. In comparison to

a Pentium 3 implemented in the same process generation, Raw’s performance, facilitated by the

presence of the Scalar Operand Network (SON), demonstrates its versatility across both sequential

and parallel codes.

179

To a great extent, the recent widespread industrial adoption of multicore processors is a testament

to the merits of our physically scalable approach. However, these multicore processors lack efficient

inter-tile operation-operand matching and leave performance on the table as long as they do not

possess a viable inter-tile Scalar Operand Network.

The Scalar Operand Network is a major contribution of this work. We examined this class of

network along several axes. We introduced the 5-tuple performance metric, we implemented a high-

frequency <0,0,1,2,0> network as a proof of concept, and we introduced the AsTrO taxonomy for

categorizing them. It is our belief that competitive scalable microprocessor designs must possess

inter-tile SONs. We hope that manufacturers will realize the compelling opportunities provided by

low-latency, low-occupancy scalar transport and deploy them into their existing product lines in the

not-too-distant future.

180

Appendix A

Compiler Writer’s and Assembly
Language Programmer’s
View of the Raw Architecture

This appendix describes the Raw architecture from the compiler-writer’s and assembly language

programmer’s perspective. This section may be useful in resolving questions that arise in the reader’s

mind as they read the thesis. Some material from Chapter 3 is repeated so that this appendix is

stand-alone. Encodings and instruction set specifics are given in Appendix B.

Every implementation of the Raw architecture will have a number of parameters that are im-

plementation specific, such as the number of tiles and I/O ports. In some cases, we include the

parameters for the Raw microprocessor in this description so as to provide a complete picture.

A.1 Architectural Overview

The Raw architecture divides the usable silicon area into a mesh array of identical tiles. Each of

these tiles is connected to its neighbors via four point-to-point, pipelined on-chip mesh inter-tile

networks. Two of these networks form part of the scalar operand network of the processor. At the

periphery of the mesh, i.e, the edge of the VLSI chip, I/O ports connect the inter-tile network links to

the pins. Figure A-1 shows the Raw microprocessor, which is a 16 tile, 16 I/O port implementation

of the Raw microprocessor. Two pairs of these I/O ports share pins.

A.1.1 The Raw Tile

Each Raw tile contains a compute processor, one static router, and two dynamic routers. Figure A-2

shows the locations of these components in a Raw tile. The compute processor uses a 32-bit MIPS-

style instruction set, with a number of modifications that make it more suitable for tile-based

processing. The static router is part of the Raw microprocessor’s scalar operand network, and

181

Figure A-1: The Raw Microprocessor. The diagram shows the layout of the 16-tile, 16 I/O port
Raw microprocessor on a VLSI die. The tiles, the I/O ports, and the networks are all visible. The
sixteen replicated squares are the tiles. The arrows indicate the location of the network wires for
the four physical networks. Each arrow corresponds to 34 wires running in each direction. The pin
connections are located around the perimeter of the die. The shaded regions emanating from the
tiles correspond to I/O ports; they show the connection from each edge tile’s network links to the
pins of an I/O port. Each I/O port is full duplex and has two sets of pins; 37 pins for incoming
data, and 37 pins for outgoing data. The ports are shaded in alternating colors for better visibility.
Note that two pairs of I/O ports share pins.

182

Static
Router

Compute
Processor

MDN
Router

GDN
Router

Figure A-2: Closer view of Raw Tile. The major components of the tile are the Static Router,
the two dynamic routers (GDN and MDN) and the Compute Processor. The approximate
positions and sizes of the crossbars, one per network per tile, are indicated using rectangles
with X’s on them.

manages the scalar operands flowing over two of the inter-tile networks (the “static networks”).

The two dynamic routers, called the GDN router and the MDN router, respectively, are dimension-

ordered, wormhole-routed [22] dynamic routers and each individually manage one of the remaining

two inter-tile networks (the “dynamic” networks).

Compute Processor Each compute processor contains an 8-stage single-issue in-order 32-bit

pipeline, a 32-bit ALU, a 32-bit pipelined single precision FPU, a 32-KB data cache, and a 32-KB

software-managed1 instruction cache. The compute processor uses a register-mapped interface to

communicate with the three routers, although some status and configuration state is accessed via a

special purpose register (SPR) interface.

Dynamic Routers The dynamic routers are responsible for managing inter-tile and off-chip com-

munication that can not be predetermined at compile time. The two dynamic routers have identical

architectures, shown in Figure A-3, but the networks they control have different purposes. The

general dynamic network (“GDN”) is for user-level messaging while the memory dynamic network

(“MDN”) is for system-level traffic, including memory and I/O traffic.

Figures A-3 shows the architecture of the dynamic routers. Data words arriving from the north,

1The software-managed instruction cache is an orthogonal piece of research performed in the Raw group. For the
purposes of this thesis, it is largely valid to assume that a hardware instruction cache is being used. Indeed, some
of the results presented in later sections employ a simulated hardware instruction cache in order to better normalize
results with the current state of the art.

183

Compute Processor

Router
Control

Nout

Sout

Wout

Pout

Pin

Win

Sin

Nin

Ein

EoutNIB

Crossbarcxno

NIB

NIB

NIB

cxni

Figure A-3: Basic architecture of a dynamic router. Each dynamic router has its own set
of inter-tile network links, NIBs and its own crossbar and control. The NIB marked cxno
corresponds to the cgno and cmno NIBs on the GDN and MDN, respectively. The NIB
marked cxni corresponds to cgni and cmni.

east, south and west (NESW) inter-tile network links and from the tile’s local Compute Processor are

captured by the input registers of the network input blocks (NIBs). Each NIB contains a small FIFO

for buffering data. On a subsequent cycle, under direction of the router control logic, the crossbar

routes the data from the NIBs to the outgoing inter-tile network links or to the tile processor’s local

NIB. Achieving single-cycle latency on this path from a NIB, through the crossbar, across a 4 mm

inter-tile network link (the longest wires in the system, excluding the clock), and into the neighbor

tile’s NIB input register was a central Raw microprocessor design goal. The dynamic router control

is an autonomous state machine that controls the passage of multi-word packets through a tile, using

the first word of each packet (the packet header) to program the settings of the local crossbar to

determine the packet’s path.

Static Router The static router, shown in Figure A-4, is responsible for managing the transport

of operands between separate tiles. The static router is controlled by the router’s switch processor, a

simple processor with a limited 64-bit wide instruction word and a four-element one-read-port one-

write-port register file. Each instruction word contains a control-flow or register-file move operation

(such as a conditional branch, branch-and-decrement or procedure call) and a number of densely

packed route operations. The route operations determine the flow of operands through the crossbars

of the two static networks. The static router has its own 64KB software-managed instruction cache.

It has no data cache.

184

cSi

cEi

cNi

cEi2

cNi2

cSi2

cEi2

cEo2

cNi2

cEi

cEo

cSi2 cSi

cNi

cWi2

c21

cWi

c12

Compute Processor

Switch
Processor

Nout

cSo

cWo2

cWi2

csti2

cNo

cWo

cWi

cNo2

cSo2csti

csto regoregi

Figure A-4: Basic architecture of a static router. The static router is comprised of the switch
processor, two crossbars, and a set of NIBs and inter-tile network links. Most NIBs are
connected to exactly one crossbar. However, the csto NIB is accessible by both crossbars,
and the c12 and c21 NIBs are used to route values between crossbars. The rego and regi ports,
shared by both crossbars, are not NIBs, but are direct connections into the switch processor.

The static router design instantiates many of the same data routing component types found in

the dynamic router: NIBs, crossbars, and network links. The static router design shared the same

design goal of single-cycle inter-tile latency.

A.2 Programming the Networks

From an assembly-language perspective, programming Raw requires the specification of three entities

for each tile: the compute processor’s instruction stream, the compute processor’s data segment,

and the switch processor’s instruction stream. This section develops the reader’s understanding of

the Raw architecture by focusing on the way in which inter-tile communication through the dynamic

185

Register NIB NIB
Number dequeued enqueued

from on read Network onto on write Network
$24 csti Static Network 1 (SN1) csto SN1 and SN2
$25 cgni General Dynamic Network (GDN) cgno GDN
$26 cmni Memory Dynamic Network (MDN) cmno MDN
$27 csti2 Static Network 2 (SN2) ——— ———

Table A.1: Mapping of Compute Processor register space onto network input blocks (NIBs).

and static routers is specified.

A.2.1 Compute Processor Programming

The compute processor communicates with both types of routers through a register-mapped inter-

face. Instruction reads from registers $24, $25, $26, or $27 indicate that the operands are to be

taken from the incoming NIBs of the first static network (“SN1”), the GDN, the second static net-

work (“SN2”), and the MDN, respectively. Instructions that write to these register numbers send

the results out to the corresponding outgoing NIB2. Table A.1 shows the correspondence between

register number and NIBs.

Most instructions also have a “bang” variant (i.e., the mnemonic has an exclamation point at

the end, e.g., xor!) that specifies that the output should be sent to csto in addition to the register

or NIB specified in the destination field of the instruction. Thus, a single instruction can send its

output to the static router and the dynamic router or register of its choice.

Accesses to register-mapped NIBs (including those indicated via bang instruction variants) have

blocking semantics. When the compute processor’s program counter (PC) encounters an instruction

that is trying to read from an empty NIB, it will stall until the NIB receives a value. When the

value becomes available, the instruction is dispatched, and one element is dequeued from the NIB.

Similarly, the PC of the compute processor will stall on an instruction that writes to one or more

NIBs if one or more of those NIBs is full, or more precisely, if one or more of those NIBs could be

full after all of the instructions currently in the pipeline have retired.

Figure A-5 shows some example compute processor assembly instructions, demonstrating the use

of register-mapped NIBs. Note that the assembly code allows the use of symbolic NIB names, e.g.,

$csti for the csti NIB, and $csti2 for the csti2 nib.

A.2.2 Switch Processor Programming

Static router instructions consist of a “general-purpose” control-oriented operation and a number

of parallel route operations. The general-purpose operations are limited in variety: moves to and
2SN1 and SN2 share the same outgoing NIB, labeled csto in the diagram. This is so that the “bang” functionality

can send to both static networks.

186

XOR register 2 with value 15
place result in register 31

xor $31, $2, 15

dequeue ’A’ from csti2 NIB
dequeue ’B’ from csti NIB
place result (A-B) in register 9

subu $9, $csti2, $csti

subtract register 2 from register 3
send result to outgoing csto NIB
no registers are written --
(register 0 is the null register)

subu! $0, $3, $2

dequeue ’A’ from csti NIB
load byte from address A+25
sign extend
send value to cgno NIB
send value to csto NIB

lb! $cgno, 25($csti)

dequeue ’A’ from csti2 NIB
jump to that address, A.

jr $csti2

dequeue ’A’ from cgni NIB
dequeue ’B’ from csti NIB
store A to address 24+B

sw $cgni, 24($csti)

dequeue ’A’ from csti NIB
dequeue ’B’ from csti2 NIB
if (A != B) goto LABEL

bne $csti, $csti2, LABEL

dequeue ’A’ from cmni NIB
dequeue ’B’ from csti2 NIB
add A and B
send value to cmno NIB
send value to csto NIB

addu! $cmno, $cmni, $csti2

Figure A-5: Selection of compute processor assembly language instructions, showing the
use of register-mapped NIBs.

from the local register file, conditional branches (with or without decrement), jumps, and nops (“no

operation”). The destinations of all general-purpose operations must be registers, but the sources

can be NIBs or registers.

The route operations specify the cycle-by-cycle configuration of the crossbars in Figure A-4.

Switch processor instructions contain one route field for every crossbar output, including the rego

output, which is used by the switch processor when a general-purpose operation uses a NIB as a

source. Each route field can select from any of the crossbar inputs, including regi, which allows the

crossbar to route values out of the switch processor’s local register file. The rego and regi connections

allow data (addresses and loop counts, mostly) to be routed to and from the switch processor, and

are the means by which the general-purpose operations communicate with the rest of the system.

A multicast occurs any time multiple route fields in an instruction make use of the same crossbar

input (e.g. the instruction specifies routes from cNi to rego and from cNi to cSo). In a multicast,

the same single element is copied to all specified outputs, and if the common input is a NIB, only a

single element is dequeued.

Atomicity Semantically, static router instructions occur atomically. To achieve instruction atom-

187

if register 1 is 0,
branch to LABEL

beqz $1, LABEL

dequeue ’A’ from csto NIB
(A is routed to switch-
processor through rego)
if A is zero, branch to LABEL

beqz $csto, LABEL

dequeue ’A’ from cNi2 NIB
if A is zero, branch to LABEL

beqz $cNi2, LABEL

let A = register 2
store (A-1) into register 2
if A is zero, branch to LABEL

beqzd- $2, $2, LABEL

dequeue ’A’, from cWi NIB
jump to A
register 2 = return address

jalr $2, $cWi

dequeue ’A’ from cSi2 NIB
(A is routed to switch-processor
through rego)
store into local register 3

move $3, $cSi2

same as above, but also:
route A west on SN2
route register 2, via regi, to cEo2

move $3, $cSi2 route $cSi2 -> $cWo2,
$2 -> $cEo2

performs jalr operation and
many routes in parallel,
with multicasts from csto, cWi and $3

jalr $2, $cNi route $3 -> $cNo,
$cWi -> $cEo,
$cWi -> $cSo,
$csto -> $cWo,
$3 -> $cNo2,
$c12 -> $cEo2,
$csto -> $cSo2,
$cWi2 -> $cWo2,
$cEi -> $csti,
$cSi2 -> $csti2,
$cNi -> $c12,
$cEi2 -> $c21

Figure A-6: Selection of static router assembly language instructions.

icity, the static router must perform a number of checks before executing an instruction. First, it

must verify that every source NIB has a data value available. Second, the static router must ensure

that neighboring tiles have the corresponding space in their NIBs to receive the data. If these checks

pass, the appropriate NIB values are dequeued and routed and the general-purpose operation is

executed – all in a single cycle. Otherwise, the static router waits another cycle before trying to

execute all components of the instruction again.

Switch Processor Assembly Language Figure A-6 shows some example static router assembly

instructions. The assembly language hides the presence of rego and regi; these routes are implicitly

generated by the assembler. In addition to checking for simple syntax and semantic errors, the

assembler also verifies that the input program does not try to specify an operation that violates the

underlying constraints of the architecture (and consequently has no corresponding encoding in the

switch processor machine language). Figure A-7 shows two types of violating instructions that are

188

(1) nop route $3 -> $cWo, $2 -> $cEo
(2) nop route $cNi -> $cNo2

Figure A-7: Switch-specific illegal instruction patterns.

unique to the switch processor. The first instruction calls for two register-file reads, exceeding the

capabilities of the one-write-port one-read-port register file. The second instruction specifies a route

between entities that are not located on the same crossbar.

