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ABSTRACT
Recent interest in open source instruction set architecture (ISA)
such as RISC-V has opened new horizons for computer systems
research across operating systems, compilers, and hardware archi-
tectures. One fundamental aspect catalyzing these innovations is
the ability to emulate a complete system. This allows researchers
evaluate their ideas on real hardware without the hassle of building
infrastructure. One interesting RISC-V core generator available is
the Rocket chip generator [1], which generates RISC-V implemen-
tations using customizable parameters. There are currently three
emulation systems for the Rocket core available to the community:
Zybo, Zedboard, and ZC706. These systems are based on a het-
erogeneous multiprocessing chip composed of a general purpose
processor running a host, aka front-end server, and programmable
logic where the actual Rocket core is implemented. The drawback of
these systems is the tight integration between the Rocket core and
the host. This result in challenges when (i) a Rocket core is imple-
mented in ASICs, and (ii) a Rocket core configuration requires more
resources than available in current emulation systems. We propose
hardware support, RV-IOV, that overcome these limitations and in-
crease the number of prototyping targets for Rocket cores. RV-IOV
decouples Rocket cores from the host using I/O virtualization and
enables cores to be implemented in ASICs or larger FPGAs. We de-
scribe a case of study implementing RV-IOVs to enable five Rocket
cores that share the same host in a novel system-on-chip design
called Celerity [22], which is a tiered parallel RISC-V architecture
implemented in TSMC 16 nm. Additionally, the system is further
evaluated against multi-FPGA system, based on the Zedboard and
an external open source emulation board called DoubleTrouble [4].
Finally, we measure performance overhead for two systems using
seven benchmarks.
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1 INTRODUCTION
Computer architects spend a considerable amount of time eval-
uating design properties and tradeoffs using high-level simula-
tors [3, 5, 7] due to the exorbitant cost and time associated with
building a prototype [6, 8]. These costs continue to grow after
the chip is fabricated as it must be brought up and tested [21, 26].
Validation on real hardware is a necessity to ensure power and
performance requirements have been met [22].

Building an ASIC prototype involves other challenges such as
functional verification, which is achieved via simulation and often-
times FPGA emulation. Processor simulation is extremely expensive
for large designs and bounded to small programs running on the
processor being tested. Therefore, FPGA emulation is employed for
efficiently testing the processor under more complex workloads,

such as running an operating system. In fact, FPGA emulation was
essential for testing x86 operating systems including Linux and
Windows on Intel processors [20, 27].

Design and verification are not the only incentives for building
a real system. Researchers are also interested in multidisciplinary
design exploration covering operating system and computer archi-
tecture [10].

For the reasons mentioned above, a complete hardware and soft-
ware stack are indispensable in order to validate changes made
across one or more layers. RISC-V [28], an open source instruction
set architecture, has improved this situation by building a hardware
and software ecosystem, based on chip generators [1, 19], hard-
ware construction language [2, 12, 25], compilers [15], operating
systems [16], and FPGA emulation infrastructure [13].

Figure 1: Resource utilization for four Rocket cores and
hardware accelerator configurations (a, b, c, and d) and avail-
able resources for supported FPGA emulation boards Zybo,
Zedboard, and ZC706.

Currently, there are three FPGA emulation platforms based on
Xilinx FPGAs that supports tethered Rocket cores, ranging from
low power (Zybo, Zedboard) to high performance (ZC706) FPGA
boards. Support for these platforms comes as a collection of im-
plementation scripts, processor configurations, hardware modules,
and software libraries that automates and simplifies the creation
of a complete system. However, the emulation platform has two
major limitations. First, all three emulation platforms are based on
a single chip emulation environment, resulting in challenges for
testing Rocket cores implemented in external chips such as FPGAs
or ASICs. Second, the number of programmable logic cells (LUT)
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available in these platforms is limited. For example, the Zybo board
has 17.6 KLUT while the ZC706 board has 218.6 KLUT.

To quantify these limitations, we obtained resource utilization
numbers based on programmable logic cells, for different standalone
Rocket core configurations and recent hardware accelerators found
in the literature [9, 11].

