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Where does dark silicon come from? 
(And how dark is it going to be?) 
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Utilization Wall: 

With each successive process generation, the percentage 
of a chip that can actively switch drops exponentially due 
to power constraints. 
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We've Hit The Utilization Wall 

  Scaling theory 
–  Transistor and power budgets 

are no longer balanced 
–  Exponentially increasing 

problem! 

  Experimental results 
–  Replicated a small datapath 
–  More "dark silicon" than active 

  Observations in the wild 
–  Flat frequency curve 
–  "Turbo Mode" 
–  Increasing cache/processor ratio 

Utilization Wall: With each successive process generation, the percentage of 
a chip that can actively switch drops exponentially due to power constraints. 
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     Classical scaling 
Device count  S2 

Device frequency  S 
Device power (cap)  1/S 
Device power (Vdd)  1/S2 

Utilization   1 

     Leakage-limited scaling 
Device count   S2 

Device frequency  S 
Device power (cap)  1/S 
Device power (Vdd) ~1 
Utilization   1/S2 
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We've Hit The Utilization Wall 
Utilization Wall: With each successive process generation, the percentage of 
a chip that can actively switch drops exponentially due to power constraints. 

2.8x 

2x 

The utilization wall will change the way 
everyone builds processors. 
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Utilization Wall:  
Dark Implications for Multicore 

4 cores @ 1.8 GHz 

4 cores @ 2x1.8 GHz 
(12 cores dark) 

2x4 cores @ 1.8 GHz 
(8 cores dark, 8 dim) 

(Industry’s Choice) 

.…
 

65 nm 32 nm 

.…
 

.…
 

Spectrum of tradeoffs 
between # of cores and  
frequency 

Example: 
65 nm  32 nm (S = 2)   



What do we do with 
dark silicon? 
  Goal: Leverage dark silicon to scale the utilization wall 

  Insights: 
–  Power is now more expensive than area 
–  Specialized logic can improve energy efficiency (10–1000x) 

  Our approach: 
–  Fill dark silicon with specialized cores to save energy on  

common applications 
–  Provide focused reconfigurability to handle evolving workloads 
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Conservation Cores 
  Specialized circuits for 

reducing energy 
–  Automatically generated from hot 

regions of program source code 
–  Patching support future-proofs the 

hardware 

  Fully-automated toolchain 
–  Drop-in replacements for code 
–  Hot code implemented by c-cores, 

cold code runs on host CPU 
–  HW generation/SW integration 

  Energy-efficient 
–  Up to 18x for targeted hot code 

D-cache 

Host 
CPU 

(general-purpose 
processor) 

I-cache 

Hot code 

Cold code 

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al., 
ASPLOS '10 

C-core 
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The C-core Life Cycle 
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Outline 

  Utilization wall and dark silicon 

  GreenDroid 

  Conservation cores 

  GreenDroid energy savings 

  Conclusions 



Emerging Trends 

Mobile application processors are becoming a dominant  
computing platform for end users. 

The utilization wall is exponentially worsening the  
dark silicon problem. 
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1Q Shipments, 
Thousands 

Specialized architectures are receiving more and more 
attention because of energy efficiency. 

14 



Mobile Application Processors 
Face the Utilization Wall 
  The evolution of mobile application processors mirrors 

that of microprocessors 

  Application processors 
face the utilization wall 

–  Growing performance 
demands 

–  Extreme power 
constraints 

1985 1990 1995 2000 2005 2010 2015 

Intel 
ARM 

15 

pipelining 

superscalar 

out-of-order 

multicore 

StrongARM 

Core Duo 

486 

586 

686 

Cortex-A8 

Cortex-A9 

Cortex-A9 
MPCore 



Hardware 

Linux Kernel 

Libraries Dalvik 

Applications 

Android™ 

  Google’s OS + app. environment for mobile devices 

  Java applications run on the  
Dalvik virtual machine 

  Apps share a set of libraries 
(libc, OpenGL, SQLite, etc.) 
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Applying C-cores to  
Android 
  Android is well-suited for c-cores 