Routing between static networks Since the static networks carry the same type of data, it is

often useful to move an operand from one network to the other. This can be done in three ways -

1. by routing through the inter-crossbar NIBs, c12 and c21, or

2. by writing and then reading the switch processor’s local register file
(which implicitly uses the rego and regi crossbar ports), or

3. by routing through the compute processor in two steps:

(a) first, routing the operand to csti, and then

(b) second, executing a move $csto, $csti on the compute processor,
so that the operand is available to both crossbars via csto.

A.2.3 Inter-tile Static Network Programming

Figure A-8 shows the code for an array summation operation being performed with two tiles. The

north tile’s compute processor first transmits a loop count to the north tile’s switch processor via

csto. This switch processor routes the value southward, storing a local copy in $2. The south tile’s

switch processor then saves a copy and forwards it to the south tile’s compute processor. This

communication of the loop count is indicated by the dotted arcs.

As each of these compute processors and switch processor receives its values, it commences a

loop3. The north tile’s compute processor loop repeatedly reads values from an array and sends them

to the local static router via csto. The north tile’s switch processor loops repeatedly, forwarding

values from csto to cSo. The south tile’s switch processor forwards values from cNi to csti. The south

tile’s compute processor then repeatedly adds the values coming in from csti. These communications

are indicated by the solid arcs.

These two communication arcs are indicative of two of the typical communication patterns found

on the static network. In the first case, a scalar operand is transmitted, in this case a loop count; in

the second case, a stream of values is transmitted. The RawCC parallelizing compiler uses the first

class of communication (only, with hundreds or thousands such communications and producing and

3 The loops are implemented using the compute processor’s bnea instruction and the switch processor’s bnezd

instruction. These instructions perform a conditional branch and a loop counter update in a single cycle. More details
can be found in Chapter B.

189

Tile 0

Compute Processor

mtsri BR_INCR, 16

li! $3, kLoopIter-1
addiu $5,$4,(kLoopIter-1)*16

L0:
lw! $0, 0($4)
lw! $0, 4($4)
lw! $0, 8($4)
lw! $0, 12($4)
bnea+ $4, $5, L0

Switch Processor

move $2,$csto route $csto->$cSo
L1:

bnezd+ $2,$2,L1 route $csto->$cSo

Tile 4

Compute Processor

move $6, $0
li $5, -4
mtsr BR_INCR, $5
move $4,$csto

L3:
addu $6,$6,$csti
addu $6,$6,$csti
addu $6,$6,$csti
addu $6,$6,$csti
bnea+ $4, $0, L3

Switch Processor

move $2,$cNi route $cNi->$csti
L2:

bnezd+ $2,$2,L2 route $cNi->$csti

Figure A-8: Inter-tile static network programming. Shown above are two neighboring tiles, one
to the north of the other. The north tile is loading elements from an array, and the south tile is
summing them up in a reduction operation. The tiles’ local static routers are routing the data
elements between tiles. The dotted arrows show the transmission of a scalar that specifies the
number of elements in the loop. The non-dotted arrows show the transmission of the stream of
values originating from the array.

consuming operations) to exploit instruction-level-parallelism (“ILP”). It spreads the often loop-

unrolled input program’s “rat’s nest” of scalar data-flow operations across the array of tiles, in order

to execute them in parallel. The compute processors execute the operations that they have been

assigned, while the switch processors route the operands between the operations, according to the

dependence edges of the program graph.

The StreamIt language and compiler, on the other hand, utilizes the second communication

pattern, in which kernels repeatedly execute the same computation and relay the results in stream

fashion via the static network to a consuming kernel.

As it turns out, many of our hand-optimized program sequences for Raw use a streaming model,

190

due to the fact that this code structure creates programs that are small enough to merit hand-

programming. RawCC-style ILP compilation, which involves many, many operations, is generally

too involved to do by hand, unless it is for a small kernel. The output of RawCC is often difficult

to decipher due to the complexity and sophistication of the schedules that it can generate.

A.2.4 Dynamic Router Programming

Uses for the dynamic routers The dynamic routers are used to transmit messages that are

inappropriate for the statically-ordered (i.e, the ordering can be represented in closed form at compile

time) communication model of the static network. Experience using the Raw microprocessor has

shown that these messages often fit into one of three classes:

1. messages that are difficult or impossible to predict at compile time (as is often the case for

cache miss messages, which may or may not be sent depending on the current state of the

cache),

2. messages involving an independent, non-synchronized process (such as asynchronous interrupts

and DMA responses coming in off-chip from I/O devices, or messages that must travel across

a region of the Raw chip which is running an independent computation), and

3. communications that are statically-ordered but are too costly to represent in closed form (for

instance, when loop bodies with different initiation intervals are communicating, the degree

of necessary unrolling and/or compiler sophistication required to create the schedule may be

unwieldy).

Sending a dynamic message to another tile The process of sending an inter-tile message is

relatively simple: the sender constructs a header word using a special instruction, ihdr4, and writes

it to the $cgno register-mapped NIB. The parameters to ihdr include the number of payload data

words (between 0 and 31) and the destination tile number5. After writing the header, the sender

then writes the payload words, in order, to cgno.

When the header word arrives at the head of the queue in the cgno NIB, the router control

examines it and determines which direction it will forward the packet in. The format of the inter-

tile header, shown in Figure A-9, contains a destination X and Y coordinate. The control compares

these coordinates to the coordinates of the local router and chooses a direction that will bring

the packet one hop closer, in Manhattan distance, to the final destination. It then signals to the

dynamic router’s round-robin arbiter that it wishes to send a packet in that direction. When the
4The ihdr instruction provides a fast way to create headers that fit the common case of a compile-time known

length and a run-time known destination tile. The user can write their own assembly or C routines to create the
appropriate headers in other circumstances.

5Tiles are numbered in row-major order, with tile 0 at coordinates (X, Y) = (0, 0).

191

23 10

14

31 29

3

0 0 0

28 24

5

length

9 5

5

dest Y

4 0

5

dest X

Figure A-9: Inter-tile dynamic router header format. Grayed regions are ignored by routers. The
header contains a length (the number of non-header words in the packet), and a destination, specified
in terms of X and Y coordinates.

arbiter indicates that the packet’s turn has come (which may be on the next cycle, if no other local

NIBs are currently sending in that direction), it will forward the entire packet, one word per cycle,

through the crossbar, to the neighbor dynamic router, stalling to prevent overflow of the neighbor’s

NIB. This process is repeated until the message arrives at its destination tile, where the message

header is discarded and the payload words are routed, one by one, into the receiving cgni NIB. The

receiving compute processor can consume the words as they arrive via $cgni. Figure A-10 displays

a pair of assembly sequences (one for each tile) in which two tiles communicate over the general

dynamic network.

Dynamic network routing The dynamic networks use wormhole routing [22], meaning that

routers forward the individual words of the packet on to the next tile as space in the neighbor

becomes available, rather than waiting for the entire packet to accumulate in the local NIB. This

allows the NIBs to be quite small in size (4 elements each for the inter-tile NIBs), smaller than

the size of many of the packets that travel over the routers. Furthermore, to avoid in-network

deadlock, the routers perform deterministic dimensioned-ordered routing, performing all necessary

X-dimension routes before performing any Y-dimension routes.

Dynamic network message arrival order Unlike for static network messages, the arrival or-

dering of messages at a destination tile or I/O port is generally guaranteed only in one limited

circumstance: if the messages were sent from the same tile. This is because two such messages

will always take the same path and will always maintain the same ordering across the NIBs they

encounter. The lack of knowledge about arriving messages is one reason that dynamic network mes-

sages are multi-word – the message almost always needs to communicate additional words describing

the data and the action to be taken on it. One efficient way of doing this is through the use of active

messages [120], where the first payload word of the message is a code pointer that the receiving

tile jumps to via a jr instruction. The code pointer points to a handler routine customized for the

action that needs to be taken6.

This limited arrival ordering capability has proven useful in the Raw microprocessor, for instance,

for maintaining the ordering of memory and I/O transactions. Without it, messages would require

6A retrospective definition of an active message is that it involves the transmission of an instance of an object-
oriented class with a single virtual “run” method stored at the beginning of the instance.

192

Tile 7 Compute Processor

Tile 7 wants tile 13 to do a memory access on its behalf.
It sends a message to tile 13 with a return tile number and the address
in question. It then waits on the network port for the response.

load destination tile number
li $5, 13

create and send outgoing header (recipient in $5, payload: 2 words)
ihdr $cgno, CREATE_IHDR_IMM(2)($5)

send my tile number
li $cgno, 7

send address, this completes the message
move $cgno, $4

< time passes ... >

receive response message from tile 13
move $2, $cgni

Tile 13 Compute Processor

Tile 13 is processing memory requests on behalf of other tiles.
It does not know which tiles will request accesses, but it does
know that only that type of access will be requested.

wait for incoming message, then create and send outgoing header
(recipient tile is value dequeued from $cgni, payload: 1 word)
ihdr $cgno, CREATE_IHDR_IMM(1)($cgni)

load from address specified by second word of incoming message,
result goes out to cgno and completes the outgoing message.

lw $cgno, 0($cgni)

Figure A-10: Inter-tile dynamic router communication using the ihdr instruction to create headers.
Tile 7 sends a message to Tile 13, which consists of a header (which is discarded automatically by
Tile 13’s compute processor), a return tile number, and a memory address. Tile 13 receives the
message and then sends another message back to Tile 7 with the contents of that memory address.
ihdr takes one cycle to execute. CREATE IHDR IMM is a helper macro that helps the user fill in the
length field of the ihdr instruction.

a sequence number, and the message recipients (hardware or software) would need to reorder and

buffer the messages upon arrival. In fact, a common programming pattern has been to restructure

the computation so that ordered requests originate from the same tile.

193

Direction fbits
value

North 101
East 100
South 011
West 010
Compute Processor 000

Table A.2: Final Route (fbits)
values for each of the output
ports in a dynamic router. 001,
110, and 111 are reserved.

Sending a dynamic message to an external port Dynamic

messages can also be sent to I/O ports on the edge of the array.

Internal to the Raw microprocessor, each I/O port is identified

by a 3-tuple, <X, Y, fbits>. X and Y are the coordinates of

the tile that the I/O port is connected to, and fbits (the “final

route bits”) is the position of the I/O port relative to that tile.

Thus, when the routers route a packet, they route until the X

and Y coordinates of the packet match that of the local tile, and

then they perform a final route in the direction specified by the

fbits. The encoding of the fbits directions is shown in Table A.2.

The inter-tile header is in fact just an instance of the generalized

dynamic header, shown in Figure A-11, with the fbits value set

to the direction of the local compute processor.

Unlike in the case of the compute processor, clients of I/O ports see the headers of message

packets. As a result, it makes sense to use some of the free space to encode useful information. To

that end, the generalized header contains three additional fields: src X and src Y, indicating the

coordinates of the tile that originated the message, and a user field, which describes the nature of

the request. Of course, four bits is not enough to describe all possible requests, so subsequent words

of the message payload are often used for this purpose as well. The meaning of the user bits is

assigned by the hardware and software systems built on top of the Raw microprocessor, however

a few of the values have been pre-allocated in the Raw architecture to indicate messages for cache

miss requests, interrupts, and buffer management.

23 1031 29

3

fbits

28 24

5

length

23 20

4

user

19 15

5

src Y

14 10

5

src X

9 5

5

dest Y

4 0

5

dest X

Figure A-11: Generalized dynamic router header format. The grayed regions (user, src Y, and src
X) are ignored by routers, but can be used by devices connected to the I/O ports. The fbits field
specifies a final route to be performed after the packet has reached the tile specified by dest Y and
dest X.

Figure A-12 shows an example of dynamic network communication between a tile’s compute

processor and a device attached to an I/O port. The compute processor sends a request message to

the I/O port, which travels to the I/O port and is read by the device. The device uses the field of

the received header to create a return header and relays all words of the original message’s payload

(using the length field of the original message) back to the sender. The sender then receives the

message, minus the header, which has been dequeued automatically as the message enters the cgni.

194

Compute Processor
Code assumes compile-time-known payload size (kMessageLength = 1),
user field value (kUserField), and port location (kFbits, kDestY, kDestX).

$3 = tuple <kDestY:5, kDestX:5, kFbitsSouth:3>
ori $3, $0, (((kDestY << 5) + kDestX) << 3) + kFbits

$4 = header word <XXX:3, length:5, user:4, srcY:5, srcX:5, XXXXX:5, XXXXX:5>
ohdr $4, CREATE_OHDR_IMM(kMessageLength, kUserField) ($0)

rrmi $4, $3, 3, 0xE00003FF # replaces X’s in header ($4) with
corresponding bits of ($3 rotated right by 3).

move $cgno, $4 # send the header
li $cgno, 42 # send the data, completing message

< time passes ... >
move $4, $cgni # receive response, header is dropped by hardware

Code that injects a dynamic message destined for an I/O port, and receives a reply. No particular
instruction exists for creating headers that specify an I/O port as destination. This example uses
the ohdr and rrmi instructions because they are efficient, but a standard C routine suffices.

I/O port client

while (1) {
/* receive header from I/O port, blocks until value arrives */
int inHeader = gdn_io_receive(machine, ioPort);
yield;

/* decode header */
int fbits, payloadSize, userField, senderY, senderX, myY, myX;
DecodeDynHdr(inHeader, &fbits, &payloadSize, &userField,

&senderY, &senderX, &myY, &myY);

/* send reply header and echo payload */
gdn_io_send(machine, ioPort, ConstructDynHdr(kFbitsProc, payloadSize,

userField, myY, myX,
senderY, senderX));

yield;

while (payloadSize-- != 0) {
gdn_io_send(machine, ioPort, gdn_io_receive(machine, ioPort));
yield;

}
}

An example I/O port device that sends packets back to their senders. The device is expressed in
the bC modeling language, a superset of C that includes the keyword yield, indicating the end of
a clock cycle. The gdn io receive and gdn io send are used to send and receive data on a Raw
I/O port. Our infrastructure allows bC devices to be used across the spectrum of Raw realizations,
from software simulation to rtl simulation to the actual hardware prototype. Devices that require
high performance (such as the DRAM controllers) were later re-implemented in hardware.

Figure A-12: Communication between a compute processor and an example device attached to an I/O
port. A message is sent from a compute processor to the I/O device via the I/O port. The device sends
a copy of the message back to the compute processor, via the same I/O port.

195

General versus Memory Dynamic Network Although the implementations of the underlying

networks are identical, the purpose of the two dynamic networks in the Raw system differ signifi-

cantly. The MDN is accessed directly only by operating-systems or device-drivers, while the GDN

is available for general user use. The restrictions on MDN use arise from the need to make sure

that the user does not interfere 1) with the compute processor hardware as it performs data and

instruction cache misses using the MDN, 2) with the operating system hardware as it performs

system-critical operations, and 3) with the communication of I/O devices with tiles and other I/O

devices through the MDN. The GDN examples shown in Figures A-10 and Figures A-12 will work

on the MDN if cmno and cmni are substituted for cgno and cgni, and a few additional locking and

prefetching instructions are inserted.