In Figure 1, we evaluated four configurations (a, b, c, and d)
against the available resources present in Zybo, Zedboard, and
ZC706 emulation boards. A single Rocket core with 16 KB of L1
cache, represented by configuration (a), already takes up to 61.54%
of the resources for the medium range emulation platform or the
Zedboard. Whereas configuration (b) based on a Rocket dual-core
is only feasible in the most expensive platform (ZC706). Also, we
estimate how many resources a single Rocket core described in (a)
uses when it is connected to two different hardware accelerators (c,
d). Configuration (c) shows that a single Rocket core connected to
a convolutional neural network accelerator [11] barely fits in the
ZC706 board. Conversely, a bilateral solver accelerator [9], used for
virtual reality video, does not fit in any supported emulation board
as shown in configuration (d).

In this paper, we propose a hardware mechanism called RV-IOV
that extends available platforms by decoupling Rocket cores from
the host. Thus, larger systems such as the ones mentioned above
are realizable while reusing existing emulation infrastructure. Fur-
thermore, processor decoupling is achieved using I/O virtualization,
allowing multiple isolated Rocket cores to be implemented on the
same ASIC or FPGA and shared the same host, making RV-IOV
ideal for collaborative research projects sharing the same silicon
die.
The contributions of this paper are:

• We propose hardware support, called RV-IOV, for imple-
menting multiple Rocket cores on ASIC prototypes or FPGA
emulation boards.

• We describe how RV-IOVs enable five Rocket cores share the
same host on a novel system-on-chip design called Celerity
implemented in TSMC 16 nm.

• We demonstrate the flexibility of RV-IOVs by implementing
a Rocket core in a Multi-FPGA emulation environment based
on the Zedboard and the DoubleTrouble board [4].

• We evaluate the overhead of RV-IOV based systems, under
two FPGA configurations, using seven benchmarks available
to the RISC-V community [18].

2 EMULATION INFRASTRUCTURE
Current RISC-V prototyping efforts cover both hardware and soft-
ware domains. The hardware support for RISC-V is provided by a
chip generator [1, 19], hardware construction language [2, 12, 25],
and hardware emulation infrastructure [13]. In addition to hardware
support, there are software tools and libraries for compiling RISC-V
programs [15], managing a tethered Rocket core [14], handling
system calls [17], and synthetic benchmarks [18]. The following
paragraphs cover essential components for emulating a Rocket core
in the available emulation platforms including Zybo, Zedboard, and
ZC706.
Hardware support. The hardware architecture consists of a host
processor (ARM) and programmable logic (FPGA) where the actual

Rocket core is implemented as shown in Figure 2. A tethered Rocket
core has two interfaces: host and memory. The host interface is used
by the host processor to control the Rocket core. Host transactions
are initiated by the host processor, the master, and acknowledged by
the Rocket core, the slave. The flow control used by host interface in
the Rocket core is based on valid and ready, while the host processor
uses AXI4 [29]. Therefore, a flow control translation is required as
shown in Figure 2.

Unlike the host interface, the memory interface for the Rocket
core is AXI4 compliant and allows direct connection to the host
processor. In contrast to the host, the Rocket core creates memory
requests as a master while the host processor is in charge of han-
dling these requests and creating responses frommain memory, as a
slave. These memory operations are entirely managed in hardware
without any software intervention.

Figure 2: Rocket core emulation platform.

Software tools and libraries.A small set of software libraries run-
ning on the host processor are responsible for extending Rocket core
capabilities via the host interface. There are two libraries needed
by the Rocket core to run programs during emulation, a front-end
server (fesvr) [14], and a proxy-kernel (pk) [17]. The front-end
server can be considered as low-level library that implements basic
functions required by the tethered Rocket core. This includes load-
ing ELF binaries, emulating peripheral devices, and terminating
RISC-V programs when they finish running on the Rocket core.
With these features in place, bare-metal programs can be properly
executed and tested. Finally, the proxy-kernel handles system calls
and allows more complex programs to run on the Rocket core.

3 RV-IOV HARDWARE SUPPORT
RISC-V I/O virtualization or RV-IOV is a hardware mechanism de-
veloped in SystemVerilog RTL that allows tethered Rocket cores to
be decoupled from its host. This is a required feature for Rocket pro-
totyping infrastructure in cases when Rocket cores are implemented
in ASICs, while still reusing available host emulation infrastruc-
ture. Additionally, FPGA emulation systems benefit from RV-IOV
because it enables emulation of larger Rocket core configurations.
These designs can be implemented in external platforms that sup-
port millions of programmable logic cells such as the ones found in
latest FPGAs [30].
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Figure 3: High level view of a RV-IOV based system.