–  Core set of commonly used applications 
–  Libraries are hot code 
–  Dalvik virtual machine is hot code 
–  Libraries, Dalvik, and kernel & 

application hotspots  c-cores 

–  Relatively short hardware 
replacement cycle 

17 
Hardware 

Linux Kernel 

Libraries Dalvik 

Applications 

C-cores 



Targeted 

Broad-based 

  Profiled common Android apps to find the hot spots, including: 
–  Google: Browser, Gallery, Mail, Maps, Music, Video 
–  Pandora 
–  Photoshop Mobile 
–  Robo Defense game 

  Broad-based c-cores 
–  72% code sharing 

  Targeted c-cores 
–  95% coverage with just 

43,000 static instructions 
(approx. 7 mm2) 
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Android Workload Profile 
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GreenDroid: Applying Massive Specialization 
to Mobile Application Processors 

Android 
workload 

Automatic 
c-core 
generator 

Conservation cores 
(c-cores) 

Low-power  
tiled multicore  

lattice 19 



GreenDroid Tiled Architecture 
  Tiled lattice of 16 cores 
  Each tile contains 

–  6-10 Android c-cores 
(~125 total) 

–  32 KB D-cache 
(shared with CPU) 

–  MIPS processor 
•  32 bit, in-order, 

7-stage pipeline 
•  16 KB I-cache 
•  Single-precision FPU 

–  On-chip network router 
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GreenDroid Tile Floorplan 

  1.0 mm2 per tile 

  50% C-cores 
  25% D-cache 
  25% MIPS core,  

I-cache, and  
on-chip network 

1 mm 

1 mm 
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GreenDroid Tile Skeleton 

  45 nm process 
  1.5 GHz 
  ~30k instances 

  Blank space is filled with 
a collection of c-cores 

  Each tile contains 
different c-cores 

22 
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Outline 

  Utilization wall and dark silicon 

  GreenDroid 

  Conservation cores 

  GreenDroid energy savings 

  Conclusions 
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Constructing a C-core 
  C-cores start with source code 

–  Can be irregular, integer programs 
–  Parallelism-agnostic 

  Supports almost all of C: 
–  Complex control flow 

e.g., goto, switch, function calls 
–  Arbitrary memory structures 

e.g., pointers, structs, stack, heap 
–  Arbitrary operators 

e.g., floating point, divide 
–  Memory coherent with host CPU 

sumArray(int *a, int n) 
{ 
  int i = 0; 
  int sum = 0; 

  for (i = 0; i < n; i++) { 
    sum += a[i]; 
  } 

  return sum; 
} 
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Constructing a C-core 
  Compilation 

–  C-core selection 
–  SSA, infinite register, 

3-address code 
–  Direct mapping from 

CFG and DFG 
–  Scan chain insertion 

  Verilog  Place & Route 
–  45 nm process 
–  Synopsys CAD flow 

•  Synthesis 
•  Placement 
•  Clock tree generation 
•  Routing 

0.01 mm2, 1.4 GHz 



C-cores Experimental Data 
  We automatically built 21 c-cores for 9 "hard" 

applications 

–  45 nm TSMC 

–  Vary in size from 
0.10 to 0.25 mm2 

–  Frequencies from 
1.0 to 1.4 GHz 
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Application # 
C-cores 

Area 
(mm2) 

Frequency 
(MHz) 

 bzip2 1 0.18 1235 
 cjpeg 3 0.18 1451 
 djpeg 3 0.21 1460 
 mcf 3 0.17 1407 
 radix 1 0.10 1364 
 sat solver 2 0.20 1275 
 twolf 6 0.25 1426 
 viterbi 1 0.12 1264 
 vpr 1 0.24 1074 
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C-core Energy Efficiency: 
Non-cache Operations 

  Up to 18x more energy-efficient (13.7x on average), 
compared to running on the MIPS processor 



D-cache 
6% Datapath 

3% 

Energy 
Saved 
91% 

D-cache 
6% 

Datapath 
38% 

Reg. File 
14% 

Fetch/ 
Decode 

19% 

I-cache 
23% 

Where do the energy savings 
come from? 
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MIPS baseline 
91 pJ/instr. 