196

Appendix B

The Raw Architecture
Instruction Set

B.1 Compute Processor Instruction Set

Refer to Section B.2 for concrete definitions of semantic helper functions such as sign-extend-16-to-32

and rotate-left.

B.1.1 Register Conventions

The compute processor uses register conventions similar to those used in MIPS microprocessors.

Procedures cannot rely on caller-saved registers retaining their values upon a procedure call. Pro-

cedures must restore the initial values of callee-saved registers before returning to their caller. The

conventions are shown below.

Register Assembly Saved Description
Number Alias by

$0 n/a Always has value zero.
$1 $at caller Assembler temporary clobbered by some assembler operations.
$2..$3 caller First and second words of return value, respectively.
$4..$7 caller First 4 arguments of function.
$8..$15 caller General registers.
$16..$23 callee General registers.
$24 $cst[i/o] n/a Static Network input/output port.
$25 $cgn[i/o] n/a General Dynamic Network input/output port.
$26 $csti2 n/a Static Network input port #2.
$27 $cmn[i/o] n/a Memory Dynamic Network input/output port.
$28 $gp callee Global pointer. Points to start of tile’s code and static data.
$29 $sp callee Stack pointer. Stack grows towards lower addresses.
$30 callee General register.
$31 caller Link register. Saves return address for function call.

197

B.1.2 Compute Processor Instruction Template

Shown below is an example instruction listing. The instruction occupancy is the number of compute
processor issue cycles that are occupied by the instruction. Subsequent instructions must wait for
this number of cycles before issuing. The instruction latency is the total number of cycles that
must pass before a subsequent dependent instruction can issue. Suffixes of d and f indicate that an
instruction uses the integer and floating-point divide units, respectively, for that number of cycles.
Subsequent instructions that require a particular unit will stall until that unit is free. A suffix of b
means that the instruction has an additional 3 cycles of occupancy on a branch misprediction. An
occupancy of c means that the instruction takes at least 13 cycles if a cache line is evicted, 5 cycles
if only an invalidation occurs, otherwise 1 cycle.

The s or p bits in the instruction encoding specify respectively whether 1) an instruction’s output
will be copied to csto in addition to the destination register, or 2) whether a branch is predicted
taken or not.

Generally, the Raw compute processor attempts to inherit the MIPS instruction set mnemonics to
the extent that it reduces the learning curve for new users of the system. However, the underlying
instruction semantics have been “cleaned up”; for instance, interlocks have been added for load,
branch, multiply and divide instructions (reducing the need to insert nops), and the FPU uses the
same register set as the ALU. To this end, the instruction origin specifies whether the instruction
semantics are very similar the MIPS instruction of the same name (“MIPS”), whether they are
specific to the Raw architecture (“” or Raw), or to the Raw architecture extended with hardware
instruction caching (“RawH”). Of course, the instruction encodings (including the presence of s and
p bits) are completely different from MIPS.

EXMPL Example (Fictitious) Instruction RawH

1

4f

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

EXMPL

0 0 0 0 0 0

[rd]31..0 ← [rs]31..0 /IEEE−754 [rt]31..0

Instruction Mnemonic
Instruction Description Instruction Origin

Instruction Encoding

Instruction Semantics

Instruction Latency

Instruction Occupancy

Register File Access
s or p bit

198

ADDIU Add Immediate MIPS

1

31

1

s

30 26

5

ADDIU

1 0 1 1 1
25 21

5

rs

20 16

5

rt

15 0

16

simm16

simm3231..0 ← (sign-extend-16-to-32 simm16)
[rt]31..0 ← { [rs]31..0 + simm32 }31..0

ADDU Add MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

ADDU

1 0 0 0 0 1

[rd]31..00 ← { [rs]31..00 + [rt]31..00 }31..0

AND And Bitwise MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

AND

1 0 0 1 0 0

[rd]31..00 ← [rs]31..00 & [rt]31..00

ANDI And Bitwise Immediate MIPS

1

31

1

s

30 26

5

ANDI

0 0 1 0 0
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

[rt]31..16 ← [rs]31..16

[rt]15..00 ← [rs]15..00 & uimm16

199

AUI Add Upper Immediate

1

31

1

s

30 26

5

AUI

0 0 1 1 1
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

[rt]31..16 ← { [rs]31..16 + uimm16 }15..0

[rt]15..00 ← [rs]15..00

B Branch Unconditional (Assembly Macro)

1 b <label>

PC31..00 ← <label>

BEQ Branch if equal

1b

31

1

p

30 26

5

BEQ

1 1 0 1 1
25 21

5

rs

20 16

5

rt

15 0

16

boffs16

if ([rs] == [rt])
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

BGEZ Branch if greater than or equal to zero (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BGEZ

0 0 0 1 0
15 0

16

boffs16

if (![rs]31)
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

200

BGEZAL Branch if greater than or equal to zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BGEZAL

1 0 0 1 0
15 0

16

boffs16

if (![rs]31)
[31] ← { PC + 4 }31..00

PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0
else

[31] ← { PC + 4 }31..00

BGTZ Branch if greater than zero (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BGTZ

0 0 0 1 1
15 0

16

boffs16

if (![rs]31 && ([rs] != 0))
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

BL Branch Long RawH

1

31

1

1

30 26

5

BL

1 1 1 0 0
25 0

26

boffs26

PC31..02 ← { PC31..02 + (sign-extend-26-to-30 boffs26) }29..00

PC01..00 ← 0

BLAL Branch Long and Link RawH

1

31

1

1

30 26

5

BLAL

1 1 1 0 1
25 0

26

boffs26

[31] ← { PC + 4 }31..00

PC31..02 ← { PC31..02 + (sign-extend-26-to-30 boffs26) }29..00

PC01..00 ← 0

201

BLEZ Branch if less than or equal to zero (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BLEZ

0 0 0 0 1
15 0

16

boffs16

if ([rs]31 || ([rs] == 0))
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

BLTZ Branch if less than zero (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BLTZ

0 0 0 0 0
15 0

16

boffs16

if ([rs]31)
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

BLTZAL Branch if less than zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

BLTZAL

0 0 0 0 0
15 0

16

boffs16

if ([rs]31)
[31] ← { PC + 4 }31..00

PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0
else

[31] ← { PC + 4 }31..00

BNE Branch if not equal

1b

31

1

p

30 26

5

BNE

1 1 0 1 0
25 21

5

rs

20 16

5

rt

15 0

16

boffs16

if ([rs] != [rt])
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0

202

BNEA Branch if not equal and add

1b

31

1

p

30 26

5

BNEA

1 1 0 0 1
25 21

5

rs

20 16

5

rt

15 0

16

boffs16

if ([rs] != [rt])
PC31..02 ← { PC31..02 + (sign-extend-16-to-30 boffs16) }29..00

PC01..00 ← 0
[rs] = [rs] + SR[BR_INC]

CLZ Count Leading Zero

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

CLZ

1 1 1 0 0 1

[rd]05..00 ←
31∑

i=0

([rs]31..i ? 0 : 1)

[rd]31..06 ← 0

DIV Divide Signed

1

42d

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

DIV

0 1 1 0 1 0

LO ← { [rs] /signed [rt] }31..0 }31..0

HI ← { [rs] %signed [rt] }31..0 }63..32

if ([rt] == 0)
HI ← [rs]
if ([rs]31)

LO ← 1
else

LO ← -1

203

DIVU Divide Unsigned

1

42d

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

DIVU

0 1 1 0 1 1

LO ← { [rs] /unsigned [rt] }31..0 }31..0

HI ← { [rs] %unsigned [rt] }31..0 }63..32

if ([rt] == 0)
HI ← [rs]
LO ← -1

J Jump

1

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

0 0 0 0 0

20 16

5

J

0 1 1 0 0
15 0

16

targ16

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

JAL Jump and link

1

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

JAL

1 1 1 0 0
15 0

16

targ16

[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

JALR Jump and link through Register

4

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

JALR

0 0 1 0 0 1

[31] ← { PC + 4 }31..00

PC31..02 ← [rs]31..02

PC01..00 ← 0

204

JEQL Jump if not equal and link

1b

31

1

p

30 26

5

JEQL

1 1 1 1 1
25 21

5

rs

20 16

5

rt

15 0

16

targ16

if ([rs] == [rt])
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

JGEZL Jump if greater than or equal to zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

JGEZL

1 0 1 1 0
15 0

16

targ16

if (![rs]31)
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

JGTZL Jump if greater than zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

JGTZL

1 0 1 1 1
15 0

16

targ16

if (![rs]31 && ([rs] != 0))
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

205

JLEZL Jump if less than or equal to zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

JLEZL

1 0 1 0 1
15 0

16

targ16

if ([rs]31 || ([rs] == 0))
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

JLTZL Jump if less than zero and link (signed)

1b

31

1

p

30 26

5

REGIMM

1 1 0 0 0
25 21

5

rs

20 16

5

JLTZL

1 0 1 0 0
15 0

16

targ16

if ([rs]31)
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

JNEL Jump if not equal and link

1b

31

1

p

30 26

5

JNEL

1 1 1 1 0
25 21

5

rs

20 16

5

rt

15 0

16

targ16

if ([rs] != [rt])
[31] ← { PC + 4 }31..00

PC31..02 ← (zero-extend-16-to-30 targ16)
PC01..00 ← 0

else
[31] ← { PC + 4 }31..00

206

JR Jump through Register

4

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

JR

0 0 1 0 0 0

PC31..02 ← [rs]31..02

PC01..00 ← 0

JRHOFF Jump through Register and Disable Hardware ICaching RawH

4

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

JRHOFF

0 0 1 0 1 1

PC31..02 ← [rs]31..02

PC01..00 ← 0

JRHON Jump through Register and Enable Hardware ICaching RawH

4

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

JRHON

0 0 1 0 1 0

PC31..02 ← [rs]31..02

PC01..00 ← 0

LB Load Byte

1

3

31

1

s

30 26

5

LB

1 0 0 0 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

[rt] ← (sign-extend-8-to-32 (cache-read-byte ea))

207

LBU Load Byte Unsigned

1

3

31

1

s

30 26

5

LBU

1 0 0 0 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

[rt]31..8 ← 0
[rt]7..0 ← (cache-read-byte ea)

LH Load Halfword

1

3

31

1

s

30 26

5

LH

1 0 0 1 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

[rt] ← (sign-extend-16-to-32 (cache-read-half-word ea))

LHU Load Halfword Unsigned

1

3

31

1

s

30 26

5

LHU

1 0 0 1 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

[rt]31..16 ← 0
[rt]15..0 ← (cache-read-half-word ea)

LI Load Immediate (Assembly Macro) MIPS

1-2
li rd, uimm32
li! rd, uimm32

[rd]31..0 ← uimm3231..0

208

LW Load Word

1

3

31

1

s

30 26

5

LW

1 0 1 0 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

[rt] ← (cache-read-word ea)

MAGIC User-specified simulator function

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 6

10

code

5 0

6

MAGIC

0 0 0 0 1

[rt]31..00 ← (user_function code [rs]) - On BTL simulator

[rt]31..00 ← unspecified value - On RTL and hardware

MFFD Move from FD

1f

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MFFD

0 1 0 1 0 0

[rd]31..00 ← FD31..00

MFHI Move from HI

1d

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MFHI

0 1 0 0 0 0

[rd]31..00 ← HI31..00

209

MFLO Move from LO

1d

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MFLO

0 1 0 0 1 0

[rd]31..00 ← LO31..00

MOVE MOVE (Assembly Macro) MIPS

1
move rd, rt
move! rd, rt

[rd]31..0 ← [rt]31..0

MTFD Move to FD

1f

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

MTFD

0 1 0 1 0 1

FD31..00 ← [rs]31..00

MTHI Move to HI

1d

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

MTHI

0 1 0 0 0 1

HI31..00 ← [rs]31..00

MTLO Move to LO

1d

31

1

0

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

MTLO

0 1 0 0 1 1

LO31..00 ← [rs]31..00

210

MULLO Multiply Low Signed

1

2

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MULLO

0 1 1 0 0 0

[rd]31..00 ← { [rs]31..00 *signed [rt]31..00) }31..0

MULLU Multiply Low Unsigned

1

2

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MULLU

0 1 1 0 0 1

[rd]31..00 ← { [rs]31..00 *unsigned [rt]31..00) }31..0

MULHI Multiply High Signed

1

2

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MULHI

1 0 1 0 0 0

[rd]31..00 ← { [rs]31..00 *signed [rt]31..00) }63..32

MULHU Multiply High Unsigned

1

2

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MULHU

1 0 1 0 0 1

[rd]31..00 ← { [rs]31..00 *unsigned [rt]31..00) }63..32

NOR Nor Bitwise MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

NOR

1 0 0 1 1 1

[rd]31..00 ← ~([rs]31..00 | [rt]31..00)

211

OR Or Bitwise MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

OR

1 0 0 1 0 1

[rd]31..00 ← [rs]31..00 | [rt]31..00

ORI Or Bitwise Immediate MIPS

1

31

1

s

30 26

5

ORI

0 0 0 1 0
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

[rt]31..16 ← [rs]31..16

[rt]15..00 ← [rs]15..00 | uimm16

POPC Population Count

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

POPC

1 1 1 0 0 0

[rd]04..00 ←
31∑

i=0

[rs]i

[rd]31..05 ← 0

RLM Rotate Left and Mask

1

31 26

6

RLM

1 0 1 S 0 0
25 21

5

rs

20 16

5

rt

15 11

5

ra

10 6

5

mb

5 1

5

me

00

1

z

mask ← (create-mask mb me z)
[rt]31..0 ← (left-rotate [rs]31..0 ra) & mask

212

RLMI Rotate Left and Masked Insert

1

31 26

6

RLMI

1 0 1 S 0 1
25 21

5

rs

20 16

5

rt

15 11

5

ra

10 6

5

mb

5 1

5

me

00

1

z

mask ← (create-mask mb me z)
[rt]31..0 ← ((left-rotate [rs]31..0 ra) & mask) | ([rt]31..0 & ~mask)

RLVM Rotate Left Variable and Mask

1

31 26

6

RLVM

1 0 1 S 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

mb

5 1

5

me

00

1

z

mask ← (create-mask mb me z)
ra ← [rt]31..0

[rd]31..0 ← (left-rotate [rs]31..0 ra) & mask

RRM Rotate Right and Mask (Assembly Macro)

1
rrm rt, rs, ra, mask
rrm! rt, rs, ra, mask

[rt]31..0 ← (right-rotate [rs]31..0 ra) & mask

(instruction is implemented using RLM; same set of masks are valid)

RRMI Rotate Right and Mask (Assembly Macro)

1
rrmi rt, rs, ra, mask
rrmi! rt, rs, ra, mask

[rt]31..0 ← ((right-rotate [rs]31..0 ra) & mask) | ([rt]31..0 & ~mask)

(instruction is implemented using RLMI; same set of masks are valid)