A system level view of RV-IOV is given in Figure 3. Each Rocket
core requires a pair of RV-IOVs, one for the host and another for the
client connected to the core. The RV-IOV instantiated in the host
is implemented in an emulation platform similar to the Zedboard
or ZC706, and the RV-IOV placed in the client is implemented in
the same technology as the Rocket core either FPGAs or ASICs.
This end-to-end hardware mechanism, from host to client, provides
I/O virtualization for both the host and Rocket core. We achieve
scalability by adding tags to packets according to core id using a
switch as shown in Figure 3. This allows multiple Rocket cores to
operate under the illusion of having multiple host processors while
sharing the same host.

The architecture of the RV-IOV for both the host and client is
described in Figure 4. There are two major functions executed by a
RV-IOV, memory serialization and stream interleaving.
Memory serialization. In this stage, the memory protocol based
on AXI4 is serialized or de-serialized depending on whether the
module is located in the client or the host respectively. The RV-
IOV in the client merges the five AXI4 channels into a single bi-
directional one, while the RV-IOV in the host converts it back to
AXI4. Figure 5 shows a finite state machine for write and read
operations.

A write operation starts with an address request packet (aw),
follow by eight data packets (w), and finishes with an acknowledge
packet (b). Similar to the write operation, the read operation starts
with an address request packet (ar), and waits until the requested
data packets, eight in this case, are available (r). In contrast to
writes, read operations are not acknowledged. In addition to these
procedures, we considered two policies to implement these opera-
tions. One policy is prioritize writes over reads. If there is a write
and a read at the same time, then the write is taken over the read.
The second policy is that operations are non-preemptive, i.e. , write
and read operations are never interrupted until completion.
Stream interleaving. After memory serialization, memory and
host streams can be interleaved over a shared interconnect as shown
in Figure 4. On the client side, streams are tagged and queued on
intermediate buffers. Next, buffers are dequeued in a round-robin
fashion into a single stream. Later in the host, packets are mapped
to the corresponding buffer according to their type, either host or
memory. Additionally, buffers are sized with respect to bandwidth

(a) Host

(b) Client

Figure 4: RV-IOV client and host architecture.

Figure 5: Memory serialization.

delay product between the host and client. Finally, end-to-end flow
control, between RV-IOVs, is achieved using a credit protocol.

4 ASIC IMPLEMENTATION
In this section, we briefly explain the Celerity design and how RV-
IOVs were used. A more detailed description of Celerity SoC can be
found in [22, 23]. The design consist in a 5 x 5 mm 350M-transistor
system-on-chip (SoC) implemented in TSMC 16 nm. The SoC is
based on a tiered parallel architecture, providing an interesting
fabric for embedded applications. The architecture is composed of
three tiers, a general purpose tier, a massively parallel tier, and a
specialization tier with RISC-V accelerators. The general purpose
tier has five 64-bit Rocket cores generated using the rocket chip
generator [1, 19] and the hardware construction language Chisel [2,
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12, 25]. Next, there are 496 32-bit RISC-V processors defining the
massively parallel tier developed using SystemVerilog RTL. Lastly,
the specialization tier is based on binarized neural network (BNN)
built using Cadence StratusHLS tool. The Celerity chip was taped
out in May 2017, and it is expected to return from foundry in
September 2017.

Five client RV-IOVs are used in Celerity in the general purpose
tier, connected to the five 64-bit Rocket cores. These cores together
with RV-IOVs work as a gateway to the other two tiers through
the RISC-V accelerator interface or RoCC. Therefore, a single host
emulation platform such as the Zedboard can manage the five
Rocket cores. The Zedboard provides DRAM memory, storage, and
other resources to the Celerity SoC.

5 FPGA EVALUATION
In this section, we explain how the baseline platform Zedboard was
extended to evaluate different emulation scenarios for RV-IOV. We
use the Zedboard as our baseline platform, because it is supported
by RISC-V community, falls into mid-size category, and is common
in academia. One option for extending the Zedboard is by the FPGA
Mezzanine Card or FMC, which is a high speed I/O mezzanine port
that expands the board via a daughter board [24]. We extend the
Zedboard by attaching, through FMC, an open source emulation
platform called DoubleTrouble [4] as shown in Figure 6.

Figure 6: RV-IOV FPGA evaluation system, Zedboard (left)
and DoubleTrouble (right).