C-cores 
8 pJ/instr. 



Supporting Software Changes 

  Software may change – HW must remain usable 
–  C-cores unaffected by changes to cold regions 

  Can support any changes, through patching 
–  Arbitrary insertion of code – software exception 

mechanism 
–  Changes to program constants – configurable registers 
–  Changes to operators – configurable functional units 

  Software exception mechanism 
–  Scan in values from c-core 
–  Execute in processor 
–  Scan out values back to c-core to resume execution 

29 
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Patchability Payoff: Longevity 

  Graceful degradation 
–  Lower initial efficiency 
–  Much longer useful lifetime 

  Increased viability 
–  With patching, utility 

lasts ~10 years for 
4 out of 5 applications 

–  Decreases risks of 
specialization 
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Outline 

  Utilization wall and dark silicon 

  GreenDroid 

  Conservation cores 

  GreenDroid energy savings 

  Conclusions 



GreenDroid: 
Energy per Instruction 
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  More area dedicated to c-cores yields higher execution 
coverage and lower energy per instruction (EPI) 

  7 mm2 of c-cores provides: 
–  95% execution coverage 
–  8x energy savings over MIPS core 
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What kinds of hotspots turn into 
GreenDroid c-cores? 
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C-core Library # 
Apps 

Coverage 
(est., %) 

Area 
(est., mm2) 

Broad-
based 

dvmInterpretStd libdvm 8 10.8 0.414 Y 

scanObject libdvm 8 3.6 0.061 Y 

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y 

src_aligned libc 8 2.3 0.005 Y 

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N 

less_than_32_left libc 7 1.7 0.013 Y 

cached_aligned32 libc 9 1.5 0.004 Y 

.plt <many> 8 1.4 0.043 Y 

memcpy libc 8 1.2 0.003 Y 

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y 

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y 

DiagonalInterpMC libomx 1 1.1 0.054 N 

blitRect libskia 1 1.1 0.008 N 

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N 

inflate libz 4 0.9 0.055 Y 

. . . . . . . . . . . . . . . . . . 



GreenDroid: Projected Energy 
Aggressive mobile application processor 
(45 nm, 1.5 GHz) 

GreenDroid c-cores 

GreenDroid c-cores + cold code (est.) 

  GreenDroid c-cores use 11x less energy per instruction 
than an aggressive mobile application processor 

  Including cold code, GreenDroid will still save ~7.5x energy 
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91  pJ/instr. 

8  pJ/instr. 

12  pJ/instr. 



Project Status 
  Completed 

–  Automatic generation of c-cores from source code to place & route 
–  Cycle- and energy-accurate simulation (post place & route) 
–  Tiled lattice, placed and routed 
–  FPGA emulation of c-cores and tiled lattice 

  Ongoing work 
–  Finish full system Android emulation for more accurate 

workload modeling 
–  Finalize c-core selection based on full system Android 

workload model 
–  Timing closure and tapeout 

35 
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GreenDroid Conclusions 
  The utilization wall forces us to change how we  

build hardware 

  Conservation cores use dark silicon to attack 
the utilization wall 

  GreenDroid will demonstrate the benefits of c-cores 
for mobile application processors 

  We are developing a 45 nm tiled prototype at UCSD 
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Automated Measurement 
Methodology 
  C-core toolchain 

–  Specification generator 
–  Verilog generator 

  Synopsys CAD flow 
–  Design Compiler 
–  IC Compiler 
–  45 nm library 

  Simulation 
–  Validated cycle-accurate  

c-core modules 
–  Post-route gate-level 

simulation 

  Power measurement 
–  VCS + PrimeTime 

Source 

Rewriter 

gcc 

C-core  
specification 
 generator 

Verilog 
generator 

Synopsys flow 
Simulation 

Power 
measurement 

Hot code 

Hotspot analyzer 

Cold code 