213

SLL Shift Left Logical MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

sa

10 6

5

0 0 0 0 0

5 0

6

SLL

0 0 0 0 0 0

[rt]31..sa ← [rs](31−sa)..0

[rt](sa−1)..0 ← 0

SLLV Shift Left Logical Variable MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

SLLV

0 0 0 1 0 0

sa ← [rt]4..0

[rd]31..sa ← [rs](31−sa)..0

[rd](sa−1)..0 ← 0

SLT Set Less Than Signed MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

SLT

1 0 1 0 1 0

[rd]00 ← ([rs]31..00 <signed [rt]31..00) ? 1 : 0
[rd]31..01 ← 0

SLTI Set Less Than Immediate Signed MIPS

1

31

1

s

30 26

5

SLTI

1 0 1 1 0
25 21

5

rs

20 16

5

rt

15 0

16

simm16

simm32 ← (sign-extend-16-to-32 simm16)
[rt]00 ← ([rs]31..00 <signed simm3231..00) ? 1 : 0
[rt]31..01 ← 0

214

SLTIU Set Less Than Immediate Unsigned MIPS

1

31

1

s

30 26

5

SLTIU

1 0 1 0 1
25 21

5

rs

20 16

5

rt

15 0

16

simm16

uimm32 ← (sign-extend-16-to-32 simm16)
[rt]00 ← ([rs]31..00 <unsigned uimm3231..00) ? 1 : 0
[rt]31..01 ← 0

SLTU Set Less Than Unsigned MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

SLTU

1 0 1 0 1 1

[rd]00 ← ([rs]31..00 <unsigned [rt]31..00) ? 1 : 0
[rd]31..01 ← 0

SRA Shift Right Arithmetic MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

sa

10 6

5

0 0 0 0 0

5 0

6

SRA

0 0 0 0 1 1

[rt](31−sa)..00 ← [rs]31..sa

[rt]31..(31−sa) ← [rs]31

SRAV Shift Right Arithmetic Variable MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

SRAV

0 0 0 1 1 1

sa ← [rt]4..0

[rd](31−sa)..00 ← [rs]31..sa

[rd]31..(31−sa) ← [rs]31

215

SRL Shift Right Logical MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

sa

10 6

5

0 0 0 0 0

5 0

6

SRL

0 0 0 0 1 0

[rt](31−sa)..0 ← [rs]31..sa

[rt](31..(32−sa) ← 0

SRLV Shift Right Logical Variable MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

sa

10 6

5

0 0 0 0 0

5 0

6

SRLV

0 0 0 1 1 0

sa ← [rt]4..0

[rd](31−sa)..00 ← [rs]31..sa

[rd]31..(32−sa) ← 0

SUBU Subtract MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

SUBU

1 0 0 0 1 1

[rd]31..00 ← { [rs]31..00 - [rt]31..00 }31..0

SB Store Byte MIPS

1

31

1

0

30 26

5

SB

0 1 0 0 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

(cache-write-byte ea [rt])

216

SH Store Halfword MIPS

1

31

1

0

30 26

5

SH

0 1 0 1 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

(cache-write-half-word ea [rt])

SW Store Word MIPS

1

31

1

0

30 26

5

SW

0 1 1 0 0
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea ← { [base] + (sign-extend-16-to-32 soffs16) }31..0

(cache-write-word ea [rt])

XOR Exclusive-Or Bitwise MIPS

1

31

1

s

30 26

5

SPECIAL

0 0 0 0 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

XOR

1 0 0 1 1 0

[rd]31..0 ← [rs]31..00 ^ [rt]31..00

XORI Exclusive-Or Bitwise Immediate MIPS

1

31

1

s

30 26

5

XORI

0 0 0 1 1
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

[rt]31..16 ← [rs]31..16

[rt]15..00 ← [rs]15..00 ^ uimm16

217

ADD.s Add (single precision floating point)

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

ADD.s

0 0 0 0 0 0

[rd]31..0 ← [rs]31..0 +IEEE−754 [rt]31..0

C.〈XXX〉.s Compare (single precision floating point)

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

C.〈XXX〉.s
0 0 code3..0

{invalid0 result0} ← (floating-point-compare 〈XXX〉 [rs]31..0 [rt]31..0)
[rd]0 ← result0

[rd]31..1 ← 0
SR[FPSR]4 ← SR[FPSR]4 | invalid0

e.g.,
c.ult.s $4, $5, $7

The code values of 8..15 correspond to instructions that set the invalid bit of the floating point
status register (FPSR) when an unordered comparison occurs. The behavior of the helper function
floating-point-compare matches the MIPS ISA [43] and is shown in the following table:

Predicate floating-point-compare outputs
for each comparison outcome

code Mnemonic Description result0 invalid0

〈XXX〉 > < == unordered >, <, == unordered

0 F False �⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

0 0 0 �⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

�⏐⏐⏐1 UN Unordered 0 0 1
2 EQ Equal 0 1 0
3 UEQ Unordered == 0 1 1 04 OLT Ordered < 1 0 0
5 ULT Unordered or < 1 0 1 ⏐⏐⏐�6 OLE Ordered ≤ 1 1 0
7 ULE Unordered or ≤

0
1 1 1

0
8 SF Signaling False ⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐�

0 0 0 ⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐�

�⏐⏐⏐9 NGLE Not (> or ≤) 0 0 1
10 SEQ Signaling == 0 1 0
11 NGL Not (< or >) 0 1 1 112 LT < 1 0 0
13 NGE Not ≥ 1 0 1 ⏐⏐⏐�14 LE ≤ 1 1 0
15 NGT Not > 1 1 1

218

CVT.s Convert from integer to float

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

1 0 1 0 0

5 0

6

CVT.s

1 0 0 0 0 0

[rd]31..0 ← (convert-from-integer-to-float [rs]31..0)

CVT.w Convert from float to integer, with round to nearest even

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

CVT.w

1 0 0 1 0 0

[rd]31..0 ← (convert-from-float-to-integer-round-nearest-even [rs]31..0)

DIV.s Divide (single precision floating point)

1

12f

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

1 0 0 0 0

5 0

6

DIV.s

0 0 0 0 1 1

FD31..0 ← [rs]31..0 /IEEE−754 [rt]31..0

MUL.s Multiply (single precision floating point)

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

MUL.s

0 0 0 0 1 0

[rd]31..0 ← [rs]31..0 *IEEE−754 [rt]31..0

219

NEG.s Negate (single precision floating point)

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

NEG.s

0 0 0 1 1 1

[rd]31..0 ← -IEEE−754 [rs]31..0

SUB.s Subtract (single precision floating point)

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

rt

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

SUB.s

0 0 0 0 0 1

[rd]31..0 ← [rs]31..0 -IEEE−754 [rt]31..0

TRUNC.w Convert from float to integer, with truncation

1

4

31

1

s

30 26

5

FPU

0 0 1 1 0
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

1 0 0 0 0

5 0

6

TRUNC.w

0 0 1 1 0 1

[rd]31..0 ← (convert-from-float-to-integer-truncate [rs]31..0)

DRET Return from User Interrupt

4

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

DRET

0 0 0 0 0 0

PC31..02 ← SR[EX_UPC]31..02

PC01..00 ← 0
SR[EX_BITS]31 ← 1’b1

220

ERET Return from System Interrupt

4

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

ERET

0 0 0 0 1 1

PC31..02 ← SR[EX_PC]31..02

PC01..00 ← 0
SR[EX_BITS]30 ← 1’b1

IHDR Create Internal Header

1

31

1

0

30 26

5

IHDR

1 1 1 0 1
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

[rt]31..29 ← uimm1615..13

[rt]28..24 ← uimm1612..8

[rt]23..20 ← uimm167..4

[rt]19..15 ← DN_YPOS4..0

[rt]14..10 ← DN_XPOS4..0

[rt]09..05 ← ([rs]4..0 & GDN_XMASK4..0) + GDN_XADJ4..0

[rt]04..00 ← (([rs]11..0 >> GDN_YSHIFT2..0)
& GDN_YMASK4..0)

+ GDN_YADJ4..0

31 031 29

3

fbits

28 24

5

length

23 20

4

user

19 15

5

src Y

14 10

5

src X

9 5

5

dest Y

4 0

5

dest X

221

ILW Instruction Load Word

2

5

31

1

s

30 26

5

ILW

0 0 0 0 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea31..2 ← { [base] + (sign-extend-16-to-32 soffs16) }31..2

ea1..0 ← 0
[rt] ← (proc-imem-load ea)

The additional cycle of occupancy is a cycle stolen from the fetch unit on access.

INTOFF Disable System Interrupts

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

INTOFF

0 0 0 0 0 1

SR[EX_BITS]30 ← 1’b0

INTON Enable System Interrupts

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

INTON

0 0 1 0 0 1

SR[EX_BITS]30 ← 1’b1

ISW Instruction Store Word

2

31

1

0

30 26

5

ISW

0 1 0 0 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea31..2 ← { [base] + (sign-extend-16-to-32 soffs16) }31..2

ea1..0 ← 0
(proc-imem-store ea [rt])

Steals one fetch cycle from compute processor fetch unit.

222

MFEC Move From Event Counter

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MFEC

0 1 0 0 1 0

[rd]31..00 ← EC[rs]

Note: MFEC captures its value in the RF stage. This is because the event counters are located
physically quite distant from the bypass paths of the processor, so the address is transmitted in RF,
and the output given in EXE. For example,

lw $0,4($0) # cache miss in TV stage, pipeline frozen
nop # occupies TL stage
mfec $4, EC_CACHE_MISS # EXE stage -- will not register cache miss
mfec $4, EC_CACHE_MISS # RF -- will register cache miss

Additionally, there is one cycle of lag between when the event actually occurs and when the event
counter is updated. For example, assuming no outside stalls like cache misses or interrupts,

mtec EC_xxx, $4 # write an event counter
mfec $5, EC_xxx # reads old value
mfec $5, EC_xxx # reads new value

MFSR Move From Status / Control Register

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

MFSR

0 1 0 0 0 0

[rd]31..00 ← SR[rs]

Section B.4 describes the status registers.

MLK MDN Lock RawH

v

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

uimm5

10 6

5

0 0 0 0 1

5 0

6

MLK

0 0 0 0 0 1

SR[EX_BITS]30 ← 1’b0;
(icache-prefetch PC uimm5)

Signals to hardware or software caching system that the following uimm5 cache lines needs to be
resident in the instruction cache for correct execution to occur. Disables interrupts. This allows
instruction sequences to access the memory network without concern that the i-caching system will
also access it.

223

MUNLK MDN Unlock RawH

v

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 1

5 0

6

MUNLK

0 0 1 0 0 1

SR[EX_BITS]30 ← 1’b1

Marks end of MDN-locked region. Enables interrupts.

MTEC Move To Event Counter

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

MTEC

0 1 0 0 1 1

EC[rt] ← [rs]31..00

MTSR Move To Status / Control Register

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

MTSR

0 1 0 0 0 1

SR[rt] ← [rs]31..00

Section B.4 describes the status registers. Note that not all status register bits are fully writable, so
some bits may not be updated as a result of an MTSR instruction.

MTSRi Move to Status / Control Immediate

1

31

1

0

30 26

5

MTSRi

1 1 1 0 0
25 21

5

0 0 0 0 0

20 16

5

rt

15 0

16

uimm16

SR[rt]31..16 ← 0;
SR[rt]15..00 ← uimm16;

Section B.4 describes the status registers. Note that not all status register bits are fully writable, so
some bits may not be updated as a result of an MTSR instruction.

224

OHDR Create Outside Header

1

31

1

0

30 26

5

OHDR

0 1 1 1 0
25 21

5

rs

20 16

5

rt

15 0

16

uimm16

horiz ← [rs]31

side ← [rs]30 & MDN_EXTEND
bits ← MDN_EXTEND ? [rs]29..25 : [rs]30..26

[rt]31..29 ← side ? 0
: (horiz ? MDN_YMAX : MDN_XMAX);

[rt]28..24 ← uimm1612..8

[rt]23..20 ← uimm167..4

[rt]19..15 ← DN_YPOS4..0

[rt]14..10 ← DN_XPOS4..0

[rt]09..05 ← horiz ? (side ? 0 : MDN_YMAX)
: (bits >> MDN_YSHIFT)

[rt]04..00 ← horiz ? (bits >> MDN_XSHIFT)
: (side ? 0 : MDN_XMAX)

31 031 29

3

fbits

28 24

5

length

23 20

4

user

19 15

5

src Y

14 10

5

src X

9 5

5

dest Y

4 0

5

dest X

OHDR takes an address and an immediate field and produces a header suitable for injecting into the
MDN. The immediate field specifies the user and length fields of the message header. OHDR maps
the address to an I/O port, which effectively wraps the address space around the periphery of the
chip. Raw’s hardware data cache uses a private copy of this logic to implement Raw’s memory hash
function. (See Section 2.6.)

225

OHDRX Create Outside Header; Disable System Interrupts

1

31

1

0

30 26

5

OHDRX

0 1 1 1 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

horiz ← [rs]31

side ← [rs]30 & MDN_EXTEND
bits ← MDN_EXTEND ? [rs]29..25 : [rs]30..26

SR[EX_BITS]30 ← 1’b0

[rt]31..29 ← side ? 0
: (horiz ? MDN_YMAX : MDN_XMAX);

[rt]28..24 ← uimm1612..8

[rt]23..20 ← uimm167..4

[rt]19..15 ← DN_YPOS4..0

[rt]14..10 ← DN_XPOS4..0

[rt]09..05 ← horiz ? (side ? 0 : MDN_YMAX)
: (bits >> MDN_YSHIFT)

[rt]04..00 ← horiz ? (bits >> MDN_XSHIFT)
: (side ? 0 : MDN_XMAX)

31 031 29

3

fbits

28 24

5

length

23 20

4

user

19 15

5

src Y

14 10

5

src X

9 5

5

dest Y

4 0

5

dest X

OHDRX takes an address and an immediate field and produces a header suitable for injecting into the
MDN. The immediate field specifies the user and length fields of the message header. OHDRX maps
the address to an I/O port, which effectively wraps the address space around the periphery of the
chip. Since the MDN must be accessed with interrupts disabled, OHDRX provides a cheap way of doing
this. Raw’s hardware data cache uses a private copy of this logic to implement Raw’s memory hash
function. (See Section 2.6.)

226

PWRBLK Power Block

1+

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

0 0 0 0 0

5 0

6

PWRBLK

1 0 0 0 0 0

[rd]31 ← data available in cgni
[rd]30..13 ← 0;
[rd]12 ← data available in cNi
[rd]11 ← data available in cEi
[rd]10 ← data available in cSi
[rd]9 ← data available in cWi
[rd]8 ← data available in csti
[rd]7 ← data available in cNi2
[rd]6 ← data available in cEi2
[rd]5 ← data available in cSi2
[rd]4 ← data available in cWi2
[rd]3 ← data available in csti2
[rd]2 ← data available in cmni
[rd]1 ← timer interrupt went off
[rd]0 ← external interrupt went off

Stalls in RF stage until output is non-zero.