The DoubleTrouble board is a cost-effective and open-source
emulation platform based on two Xilinx Spartan6 FPGAs, one con-
nected to the FMC port called gateway FPGA and the other called
client FPGA. The purpose of this board is to provide emulation
infrastructure that can be later leveraged for ASIC prototypes.

The gateway and client FPGAs are based on a 45 nm chip that
supports I/O voltages ranging from 1.2 V up to 3.3 V, providing
support for a wide range of ASIC technology nodes. Additionally,
the Spartan6 family offers advaced high-speed I/O features such as
SerDes, input and output delay lines, and differential signaling at a
reasonable price. Next to the gateway, the client FPGA emulates
the ASIC design. The purpose of the client FPGA is to emulate
the high risk implementation, which will later be replaced by the
ASIC tapeout while reusing the rest of the system. This reduces
considerably the overhead of bringing up the chip.

Interestingly, the Zedboard and DoubleTrouble board allow us
to evaluate two emulation scenarios for the Rocket core. First, a
two FPGA system called one-hop system, composed of a host and

gateway FPGA. The Rocket core is implemented in the gateway
FPGA. The second system, two-hop, is based on three FPGAs. This
system adds a client FPGA to the one-hop system, located in the
DoubleTrouble board. Unlike the one-hop system, the two-hop
system emulates the Rocket core in the client FPGA. Furthermore,
we implemented and evaluated a single Rocket core with 16 KB of
L1 cache for both systems.

Figure 7: System level view of the one-hop system. Host
FPGA (Zedboard) and Gateway FPGA (DoubleTrouble)

One-hop system. A high-level view of this system is described in
Figure 7. Here, the host processor is connected to the host RV-IOV,
which send and receives Rocket packets from and to a switch. Next,
a high-speed IO module transfer packets from the host FPGA to the
gateway FPGA at 8.8 Gbps using SerDes working in DDR mode.
Later in the client, Rocket packets are processed by the high-speed
IO module, and then forwarded to the switch and client RV-IOV.
This process happens in both directions between the Rocket and
host processors. As a result, the Rocket core implemented in the
gateway FPGA operates seamlessly one-hop away from its host.

Figure 8: System level view of the two-hop system. Host
FPGA (Zedboard) and Gateway/Client FPGA (DoubleTrou-
ble)

Two-hop system. This system adds another FPGA to the one-hop
system, a client FPGA, as shown in Figure 8. One key difference
compared to the one-hop system is that the gateway FPGA together
with the client FPGA implement a source synchronous IO protocol.
For these experiments, the data rate for this IO protocol was set at
1.28Gbpswith capabilities of up to 10x higher. Additional properties
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of this protocol include error detection/correction and channel
calibration. These properties comes at the expense of performance
but ensures reliability and flexibility for ASIC prototypes.

There are two reasons for evaluating this particular system.
First, we demonstrate that Rocket packets can be split and merged
through source synchronous IO like interfaces without affecting
the functionality of RV-IOV nor the Rocket core. Second, we show
the flexibility provided by the RV-IOV to the Rocket core; there is
no limitation on where the Rocket core is implemented as long the
RV-IOV mechanism is used.

Figure 9: Execution time measured in the host for the two
evaluated systems and the baseline.

6 PRELIMINARY RESULTS
We run seven bare-metal benchmarks available for RISC-V proces-
sors [18] and measure the execution time for the two implemented
systems and the baseline emulation system based on only the Zed-
board (without RV-IOV). Results are shown in Figure 9.

It is important to note that this is the default VLSI configuration
for the Rocket core. This configuration is based on single-core with
16 KB of L1 cache and without L2 cache. Additionally, the source
synchronous IO used in the two-hop system is not optimized and
not working at full speed. Therefore, IO intensive benchmarks are
impacted significantly for the two-hop system.

7 CONCLUSION
This paper presents a new hardware mechanism called RV-IOV that
provides I/O virtualization support to Rocket cores and increases
implementation flexibility for both ASIC and FPGA based designs.
RV-IOV improves current emulation infrastructures by allowing
larger Rocket core configurations, i.e. multi-core and many-core
Rocket systems, implemented on more resourceful emulation plat-
forms. The benefits of RV-IOVs are not exclusive to standalone
Rocket cores but can be applied to extend Rocket cores with more
powerful hardware accelerators.
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