SWLW Switch Load Word

1

5

31

1

s

30 26

5

SWLW

0 0 1 0 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea31..2 ← { [base] + (sign-extend-16-to-32 soffs16) }31..2

ea1..0 ← 0
[rt] ← (static-router-imem-load ea)

Steals one fetch cycle from static router.

227

SWSW Switch Store Word

1

31

1

0

30 26

5

SWSW

0 1 1 0 1
25 21

5

base

20 16

5

rt

15 0

16

soffs16

ea31..2 ← { [base] + (sign-extend-16-to-32 soffs16) }31..2

ea1..0 ← 0
(static-router-imem-store ea [rt])

Steals one fetch cycle from static router.

UINTOFF Disable User Interrupts

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

UINTOFF

0 0 0 0 1 0

SR[EX_BITS]31 ← 1’b0;

UINTON Enable User Interrupts

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

0 0 0 0 0

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

0 0 0 0 0

5 0

6

UINTON

0 0 1 0 1 0

SR[EX_BITS]31 ← 1’b1;

228

B.1.3 Cache Management in Raw and RawH

Because Raw’s memory model is shared memory but not hardware cache-coherent, effective and

fast software cache management instructions are essential. One tile may modify a data structure

through its caching system, and then want to make it available to a consuming tile or I/O device.

To accomplish this in a cache-coherent way, the sender tile must explicitly flush and/or invalidate

the data, and then send an MDN Relay message that bounces off the relevant DRAM I/O Port

(indicating that all of the memory accesses have reached the DRAM) to the consumer. The consumer

then knows that the DRAM has been updated with the correct values.

To provide effective cache management, there are two series of cache management instructions.

Both series allow cache lines to be flushed and/or invalidated. The first series, ainv, afl, and

aflinv, takes as input a data address. This address, if it is resident in the cache, is translated into

a <set, line> which is used to identify the physical cache line. The second series of instructions,

tagsw, taglv, tagla, and tagfl, takes a <set, line> pair directly.

The address-based instructions are most effective when the range of addresses residing in the

cache is relatively small. If |A| is the size of the address range that needs to be flushed, this series

can flush the range in time θ(|A|).

The tag-based instructions are most effective when the processor needs to invalidate or flush

large ranges of address space that exceed the cache size. In this case, the address range can be

manipulated faster by using the tag-based instructions to scan the tags of the cache and selectively

invalidate and/or flush the contents. In this case, the operations can occur in θ(|C|), where |C| is the

size of the cache. The tagla and taglv operations allow the cache line tags to be inspected, tagfl

can be used to flush the contents, and tagsw can be used to rewrite (or zero) the tags. Of course,

the tagxxx series of instructions can accomplish more than simply flushing or invalidating. They

provide an easy way to manipulate the cache state directly for verification purposes and boot-time

cache initialization.

AINV Address Invalidate

c

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

S A A A A

5 0

6

AINV

0 1 1 1 1 0

ea ← [rs] + (S << 14) + (AAAA << kDataCacheLineSize)

if (cache-contains ea)
TAGS[(cache-get-tag ea)].valid ← 0 # stall 4 cycles

229

AFL Address Flush

c

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

S A A A A

5 0

6

AFL

0 1 1 1 0 0

ea ← [rs] + (S << 14) + (AAAA << kDataCacheLineSize)

if (cache-contains ea)
{

<set,line> ← (cache-get-tag ea)
TAGS[<set,line>].mru ← !set

if (TAGS[<set,line>].dirty)
{

TAGS[<set,line>].dirty ← 0
(cache-copy-back <set,line>) # stall >= 13 cycles

}
else

stall 5 cycles
}

AFLINV Address Flush and Invalidate

c

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

S A A A A

5 0

6

AFLINV

0 1 1 1 0 1

ea ← [rs] + (S << 14) + (AAAA << kDataCacheLineSize)

if (cache-contains ea)
{

<set,line> ← (cache-get-tag ea)
if (TAGS[<set,line>].dirty)
{

TAGS[<set,line>].dirty ← 0
TAGS[<set,line>].valid ← 0
(cache-copy-back ea) # stall >= 13 cycles

}
else

stall 5 cycles
}

230

TAGFL Tag Flush

c

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

0 0 0 0 0

10 6

5

S A A A A

5 0

6

TAGFL

0 1 1 0 0 1

set ← [rs]14 ^ S
line8..0 ← [rs]13..5 + AAAA

if (TAGS[<set,line>].valid)
{

TAGS[<set,line>].mru ← !set
if (TAGS[<set,line>].dirty)
{

TAGS[<set,line>].dirty ← 0
(cache-copy-back <set,line>) # stall >= 13 cycles

}
else

stall 5 cycles
}

TAGLA Tag Load Address

1

3

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

S A A A A

5 0

6

TAGLA

0 1 1 0 1 0

set ← [rs]14 ^ S
line8..0 ← [rs]13..5 + AAAA

[rd] ← { TAGS[<set,line>].addr17..00 line8..0 [rs]4..0 }

TAGLV Tag Load Valid

1

3

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

0 0 0 0 0

15 11

5

rd

10 6

5

S A A A A

5 0

6

TAGLV

0 1 1 0 1 1

set ← [rs]14 ^ S
line8..0 ← [rs]13..5 + AAAA

[rd] ← TAGS[<set,line>].valid

231

TAGSW Tag Store Word

1

31

1

0

30 26

5

COMM

0 1 0 1 1
25 21

5

rs

20 16

5

rt

15 11

5

0 0 0 0 0

10 6

5

S A A A A

5 0

6

TAGSW

0 1 1 0 0 0

set ← [rs]14 ^ S
line8..0 ← [rs]13..5 + AAAA

TAGS[<set,line>].valid0 ← [rt]18

TAGS[<set,line>].addr17..00 ← [rt]17..00

TAGS[<set,line>].dirty0 ← 0

Should not be issued the cycle after a load or store instruction
because of write-after-write hazards on the tag memory.

232

B.2 Semantic Helper Functions

This section gives the semantics of the helper-functions used in the previous section. This thesis
uses little-endian bit-ordering exclusively.

wx..y −→ Bits x..y, inclusive, of w.
If (x < y), the empty string.

{ w z } −→ Concatenate the bits of w and z together.
w will occupy the more significant bits.

zn −→ Concatenate n copies of z together.

(sign-extend-16-to-32 simm16) −→ { (simm1615)16 simm1615..00 }
(sign-extend-26-to-30 simm26) −→ { (simm2625)4 simm2625..00 }
(sign-extend-16-to-30 simm16) −→ { (simm1615)14 simm1615..00 }
(zero-extend-16-to-32 uimm16) −→ { 015..0 uimm1615..00 }

(left-rotate uimm32 ra) −→ { uimm32(31−ra)..0 uimm3231..(32−ra) }
(right-rotate uimm32 ra) −→ { uimm32(ra−1)..0 uimm3231..ra }

(cache-contains addr) −→ Returns 1 if valid cache line corresponding to addr
is in cache, otherwise 0.

(cache-get-tag addr) −→ Returns <set,line> pair corresponding to addr
in cache.

(cache-copy-back tagid) −→ Sends update message containing data
corresponding to tagid to owner DRAM.

(cache-read-byte addr) −→ Ensure cache line corresponding to addr
is in cache, return byte at addr.

(cache-read-half-word addr) −→ Ensure cache line corresponding to addr
is in cache, return half-word at { addr31..1 01 }.

(cache-read-word addr) −→ Ensure cache line corresponding to addr
is in cache, return word at { addr31..2 02 }.

(cache-write-byte addr val) −→ Ensure cache line corresponding to addr
is in cache, write val7..0 to addr.

(cache-write-half-word addr val) −→ Ensure cache line corresponding to addr
is in cache, write val15..0 to { addr31..1 01 }.

(cache-write-word addr val) −→ Ensure cache line corresponding to addr
is in cache, write val31..0 to { addr31..2 02 }.

(create-mask mb me z) −→ if (z)
if (me1..0 == 0b00) { mb4..0 me4..2 }4
if (me1..0 == 0b11)
{ mb4

4 mb3
4 mb2

4 mb1
4 mb0

4 me4
4 me3

4 me2
4 }

else
if (mb <=unsigned me)
{ 031..(me+1) 1me..mb 0(mb−1)..0 }

233

else
{ 131..(mb+1) 0mb..me 1(me−1)..0 }

The last line was a specification
bug as it does not generate every mask
with a single zero. A better version is:

{ 131..(mb+1) 0mb..me+1 1(me)..0 }

(icache-prefetch addr lines) −→ Ensure lines instruction cache lines following
cache line containing addr are resident in instruction cache.

(static-router-imem-store addr data) −→ Writes 32-bit value data into
static router instruction cache at location addr.

(static-router-imem-load addr data) −→ Loads 32-bit value data from
static router instruction cache at location addr.

(proc-imem-store addr data) −→ Writes 32-bit value data into
static router instruction cache at location addr.

(proc-imem-load addr data) −→ Loads 32-bit value data from
static router instruction cache at location addr.

234

B.3 Opcode Maps

Below are opcode maps which document the allocation of instruction encoding space.

B.3.1 High-Level (“Opcode”) Map

(Instructions with bits 31..29 set to 1 are predicted taken.) Bang instructions all have bit 31 set.
however RLM, RLMI and RLVM use bit 28 to indicate bang.

bits bits 28..26
31..29 000 001 010 011 100 101 110 111
111 REGIMM+ BNEA+ BNE+ BEQ+ BL BLAL JNEL+ JEQL+
110 LB! LBU! LH! LHU! LW! SLTIU! SLTI! ADDIU!
101 RLM RLMI RLVM RLM! RLMI! RLVM!
100 SPECIAL! ILW! ORI! XORI! ANDI! SWLW! FPU! AUI!
011 REGIMM- BNEA- BNE- BEQ- MTSRI IHDR JNEL- JEQL-
010 LB LBU LH LHU LW SLTIU SLTI ADDIU
001 SB ISW SH COM SW SWSW OHDR OHDRX
000 SPECIAL ILW ORI XORI ANDI SWLW FPU AUI

B.3.2 SPECIAL Submap

(Applies when bits 31..26 are SPECIAL or SPECIAL!)

bits bits 2..0
5..3 000 001 010 011 100 101 110 111
000 SLL MAGIC SRL SRA SLLV SRLV SRAV
001 JR JALR JRHON JRHOFF
010 MFHI MTHI MFLO MTLO MFFD MTFD
011 MULLO MULLU DIV DIVU
100 ADDU SUBU AND OR XOR NOR
101 MULHI MULHU SLT SLTU
110
111 POPC CLZ

235

B.3.3 FPU Submap

(Applies when bits 31..26 are FPU or FPU!)

bits bits 2..0
5..3 000 001 010 011 100 101 110 111
000 ADD.s SUB.s MUL.s DIV.s ABS.s NEG.s
001 TRUNC.s
010
011
100 CVT.s CVT.w
101
110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

B.3.4 COM Submap

(Applies when bits 31..26 are COM)

bits bits 2..0
5..3 000 001 010 011 100 101 110 111
000 DRET INTOFF UINTOFF ERET
001 INTON UINTON
010 MFSR MTSR MFEC MTEC
011 TAGSW TAGFL TAGLA TAGLV AFL AFLINV AINV
100 PWRBLK
101
110
111

B.3.5 REGIMM Submap

(Applies when bits 31..26 are REGIMM+ or REGIMM-.) Bit 20 indicates a link instruction, and
bit 18 indicates an absolute jump. The conditions are mirrored across these axes when appropriate.

bits bits 18..16
20..19 000 001 010 011 100 101 110 111

00 BLTZ BLEZ BGEZ BGTZ
01 J
10 BLTZAL BGEZAL JLTZL JLEZL JGEZL JGTZL
11 JAL

236

B.4 Status and Control Registers

Status Reg Name R/W Purpose

0 SW FREEZE RW Switch Processor is Frozen. [00] ← (1 Frozen) (0 Running)

1 SW BUF1 R # of elements in static router crossbar 1 NIBs
[22:20] number of elements in c21 (≤ 4)
[19:17] number of elements in cNi (≤ 4)
[16:14] number of elements in cEi (≤ 4)
[13:11] number of elements in cSi (≤ 4)
[10:08] number of elements in cWi (≤ 4)
[07:05] number of elements in csti (≤ 4)
[04:00] number of elements in csto (≤ 8)

2 SW BUF2 R # of elements in static router crossbar 2 NIBs
[22:20] number of elements in c12 (≤ 4)
[19:17] number of elements in cNi2 (≤ 4)
[16:14] number of elements in cEi2 (≤ 4)
[13:11] number of elements in cSi2 (≤ 4)
[10:08] number of elements in cWi2 (≤ 4)
[07:05] number of elements in csti2 (≤ 4)
[04:00] number of elements in csto (≤ 8)

3 MDN BUF R # of elements in MDN router NIBs
[19:17] number of elements in cNi (≤ 4)
[16:14] number of elements in cEi (≤ 4)
[13:11] number of elements in cSi (≤ 4)
[10:08] number of elements in cWi (≤ 4)
[07:05] number of elements in cmni (≤ 4)
[04:00] number of elements in cmno (≤ 16)

4 SW PC RW Current PC of switch processor.
Byte address aligned to eight-byte boundaries.
Used primarily for context switching.

Generally, writing to this register is used for context-switching
purposes. It should only be performed when the switch is
FROZEN or if the compute processor program knows absolutely
that the switch is stalled at a known PC. Otherwise, the
program can no longer assume the static ordering of operands
on the SON.

Writing to this register causes a branch misprediction in the
switch. Allow at least three cycles for corresponding instruction
to be executed.

5 BR INCR RW Signed 32-bit increment value for BNEA instruction.
Caller-saved.

237

Status Reg Name Purpose

6 EC DYN CFG RW Configuration for Event Counting of Dynamic Network events
[30:28] Memory Network North (D=N) Configuration
[27:25] Memory Network East (D=E) Configuration
[24:22] Memory Network South (D=S) Configuration
[21:19] Memory Network West (D=W) Configuration
[18:16] Memory Network Proc (D=P) Configuration
[14:12] Memory Network North (D=N) Configuration
[11:09] Memory Network East (D=E) Configuration
[08:06] Memory Network South (D=S) Configuration
[05:03] Memory Network West (D=W) Configuration
[02:00] Memory Network Proc (D=P) Configuration

Settings:

0 # of cycles output port D wants to transmit but could not
because neighbor tile’s input buffer is full.

1 # of words transmitted from input port D to output port P
2 # of words transmitted from input port D to output port W
3 # of words transmitted from input port D to output port S
4 # of words transmitted from input port D to output port E
5 # of words transmitted from input port D to output port N
6 # of words transmitted from input port D
7 # cycles input port D had data to transmit but was not able to

7 WATCH VAL RW [31:00] 32-bit timer; increments each cycle

8 WATCH MAX RW [31:00] value to fire timer interrupt and then zero WATCH VAL

9 WATCH SET RW [00] zero WATCH VAL if cgno is empty or a value was dequeued
[01] zero WATCH VAL if processor issues an instruction

10 CYCLE HI RW [31:00] high 32-bits of cycle counter

11 CYCLE LO RW [31:00] low 32-bits of cycle counter

Note: To read the cycle counter efficiently, read CYCLE HI,
then CYCLE LO, then subtract one from CYCLE LO.
Cycle counters are writable to make tests reproducible.

12 EVENT CFG2 RW [24:0] configures the set of events that causes c trigger

event counters to be incremented. See B.5.

13 GDN RF VAL RW [31:00] GDN refill value

When EX MASK[GDN REFILL] is enabled, a read from $cgno
will return GDN RF VAL, signal an interrupt by setting
EX BITS[GDN REFILL], and leave cgno unchanged. This
allows cgno to be virtualized, e.g. for context switches
and deadlock recovery.

238

Status Reg Name Purpose

14 GDN REMAIN RW [04:00] Number of words remaining to be sent to complete
current message on cgno. GDN COMPLETE interrupt fires
when value transitions to zero. OS typically initializes
this with GDN PENDING value to allow GDN messages
to complete when context switching.

15 EX BASE ADDR RW [31:00] Pointer to beginning of exception vector table.
Set to zero at boot time. Applies to RawH.

16 GDN BUF R # of elements in GDN router NIBs

[24:20] GDN PENDING
number of elements (≤ 31) that need
to be sent to cgno from processor
pipeline to complete current message.

Note this count does not include those instructions
currently in the pipeline; the operating system
should flush the pipeline before reading this value.
The OS loads this value into the GDN REMAIN SPR
for the GDN PENDING interrupt to trigger on.

[19:17] number of elements (≤ 4) in cNi
[16:14] number of elements (≤ 4) in cEi
[13:11] number of elements (≤ 4) in cSi
[10:08] number of elements (≤ 4) in cWi
[07:05] number of elements (≤ 4) in cgni
[04:00] number of elements (≤ 16) in cgno

17 GDN CFG RW General Dynamic Network Configuration

[31:27] GDN XMASK - Masks X bits from an address
[26:22] GDN YMASK - Masks Y bits from an address
[21:17] GDN XADJ - Adjusts from local to global X address
[16:12] GDN YADJ - Adjusts from local to global Y address
[11:09] GDN YSHIFT - Gets Y bits from an address

See IHDR instruction.

239

Status Reg Name Purpose

18 STORE METER RW STORE ACK counters

[31:27] PARTNER Y - Y location of partner port
[26:22] PARTNER X - X location of partner port
[21] ENABLE - enable store meter-based stalls
[10] DECREMENT MODE (see below; reads always zero)
[9:5] COUNT PARTNER - # of partner accesses left
[4:0] COUNT NON PARTNER - # of non-partner accesses left

Since the counts are updated as STORE ACK messages are
received over the MDN, care must be taken to update
STORE METER in a way that avoids race conditions.

Ordinarily, the only way to do this is to modify the register
only when all store-acks have been received.

Alternatively, the user may write to the register with
DECREMENT MODE set; in this case the
COUNT NON PARTNER will be decremented if bit 0 is set,
and COUNT PARTNER will be decremented if bit 5 is set.
No other bits are changed. This handles the case where the
user is directly transmitting memory packets over the MDN
using explicit accesses to cmno, and needs to update the
the STORE ACK counters to reflect this.

19 MDN CFG RW Memory Dynamic Network Configuration

[31:27] DN XPOS - Absolute X position of tile in array
[26:22] DN YPOS - Absolute Y position of tile in array
[21:17] MDN XMAX - X Coord of East-Most Tiles
[16:12] MDN YMAX - Y Coord of South-Most Tiles
[11:09] MDN XSHIFT - Shift Amount X
[08:06] MDN YSHIFT - Shift Amount Y
[00:00] MDN EXTEND - Use all four edge of chip.

These SPRs are used to determine Raw’s memory hash function
as described in Section 2.6. This function
determines where the data caches send their messages for
cache fills and evictions. It also determines the functionality
of the OHDR and OHDRX instructions.

20 EX PC RW PC where system-level exception occurred.

21 EX UPC RW PC where user-level exception occurred.

(GDN AVAIL is the only user-level exception)

240

Status Reg Name Purpose

22 FPSR RW Floating Point Status Register
[5] Unimplemented
[4] Invalid
[3] Divide by Zero
[2] Overflow
[1] Underflow
[0] Inexact operation

These bits are sticky; i.e. floating point operations
can set but cannot clear these bits. However, the user
can freely change the bits via MTSR or MFSR.

These flags are set the cycle after the floating point
instruction finishes execution; i.e., you need three nops
inbetween the last floating point operation and a MFSR
to read the correct value.

23 EVENT BITS R [15:0] the list of events that have triggered

24 EX BITS R Interrupt Status
[31] USER - all user interrupts masked if 0
[30] SYSTEM - all interrupts masked if 0

The above can be set/cleared using
inton, intoff, uinton, uintoff.

[6] EVENT COUNTER
[5] GDN AVAIL
[4] TIMER
[3] EXTERNAL
[2] TRACE
[1] GDN COMPLETE
[0] GDN REFILL

For bits 0..6, a “1” indicates a request for a given
interrupt occurred but that it has not yet been serviced.

25 EX MASK RW Interrupt Mask

[6] EVENT COUNTER
[5] GDN AVAIL
[4] TIMER
[3] EXTERNAL
[2] TRACE
[1] GDN COMPLETE
[0] GDN REFILL

A ”0” indicates that the exception is suppressed.

241

Status Reg Name Purpose

26 EVENT CFG RW Event Counter Configuration

[31:16] Enables for events 16..0
[15:01] PC to profile (omit low two bits) for single mode
[00] ← (1 Single Instruction Mode)

(0 Global Instruction Mode)

27 POWER CFG RW Power Saving Configuration

[00] Disable comparator toggle-suppression
[01] Disable ALU toggle-suppression
[02] Disable FPU toggle-suppression
[03] Disable Multiplier toggle-suppression
[04] Disable Divider toggle-suppression
[05] Disable Data Cache toggle-suppression
[06] Enable Instruction Memory power saving
[07] Enable Data Memory power saving
[08] Enable Static Router Memory power saving
[09] Disable pwrblk wake up after TIMER interrupt
[10] Disable pwrblk wake up after EXTERNAL interrupt
[11] Timer wakeup pending on return to pwrblk
[12] External wakeup pending on return to pwrblk

At reset, POWER CFG is set to zero.
Bits 11 and 12 are set by the processor if the corresponding
interrupt is taken while waiting on a pwrblk.

28 TN CFG W Test Network Configuration

29 TN DONE W Signal “DONE” on Test Network with value [31:0]

30 TN PASS W Signal “PASS” on Test Network with value [31:0]

31 TN FAIL W Signal “FAIL” on Test Network with value [31:0]

242

B.5 Event Counting Support

The event counters provide a facility to monitor, profile, and respond to events on a Raw tile. Each

tile has a bank of 16 c trigger modules. Each c trigger has a 32-bit counter. These counters count

down every time a particular event occurs. The EVENT CFG2 register is used to determine which

events each c trigger responds to. When the counter transitions from 0 to -1, it will assert a line

(the “trigger”) which will hold steady until the user writes a new value into the counter. These

triggers are visible in the EVENT BITS register, and are OR’d together to form the EX BITS

EVENT COUNTER bit, which can cause an interrupt. When the trigger is asserted, the c trigger

module latches the PC (without the low zero bits) of the instruction that caused the event into bits

[31:16] of the counter (the rlm instruction can be used to extract them efficiently). The c trigger

module will continue to count down regardless of the setting of the trigger. Because the PC is

stored in the high bits, there is a window of time in which subsequent events will not corrupt the

captured PC. Note that if the event is not instruction related, the setting of the PC in the c trigger

is undefined. The event counters can be both read and written by the user. There is typically a

one cycle delay between when an event occurs and when an mfec instruction will observe it; there

is also a delay of two cycles before an event trigger interrupt will fire.

c trigger #

EVENT CFG2 Function Notes
Stage

0 [25] ← 0 @ Cycle Count So handler can bound sampling window.
0 [25] ← 1 F Write Over Read For poor man’s shared memory support.

Detects when a resident cache line is marked
dirty by a sw to an odd address
for the first time.

Note: If the sw is preceded by
a lw / sw / flush
this mechanism does not have the bandwidth to
verify the previous state of the bits. It will
conservatively count it as an event.

1 M Cache Writebacks Includes flushes.
2 M Cache Fills
3 M Cache Stall Cycles Total number of cycles that the backend of the

pipeline is frozen by the cache state machine.
Includes write-back and fill time, as well as time
stolen by non-dirty flush instructions.

4 [0] ← 0 E Cache Miss Ops Number of flush, lw, sw instructions issued.
4 [0] ← 1 E FPU Ops Number of FPU instructions issued.

Includes .s and .w instructions.

243

c trigger #

EVENT CFG2 Function Notes
Stage

5 [1] ← 0 E Possible Mispredicts Conditional Jumps and Branches,
ERET, DRET, JR, JALR.

5 [1] ← 1 E Possible Mispredicts Possible mispredicts due to wrong SBIT
(i.e., only conditional jumps and branches)

6 [2] ← 0 E Actual Mispredicts Branch mispredictions.

6 [2] ← 1 E Actual Mispredicts Mispredictions due to wrong SBIT

7 @ Switch Stalls On static router (Trigger captures static router PC)

8 @ Possible Mispredicts On static router (Trigger captures static router PC)

9 @ Actual Mispredicts On static router (Trigger captures static router PC)

10 @ Pseudo Random LFSR X next = (X >> 1) | (xor(X[31,30,10,0]) << 31)
Note: Sampling this more than once per 32 cycles
produces highly correlated numbers.

11 [3] R Functional Unit Stalls Stalls due to bypassing (e.g., the output
of a preceding instruction is not available yet)
or because of interlocks on the fp/int dividers.

11 [4] @ GP GDN Processor Port Counting

11 [5] @ MP MDN Processor Port Counting

11 [23] @ Instructions Issued # of instructions that enter Execute stage.

12 [6] R Non-cache stalls # of stalls not due to cache misses.
Includes ilw/isw; if trigger fires on isw/ilw
PC will be the PC of the instruction in the
RF stage, rather than the ilw/isw instruction.

12 [7] @ GW GDN West Port Counting

12 [8] @ MW MDN West Port Counting

13 [9] R ilw/isw # of ilw/isw instructions issued.

13 [10] @ GS GDN South Port Counting

13 [11] @ MS MDN South Port Counting

13 [24] @ Instructions Issued # of instructions that enter Execute stage.

14 [12] R $csto stalls Instruction issue blocked on $csto full

14 [13] R $cgno stalls Instruction issue blocked on $cgno full

14 [14] R $cmno stalls Instruction issue blocked on $cmno full

14 [15] @ GE GDN East Port Counting

14 [16] @ ME MDN East Port Counting

15 [17] R $csti stalls Instruction issue blocked on $csti empty

15 [18] R $csti2 stalls Instruction issue blocked on $csti2 empty

15 [19] R $cgni stalls Instruction issue blocked on $cgni empty

15 [20] R $cmni stalls Instruction issue blocked on $cmni empty

15 [15] @ GN GDN North Port Counting

15 [16] @ MN MDN North Port Counting

244

The previous table describes the events that the c trigger modules can be configured to count.

The EVENT CFG2 column specifies the bit number of EVENT CFG2 that must be set in order to

enable counting of that event.

The low bits of EVENT CFG allow the user to count events that occurs on a particular instruction

at a particular PC instead of across all PCs. For this “single instruction mode”, EVENT CFG[0] is

set to 1, and the PC to sample is placed into EVENT CFG[15:1]. In cases where the event does not

have an associated main processor PC (marked with the “@” in the table), the EVENT CFG single

instruction mode setting is ignored. The high bits of EVENT CFG selectively enable counting on a

per event basis, but do not suppress existing triggers.

The EVENT CFG2 SPR allows the user to configure the events that a particular c trigger module

counts. In some cases multiple enabled events may be connected to the same trigger. In that case,

the counters increments each cycle if any such enabled events has occurred. In some cases, there are

nonsensical combinations that can be enabled (say GE and $csto stalls).

The meaning of the GN, GE, GS, GW, GP, MN, ME, MS, MW, and MP events are configured

by the EC DYN CFG status/control register. Each event corresponds to a network N (G = general,

M = memory) and a direction D (N=north, E=east, ...). The encodings are shown in the table in

Section B.4.

245

B.6 Exception Vectors

Name Offset Purpose

0 VEC GDN REFILL 0x00 Dynamic Refill Exception

1 VEC GDN COMPLETE 0x10 GDN Send Is Complete

2 VEC TRACE 0x20 Trace Interrupt

3 VEC EXTERN 0x30 External Interrupt (MDN)

4 VEC TIMER 0x40 Timer Exception

5 VEC GDN AVAIL 0x50 Data Avail on GDN

6 VEC EVENT COUNTERS 0x60 Event Counter Interrupt

In the Raw architecture, the exception vectors are stored starting at offset zero in instruction

memory. In RawH, the exception vectors are stored relative to SR[EX BASE ADDR]. When an ex-

ception occurs, the processor starts fetching from the corresponding exception location. Thus, a

TIMER exception would start fetching at address SR[EX BASE ADDR] + 0x40.

Each exception has 4 contiguous instructions; this is enough to do a small amount of work; such

as save a register, load a jump address, and branch there:

sw $3, interrupt_save($gp)
lw $3, gdn_vec($gp)
jr $3

246

B.7 Switch Processor Instruction Set

The switch processor (“the switch”), pictured in Figure B-1, controls the static router that serves
as Raw’s inter-tile SON. Architecturally, it looks like a VLIW processor which can execute a large
number of moves in parallel. The assembly language of the switch is designed to minimize the knowl-
edge of the switch microarchitecture needed to program it while maintaining the full functionality.
See Sections A.1 and A.2.2 for more details.

Programmatically, the static router has three structural components:

1. A sequencer (part of the switch processor) which executes a very basic instruction set.

2. A one read port, one write port (1R-1W) 4-element register file.

3. A pair of crossbars, which is responsible for routing values to neighboring switches. The
inputs of the crossbars are network input blocks (NIBs), while the outputs are wires, typically
to neighbor tiles.

A switch instruction consists of a small processor instruction and a list of routes for the two
crossbars. All combinations of processor instructions and routes are allowed, subject to the following
restrictions:

1. The source of a processor instruction can be a register or a switch port but

the destination must be a register.

2. The source of a route can be a register or a switch port but the destination

must always be a switch port.

3. Two values can not be routed to the same location.

4. If there are multiple reads to the register file, they must use the same regis-

ter number. This is because there is only one read port.

5. Routes between different domains (i.e., cN, cS, cE, cW, cst1 and cN2, cS2,

cE2, cW2, cst2) are forbidden. To switch domains, one should route the word

through c12 or c21 (or the register file). It will be available in c12 or c21 on

the next cycle.

B.7.1 Switch Processor Instruction Set Examples

For instance,

MOVE $3, $2 ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo
MOVE $3, $csto ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo

are legal because they read exactly one register (2) and write one register (3).

JAL $3, myAddr ROUTE $csto->$2

is illegal because the ROUTE instruction is trying to use register 2 as a destination.

JALR $2,$3 ROUTE $2->$csti

is illegal because two different reads are being initiated to the register file (2,3).

JALR $2,$3 ROUTE $2->$csti, $cNi->$csti

is illegal because two different writes are occurring to the same port.

247

B.7.2 Switch Instruction Format

bit name Function
63 pr If 1, predict instruction is a taken branch/jump.
62..59 Op The operation, see “Switch High-Level Opcode Map”.
58 R Relative bit. R=1 for branches.
57 0 Reserved; allows expansion of switch memory.
56..44 imm Immediate field, used for branches and jumps.
43..42 rdst Register number to write to.
41..40 rsrc Register number to read from.
39 w “Which” bit. Whether rego is from 1st or 2nd xbar.
38..36 rego Which port to route into the switch processor.
35..33 cNo Which port to route out to cNo.
32..30 cEo Which port to route out to cEo.
29..27 cSo Which port to route out to cSo.
26..24 cWo Which port to route out to cWo.
23..21 csti Which port to route out to csti.
20..18 c12 Which port to route out to c12.
17..15 cNo2 Which port to route out to cNo2.
14..12 cEo2 Which port to route out to cEo2.
11..9 cSo2 Which port to route out to cSo2.
8..6 cWo2 Which port to route out to cWo2.
5..3 csti2 Which port to route out to csti2.
2..0 c21 Which port to route out to c21.

B.7.2.1 Switch High-Level Opcode Map

bits bits 60..58
62..61 000 010 100 110 001 011 101 111

(R=0) (R=0) (R=0) (R=0) (R=1) (R=1) (R=1) (R=1)
00 ExOp JLTZ JNEZ JGEZ BLTZ BNEZ BGEZ
01 JAL J JGTZ JEQZ BAL B BGTZ BEQZ
10
11 JLEZ JNEZD JEQZD DEBUG BLEZ BNEZD BEQZD

248

B.7.3 Switch Instruction Format (Op == ExOp)

bit name Function
63 0 Always 0.
62..59 0 Always 0 (indicates ExOp).
58..57 0 Always 0.
56..48 9’b0 Expansion space.
47..44 ExOp The operation, see “Switch ExOp Map”.
43..42 rdst Register number to write to.
41..40 rsrc Register number to read from.
39 w “Which” bit. Whether rego is from 1st or 2nd xbar
38..36 rego Which port to route into the switch processor.
35..33 cNo Which port to route out to cNo.
32..30 cEo Which port to route out to cEo.
29..27 cSo Which port to route out to cSo.
26..24 cWo Which port to route out to cWo.
23..21 csti Which port to route out to csti.
20..18 c12 Which port to route out to c12.
17..15 cNo2 Which port to route out to cNo2.
14..12 cEo2 Which port to route out to cEo2.
11..9 cSo2 Which port to route out to cSo2.
8..6 cWo2 Which port to route out to cWo2.
5..3 csti2 Which port to route out to csti2.
2..0 c21 Which port to route out to c21.

B.7.3.1 Switch ExOp Map

bits bits 45..44
47..46 00 01 10 11
00 NOP MOVE JR JALR
01
10
11

B.7.4 Switch Port Name Map (Primary Crossbar)

000 001 010 011 100 101 110 111

Port none csto cWi cSi cEi cNi swi1 regi

B.7.5 Switch Port Name Map (Secondary Crossbar)

000 001 010 011 100 101 110 111
Port none csto cWi2 cSi2 cEi2 cNi2 swi2 regi

249

cSi

cEi

cNi

cEi2

cNi2

cSi2

cEi2

cEo2

cNi2

cEi

cEo

cSi2 cSi

cNi

cWi2

c21

cWi

c12

Compute Processor

Switch
Processor

Nout

cSo

cWo2

cWi2

csti2

cNo

cWo

cWi

cNo2

cSo2csti

csto regoregi

Figure B-1: Basic architecture of a static router. The static router is comprised of the switch
processor, two crossbars, and a set of NIBs and inter-tile network links. Most NIBs are
connected to exactly one crossbar. However, the csto NIB is accessible by both crossbars,
and the c12 and c21 NIBs are used to route values between crossbars. The rego and regi ports,
shared by both crossbars, are not NIBs, but are direct connections into the switch processor.

250

Bibliography

[1] The Transputer Databook (2nd Edition). Inmos Limited, 1989.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock Rate versus IPC: The End
of the Road for Conventional Microarchitectures. In International Symposium on Computer
Architecture, pages 248–259, June 2000.

[3] S. Agrawal, W. Thies, and S. Amarasinghe. Optimizing Stream Programs Using Linear State
Space Analysis. In International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 126–136, September 2005.

[4] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling,
J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A Portable Linear Algebra Library for
High-Performance Computers. In International Conference on Supercomputing, pages 2–11,
November 1990.

[5] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, O. Menzilicioglu, and J. A. Webb.
The Warp Computer: Architecture, Implementation and Performance. IEEE Transactions on
Computers, 36(12):1523–1538, December 1987.

[6] Arvind and S. Brobst. The Evolution of Dataflow Architectures from Static Dataflow to
P-RISC. International Journal of High Speed Computing, pages 125–153, June 1993.

[7] R. Barua. Maps: A Compiler-Managed Memory System for Software-Exposed Architectures.
PhD thesis, Massachusetts Institute of Technology, January 2000.

[8] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps: A Compiler-Managed Memory
System for Raw Machines. In International Symposium on Computer Architecture, pages 4–15,
May 1999.

[9] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Compiler Support for Scalable and
Efficient Memory Systems. In IEEE Transactions on Computers, pages 1234–1247, November
2001.

[10] T. Bednar, R. Piro, D. Stout, L. Wissel, and P. Zuchowski. Technology-migratable ASIC
library design. In IBM Journal of Research and Development, pages 377–386, July 1996.

[11] B. Bentley. Validating the Intel Pentium 4 Microprocessor. In Design Automation Conference,
pages 244–248, June 2001.

[12] B. Bentley. Keynote: Validating a Modern Microprocessor. In International Conference on
Computer Aided Verification, June 2005.

[13] M. Bohr. Interconnect Scaling - The Real Limiter to High Performance ULSI. In International
Electron Device Meeting, pages 241–244, December 1995.

[14] P. Buffet, J. Natonio, R. Proctor, Y. Sun, and G. Yasar. Methodology for I/O Cell Placement
and Checking in ASIC Designs Using Area-Array Power Grid. In Q3 2000 IBM MicroNews,
pages 7–11, Q3 2000.

251

[15] D. Carmean. The Intel Pentium 4 Processor. In University of California at San Diego CSE
Talk, Spring 2002.

[16] J. Chen, M. Gordon, W. Thies, M. Zwicker, K. Pulli, and F. Durand. A Reconfigurable Archi-
tecture for Load-Balanced Rendering. In Proceedings of SIGGRAPH/Eurographics Graphics
Hardware, pages 71–80, July 2005.

[17] D. Chinnery and K. Keutzer. Closing the Gap Between ASIC & Custom. Kluwer Academic
Publishers, 2002.

[18] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K. Kushwaha. A spatial path
scheduling algorithm for EDGE architectures. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating Systems, pages
129–140, New York, NY, USA, 2006. ACM Press.

[19] H. Corporaal. Move: A framework for high-performance processor design. In Supercomputing
’91, November 1991.

[20] H. Corporaal. Transport Triggered Architectures, Design and Evaluation. PhD thesis, Delft
University of Technology, 1995.

[21] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: towards a realistic model of parallel computation. In Principles and
Practice of Parallel Programming, pages 1–12, May 1993.

[22] W. J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Publish-
ers, 1987.

[23] W. J. Dally and B. Towles. Principles and Practice of Interconnection Networks. Elsevier,
Inc., 2004.

[24] B. Davari, R. Dennard, and G. Shahidi. CMOS Scaling for High Performance and Low Power
– The Next Ten Years. In Proceedings of the IEEE, pages 595–606, April 1995.

[25] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc. Design of ion-implanted
MOSFET’s with very small physical dimensions. In Journal of Solid-State Circuits, pages
256–268, October 1974.

[26] J. Dennis and D. Misunas. A prelinary architecture for a basic data-flow processor. In Inter-
national Symposium on Computer Architecture, pages 125–131, 1975.

[27] K. Diefendorff. Intel Raises the Ante With P858. Microprocessor Report, pages 22–25, January
1999.

[28] J. Duato. A Necessary and Sufficient Condition for Deadlock- Free Adaptive Routing in
Wormhole Networks. In IEEE Transactions on Parallel and Distributed Systems, October
1995.

[29] J. Duato and T. M. Pinkston. A General Theory for Deadlock-Free Adaptive Routing using a
Mixed Set of Resources. IEEE Transactions on Parallel and Distributed Systems, 12(12):1–16,
December 2001.

[30] A. Duller, G. Panesar, and D. Towner. Parallel processing – the picochip way! In Communi-
cating Process Architectures. IOS Press, 2003.

[31] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan,
G. Lowney, M. Mattina, and A. Seznec. Tarantula: A Vector Extension to the Alpha Archi-
tecture. In International Symposium on Computer Architecture, pages 281–292, May 2002.

252

[32] F. Faggin, J. Hoff, M.E., S. Mazor, and M. Shima. The history of the 4004. In Proceedings of
the IEEE, pages 10–20, December 1996.

[33] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Reducing
Cycle Time through Partitioning. In International Symposium on Microarchitecture (MICRO),
pages 149–159, Washington, DC, USA, December 1997. IEEE Computer Society.

[34] I. Fried. Apple’s benchmarks put to the test. In CNET News.com
http://news.com.com/Apples+benchmarks+put+to+the+test/2100-1042 3-1020631.html,
June 24, 2003.

[35] M. Gordon. A Stream-Aware Compiler for Communication-Exposed Architectures. Master’s
thesis, MIT Laboratory for Computer Science, August 2002.

[36] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs. In International Conference on Architectural Support
for Programming Languages and Operating Systems, October 2006.

[37] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger, A. A. Lamb, J. Wong,
H. Hoffman, D. Z. Maze, and S. Amarasinghe. A Stream Compiler for Communication-
Exposed Architectures. In International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October, 2002.

[38] T. Gross and D. R. O’Halloron. iWarp, Anatomy of a Parallel Computing System. The MIT
Press, Cambridge, MA, 1998.

[39] S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the Impact of Increasing Micropro-
cessor Power Consumption. In Intel Technology Journal, Q1 2001.

[40] L. Gwennap. Comparing RISC microprocessors. In Proceedings of the Microprocessor Forum,
October 1994.

[41] L. Gwennap. Coppermine Outruns Athlon. Microprocessor Report, page 1, October 1999.

[42] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with Reconfigurable Coprocessor.
In 1997 FCCM, pages 12–21, 1997.

[43] J. Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS Technologies, second edition,
1994.

[44] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The
Microarchitecture of the Pentium 4 Processor. In Intel Technology Journal, Q1 2001.

[45] R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford, August 2003.

[46] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of Wires. Proceedings of the IEEE,
89(4):490–504, April 2001.

[47] H. Hoffmann, V. Strumpen, A. Agarwal, and H. Hoffmann. Stream Algorithms and Architec-
ture. Technical Memo MIT-LCS-TM-636, LCS, MIT, 2003.

[48] R. A. Iannucci. Toward a dataflow / von neumann hybrid architecture. In International
Symposium on Computer Architecture, pages 131–140, 1988.

[49] Intel. Pentium Processor Family Developer’s Manual. 1997.

[50] Intel. Intel Pentium 4 Processor Optimization Reference Manual. In Intel Order Number
24896, 2001.

[51] Intel. Intel Microprocessor Quick Reference Guide . In
http://www.intel.com/pressroom/kits/quickreffam.htm , December 15, 2005.

253

[52] Intel. Intel Pentium III Processor Specification Update. In Intel Document 244453-055, May
2005.

[53] Intel. Intel Pentium 4 Processor Specification Update. In Intel Document 249199-061, October
2005.

[54] Intel Corporation. MCS-4 Micro Computer Set Users Manual. Revision 4 edition, February
1973.

[55] Intel Corporation. MCS-4 Micro Computer Set Spec Sheet. November 1971.

[56] J. Janssen and H. Corporaal. Partitioned Register File for TTAs. In 1996 MICRO, pages
303–312, 1996.

[57] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany. The Imagine Stream
Processor. In 2002 ICCD, pages 282–288, 2002.

[58] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of stream programs. In
Languages, Compilers, and Tools for Embedded Systems, San Diego, CA, June 2003.

[59] R. E. Kessler. The alpha 21264 microprocessor. In IEEE Micro, pages 24–36, Los Alamitos,
CA, USA, March 1999. IEEE Computer Society Press.

[60] H.-S. Kim and J. E. Smith. An Instruction Set Architecture and Microarchitecture for Instruc-
tion Level Distributed Processing. In International Symposium on Computer Architecture,
pages 71–81, 2002.

[61] H.-S. Kim and J. E. Smith. An ISA and Microarchitecture for Instruction Level Distributed
Processing. In International Symposium on Computer Architecture, pages 71–81, May 2002.

[62] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy Characterization of a Tiled
Architecture Processor with On-Chip Networks. In International Symposium on Low Power
Electronics and Design, August 2003.

[63] A. KleinOsowski and D. Lilja. MinneSPEC: A New SPEC Benchmark Workload for
Simulation-Based Computer Architecture Research. Computer Architecture Letters, June 2002.

[64] C. Kozyrakis and D. Patterson. Overcoming the limitations of conventional vector processors.
In International Symposium on Computer Architecture, June 2003.

[65] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm,
J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Trewhaft, and K. Yelick. Scalable Processors
in the Billion-Transistor Era: IRAM. In IEEE Computer, pages 75–78, September 1997.

[66] R. Krashinsky, C. Batten, S. Gerding, M. Hampton, B. Pharris, J. Casper, and K. Asanovic.
The Vector-Thread Architecture. In International Symposium on Computer Architecture, June
2004.

[67] J. Kubiatowicz. Integrated Shared-Memory and Message-Passing Communication in the
Alewife Multiprocessor. PhD thesis, MIT, 1998.

[68] J. Kubiatowicz and A. Agarwal. Anatomy of a Message in the Alewife Multiprocessor. In
International Supercomputing Conference, pages 195–206, 1993.

[69] N. Kushman. Performance Nonmonotonicities: A Case Study of the UltraSPARC Processor.
Master’s thesis, Massachusetts Institute of Technology, June 1998.

[70] A. A. Lamb, W. Thies, and S. Amarasinghe. Linear Analysis and Optimization of Stream Pro-
grams. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 12–25, San Diego, CA, June 2003.

254

[71] W. Lee. Software Orchestration of Instruction Level Parallelism on Tiled Processor Architec-
tures. PhD thesis, Massachusetts Institute of Technology, May 2005.

[72] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe. Space-
Time Scheduling of Instruction-Level Parallelism on a Raw Machine. In International Con-
ference on Architectural Support for Programming Languages and Operating Systems, pages
46–54, October 1998.

[73] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V.
Hill, D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and
R. Zak. The network architecture of the connection machine cm-5. In ACM Symposium on
Parallel Algorithms and Architectures, pages 272–285, New York, NY, USA, 1992. ACM Press.

[74] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[75] C. Lutz, S. Rabin, C. Seitz, and D. Speck. Design of the mosaic element. In CalTech Computer
Science Tech Report 5093:TR:83, 1983.

[76] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal, and M. F. Kaashoek. Ex-
ploiting Two-Case Delivery for Fast Protected Messaging. In Symposium on High-Performance
Computer Architecture, February 1998.

[77] R. Mahnkopf, K.-H. Allers, M. Armacost, A. Augustin, J. Barth, G. Brase, R. Busch, E. Demm,
G. Dietz, B. Flietner, G. Friese, F. Grellner, K. Han, R. Hannon, H. Ho, M. Hoinkis, K. Hol-
loway, T. Hook, S. Iyer, P. Kim, G. Knoblinger, B. Lemaitre, C. Lin, R. Mih, W. Neumueller,
J. Pape, O. Prigge, N. Robson, N. Rovedo, T. Schafbauer, T. Schiml, K. Schruefer, S. Srini-
vasan, M. Stetter, F. Towler, P. Wensley, C. Wann, R. Wong, R. Zoeller, and B. Chen. ‘System
on a Chip’ Technology Platform for 0.18 micron Digital, Mixed Signal and eDRAM Applica-
tions. In International Electron Devices Meeting, pages 849–852, December 1999.

[78] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories: A
Modular Reconfigurable Architecture. In International Symposium on Computer Architecture,
pages 161–171, 2000.

[79] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer, 30(9):37–
39, September 1997.

[80] J. McCalpin. STREAM: Sustainable Memory Bandwidth in High Perf. Computers.
http://www.cs.virginia.edu/stream.

[81] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture. In IEEE Micro, pages
44–55, March 2003.

[82] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin, and S. Eggers.
Instruction Scheduling for Tiled Dataflow Architectures. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, October 2006.

[83] G. Moore. Cramming more components onto integrated circuits. In Electronics Magazine,
April 19, 1965.

[84] C. A. Moritz, D. Yeung, and A. Agarwal. SimpleFit: A Framework for Analyzing Design
Tradeoffs in Raw Architectures. IEEE Transactions on Parallel and Distributed Systems,
pages 730–742, July 2001.

[85] S. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J. Sullivan, and T. Grutkowski.
The Implementation of the Itanium 2 Microprocessor. In IEEE Journal of Solid-State Circuits,
November 2002.

255

[86] R. Nagarajan, S. Kushwa, D. Burger, K. McKinley, C. Lin, and S. Keckler. Static Placement,
Dynamic Issue (SPDI) Scheduling for EDGE Architectures. In International Conference on
Parallel Architectures and Compilation Techniques, September 2004.

[87] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A Design Space Evaluation
of Grid Processor Architectures. In 2001 MICRO, pages 40–51, 2001.

[88] M. Noakes, D.A.Wallach, and W. Dally. The J-Machine Multicomputer: An Architectural
Evaluation. In International Symposium on Computer Architecture, pages 224–235, San Diego,
CA, May 1993. ACM.

[89] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W. J. IV, D. Franklin, V. Akella,
and F. T. Chong. Synchroscalar: A multiple clock domain, power-aware, tile-based embedded
processor. In Proceedings of the International Symposium on Computer Architecture. IEEE
Computer Society, June 2004.

[90] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single-
chip multiprocessor. In International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2–11, New York, NY, USA, 1996. ACM Press.

[91] S. Palacharla. Complexity-Effective Superscalar Processors. PhD thesis, University of
Wisconsin–Madison, 1998.

[92] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-Effective Superscalar Processors. In
International Symposium on Computer Architecture, pages 206–218, 1997.

[93] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and J. D.
Owens. A Bandwidth-Efficient Architecture for Media Processing. In Proceedings of the
International Symposium on Microarchitecture, pages 3–13, December 1998.

[94] N. Rovedo, T. Hook, M. Armacost, G. Hueckel, D. Kemerer, and J. Lukaitis. Introducing
IBM’s First Copper Wiring Foundry Technology: Design, Development, and Qualification of
CMOS 7SF, a .18 micron Dual-Oxide Technology for SRAM, ASICs, and Embedded DRAM.
In Q4 2000 IBM MicroNews, pages 34–38, Q4 2000.

[95] Sankaralingam, Singh, Keckler, and Burger. Routed Inter-ALU Networks for ILP Scalability
and Performance. In International Conference on Computer Design, 2003.

[96] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and
C. R. Moore. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In
International Symposium on Computer Architecture, pages 422–433, June 2003.

[97] T. Schubert. High Level Formal Verification of Next-Generation Microprocessors. In Design
Automation Conference, 2003.

[98] S. Scott. Synchronization and Communication in the T3E Multiprocessor. In Symposium on
Architectural Support for Programming Languages and Operating Systems, 1996.

[99] D. Shoemaker, F. Honore, C. Metcalf, and S. Ward. NuMesh: An Architecture Optimized for
Scheduled Communication. Journal of Supercomputing, 10(3):285–302, 1996.

[100] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K. S. McKinle, and
J. Burrill. Compiling for EDGE Architectures. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 185–195, Washington, DC, USA, 2006. IEEE
Computer Society.

[101] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. In International Symposium
on Computer Architecture, pages 414–425, June 1995.

256

[102] Y. H. Song and T. M. Pinkston. A Progressive Approach to Handling Message Dependent
Deadlocks in Parallel Computer Systems. IEEE Transactions on Parallel and Distributed
Systems, 14(3):259–275, March 2003.

[103] J. Suh, E.-G. Kim, S. P. Crago, L. Srinivasan, and M. C. French. A Performance Analysis of
PIM, Stream Processing, and Tiled Processing on Memory-Intensive Signal Processing Kernels.
In International Symposium on Computer Architecture, pages 410–419, June 2003.

[104] S. Swanson. The WaveScalar Architecture. PhD thesis, University of Washington, 2006.

[105] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In International Sympo-
sium on Microarchitecture, December 2003.

[106] M. Taylor. Design Decisions in the Implementation of a Raw Architecture Workstation. Mas-
ter’s thesis, Massachusetts Institute of Technology, September 1999.

[107] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. John-
son, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The Raw Microprocessor: A Computation Fabric for Soft-
ware Circuits and General-Purpose Programs. In IEEE Micro, March-April 2002.

[108] M. Taylor, W. Lee, M. Frank, S. Amarasinghe, and A. Agarwal. How to Build Scalable On-
Chip ILP Networks for a Decentralized Architecture. Technical Report 628, MIT Laboratory
for Computer Science (now CSAIL), April 2000.

[109] M. B. Taylor. Deionizer: A Tool For Capturing And Embedding I/O Calls.
Technical Memo 644, CSAIL/Laboratory for Computer Science, MIT, 2004.
http://cag.csail.mit.edu/∼mtaylor/deionizer.html.

[110] M. B. Taylor. The Raw Processor Specification, Continuously Updated 2005.
ftp://ftp.cag.lcs.mit.edu/pub/raw/documents/RawSpec99.pdf.

[111] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar Operand Networks: On-
Chip Interconnect for ILP in Partitioned Architectures. In International Symposium on High
Performance Computer Architecture, pages 341–353, February 2003.

[112] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar Operand Networks. In IEEE
Transactions on Parallel and Distributed Systems, pages 145–162, February 2005.

[113] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. Johnson,
J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for
ILP and Streams. In Proceedings of the International Symposium on Computer Architecture,
pages 2–13, June 2004.

[114] J. M. Tendler, J. Dodson, J. J.S. Fields, H. Le, and B. Sinharoy. POWER4 system microar-
chitecture. In IBM Journal of Research and Development, January 2002.

[115] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming Appli-
cations. In International Conference on Compiler Construction, pages 179–196, 2002.

[116] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Teleport Messag-
ing for Distributed Stream Programs. In Symposium on Principles and Practice of Parallel
Programming, pages 224–235, Chicago, Illinois, June 2005.

[117] R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. In IBM Journal
of Research and Development, 1967.

[118] M. Tremblay, D. Greenley, and K. Normoyle. The Design of the Microarchitecture of
UltraSPARC-1. In Proceedings of the IEEE, December 1995.

257

[119] J. H.-C. Tseng. Banked Microarchitectures for Complexity-Effective Superscalar Microproces-
sors. PhD thesis, Massachusetts Institute of Technology, May 2006.

[120] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a Mecha-
nism for Integrated Communication and Computation. In International Symposium on Com-
puter Architecture, May 1992.

[121] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to Software: Raw Machines.
IEEE Computer, pages 86–93, September 1997.

[122] D. Wentzlaff. Architectural Implications of Bit-level Computation in Communication Appli-
cations. Master’s thesis, Massachusetts Institute of Technology, 2002.

[123] D. Wentzlaff and A. Agarwal. A Quantitative Comparison of Reconfigurable, Tiled, and
Conventional Architectures on Bit-level Computation. In Symposium on Field-Programmable
Custom Computing Machines, pages 289–290, April 2004.

[124] R. Whaley, A. Petitet, J. J. Dongarra, and Whaley. Automated Empirical Optimizations of
Software and the ATLAS Project. Parallel Computing, 27(1–2):3–35, 2001.

[125] S. Yang, S. Ahmed, B. Arcot, R. Arghavani, P. Bai, S. Chambers, P. Charvat, R. Cotner,
R. Gasser, T. Ghani, M. Hussein, C. Jan, C. Kardas, J. Maiz, P. McGregor, B. McIntyre,
P. Nguyen, P. Packan, I. Post, S. Sivakumar, J. Steigerwald, M. Taylor, B. Tufts, S. Tyagi,
and M. Bohr. A High Performance 180 nm Generation Logic Technology. In International
Electron Devices Meeting, pages 197–200, 1998.

258

	Introduction
	Emerging Issues in Microprocessor Design
	VLSI Resources
	Putting VLSI Resources to Use
	Problems with Addressing Scalability through Microarchitecture

	Addressing Scalability through Physically Scalable Microprocessor Designs
	Seven Criteria for a Physically Scalable Microprocessor Design

	Tiled Microprocessors: A Class of Physically Scalable Microprocessor
	Tiled Microprocessors Meet the Physical Scalability Criteria
	Tiled Microprocessors Overcome Microarchitectural Scalability Limitations
	The Raw Tiled Microprocessor Prototype
	Contributions
	Thesis Overview

	The Archetypal Tiled Microprocessor
	Basic Elements of a Tiled Microprocessor
	Attaining Frequency Scalability (C1)
	Bandwidth Scalability, Locality Exploitation and Proportional Latencies (C2, C3, C4)
	Bandwidth Scalability by Eliminating Broadcasts
	Providing Usage-Proportional Resource Latencies and Exploitation of Locality

	Attaining Efficient Operation-Operand Matching with Scalar Operand Networks (C5)
	Scalar Operand Networks in Current Day Microprocessors
	Scalar Operand Network Usage in Tiled Microprocessors
	The AsTrO Taxonomy
	The 5-tuple Metric for SONs

	Parallel Execution on Tiled Microprocessors
	Multi-Threaded Parallel Execution on Tiled Microprocessors
	Single-Threaded Parallel Execution on Tiled Microprocessors

	The ATM Memory System
	Supporting Memory Parallelism
	Compiler Enhancement of Memory Parallelism in Single Threaded Programs

	I/O Operation
	Deadlock in the ATM I/O and Generalized Transport Network (C6)
	The Trusted Core
	The Untrusted Core
	Deadlock Summary

	Exceptional Events - Especially Interrupts (C7)
	ATM Summary

	Architecture of the Raw Tiled Microprocessor
	Architectural Overview
	The Raw Tile
	The Raw Tile's Execution Core
	Raw's Scalar Operand Network
	Raw's Trusted Core
	Raw's Untrusted Core

	The Raw I/O System
	Raw I/O Programming

	Summary

	The Raw Implementation
	The Building Materials
	The Standard-Cell Abstraction
	Examining the Raw Microprocessor's ``Raw'' Resources

	The Raw Chip
	The Raw Systems
	Conclusions from Building the Raw System

	Performance Evaluation
	Evaluation Methodology
	Challenges in Evaluation Methodology
	Developing a Comparison with the Pentium III
	Normalization with the P3

	Evaluation of a Single Tile using SpecInt and SpecFP
	Multi-tile Performance as a ``Server Farm On A Chip''
	Multi-tile Performance on sequential C and Fortran Applications
	Memory Parallelism
	Instruction Parallelism
	Results
	Future Improvements

	Multi-Tile Performance on Streaming Applications with StreamIt
	The StreamIt Language
	StreamIt-on-Raw Compiler Backend
	StreamIt-on-Raw Results
	Future Improvements

	Multi-Tile Performance on Hand-Coded Streaming Applications
	Linear Algebra Routines
	The STREAM Benchmark
	Signal Processing Applications
	Bit-level Communications Applications

	The Grain Size Question: Considering a 2-way Issue Compute Processor
	Conclusion

	Related Work
	Microprocessor Scalability
	Decentralized Superscalars
	Non-Tiled Parallel Microprocessors
	Classical Multiprocessors
	Dataflow Machines
	Tiled or Partially-Tiled Microprocessors

	Scalar Operand Networks
	Conclusion

	Conclusion
	Compiler Writer's and Assembly Language Programmer's View of Raw
	Architectural Overview
	The Raw Tile

	Programming the Networks
	Compute Processor Programming
	Switch Processor Programming
	Inter-tile Static Network Programming
	Dynamic Router Programming

	The Raw Architecture Instruction Set
	Compute Processor Instruction Set
	Register Conventions
	Compute Processor Instruction Template
	Cache Management in Raw and RawH

	Semantic Helper Functions
	Opcode Maps
	High-Level (``Opcode'') Map
	SPECIAL Submap
	FPU Submap
	COM Submap
	REGIMM Submap

	Status and Control Registers
	Event Counting Support
	Exception Vectors
	Switch Processor Instruction Set
	Switch Processor Instruction Set Examples
	Switch Instruction Format
	Switch Instruction Format (Op == ExOp)
	Switch Port Name Map (Primary Crossbar)
	Switch Port Name Map (Secondary Crossbar)

