
GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,
University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010 Hot Chips 22

Where does dark silicon come from?
(And how dark is it going to be?)

2

Utilization Wall:

With each successive process generation, the percentage
of a chip that can actively switch drops exponentially due
to power constraints.

3

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

4

 Classical scaling
Device count S2

Device frequency S
Device power (cap) 1/S
Device power (Vdd) 1/S2

Utilization 1

 Leakage-limited scaling
Device count S2

Device frequency S
Device power (cap) 1/S
Device power (Vdd) ~1
Utilization 1/S2

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

5

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2x

2x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

6

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2.8x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

7

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

8

We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

The utilization wall will change the way
everyone builds processors.

9 9

Utilization Wall:
Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm  32 nm (S = 2)

What do we do with
dark silicon?
  Goal: Leverage dark silicon to scale the utilization wall

  Insights:
–  Power is now more expensive than area
–  Specialized logic can improve energy efficiency (10–1000x)

  Our approach:
–  Fill dark silicon with specialized cores to save energy on

common applications
–  Provide focused reconfigurability to handle evolving workloads

10 10

11

Conservation Cores
  Specialized circuits for

reducing energy
–  Automatically generated from hot

regions of program source code
–  Patching support future-proofs the

hardware

  Fully-automated toolchain
–  Drop-in replacements for code
–  Hot code implemented by c-cores,

cold code runs on host CPU
–  HW generation/SW integration

  Energy-efficient
–  Up to 18x for targeted hot code

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,
ASPLOS '10

C-core

12

The C-core Life Cycle

13

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

Emerging Trends

Mobile application processors are becoming a dominant
computing platform for end users.

The utilization wall is exponentially worsening the
dark silicon problem.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1Q'07 1Q'08 1Q'09 1Q'10 1Q'11

Dell

Android iPhone

Historical Data: Gartner

1Q Shipments,
Thousands

Specialized architectures are receiving more and more
attention because of energy efficiency.

14

Mobile Application Processors
Face the Utilization Wall
  The evolution of mobile application processors mirrors

that of microprocessors

  Application processors
face the utilization wall

–  Growing performance
demands

–  Extreme power
constraints

1985 1990 1995 2000 2005 2010 2015

Intel
ARM

15

pipelining

superscalar

out-of-order

multicore

StrongARM

Core Duo

486

586

686

Cortex-A8

Cortex-A9

Cortex-A9
MPCore

Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

  Google’s OS + app. environment for mobile devices

  Java applications run on the
Dalvik virtual machine

  Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)

16

Applying C-cores to
Android
  Android is well-suited for c-cores

–  Core set of commonly used applications
–  Libraries are hot code
–  Dalvik virtual machine is hot code
–  Libraries, Dalvik, and kernel &

application hotspots  c-cores

–  Relatively short hardware
replacement cycle

17
Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores

Targeted

Broad-based

  Profiled common Android apps to find the hot spots, including:
–  Google: Browser, Gallery, Mail, Maps, Music, Video
–  Pandora
–  Photoshop Mobile
–  Robo Defense game

  Broad-based c-cores
–  72% code sharing

  Targeted c-cores
–  95% coverage with just

43,000 static instructions
(approx. 7 mm2)

18

Android Workload Profile

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

GreenDroid: Applying Massive Specialization
to Mobile Application Processors

Android
workload

Automatic
c-core
generator

Conservation cores
(c-cores)

Low-power
tiled multicore

lattice 19

GreenDroid Tiled Architecture
  Tiled lattice of 16 cores
  Each tile contains

–  6-10 Android c-cores
(~125 total)

–  32 KB D-cache
(shared with CPU)

–  MIPS processor
•  32 bit, in-order,

7-stage pipeline
•  16 KB I-cache
•  Single-precision FPU

–  On-chip network router

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1
C

P
U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

20

GreenDroid Tile Floorplan

  1.0 mm2 per tile

  50% C-cores
  25% D-cache
  25% MIPS core,

I-cache, and
on-chip network

1 mm

1 mm

OCN

D $

C
P

U

I $

 C C
 C

 C

 C

 C

 C

 C

 C C

21

GreenDroid Tile Skeleton

  45 nm process
  1.5 GHz
  ~30k instances

  Blank space is filled with
a collection of c-cores

  Each tile contains
different c-cores

22

OCN

D $

C
P

U

I $

C-cores

23

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

24

Constructing a C-core
  C-cores start with source code

–  Can be irregular, integer programs
–  Parallelism-agnostic

  Supports almost all of C:
–  Complex control flow

e.g., goto, switch, function calls
–  Arbitrary memory structures

e.g., pointers, structs, stack, heap
–  Arbitrary operators

e.g., floating point, divide
–  Memory coherent with host CPU

sumArray(int *a, int n)
{
 int i = 0;
 int sum = 0;

 for (i = 0; i < n; i++) {
 sum += a[i];
 }

 return sum;
}

25

Constructing a C-core
  Compilation

–  C-core selection
–  SSA, infinite register,

3-address code
–  Direct mapping from

CFG and DFG
–  Scan chain insertion

  Verilog  Place & Route
–  45 nm process
–  Synopsys CAD flow

•  Synthesis
•  Placement
•  Clock tree generation
•  Routing

0.01 mm2, 1.4 GHz

C-cores Experimental Data
  We automatically built 21 c-cores for 9 "hard"

applications

–  45 nm TSMC

–  Vary in size from
0.10 to 0.25 mm2

–  Frequencies from
1.0 to 1.4 GHz

26

Application #
C-cores

Area
(mm2)

Frequency
(MHz)

 bzip2 1 0.18 1235
 cjpeg 3 0.18 1451
 djpeg 3 0.21 1460
 mcf 3 0.17 1407
 radix 1 0.10 1364
 sat solver 2 0.20 1275
 twolf 6 0.25 1426
 viterbi 1 0.12 1264
 vpr 1 0.24 1074

27

C-core Energy Efficiency:
Non-cache Operations

  Up to 18x more energy-efficient (13.7x on average),
compared to running on the MIPS processor

D-cache
6% Datapath

3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Where do the energy savings
come from?

28

MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.

Supporting Software Changes

  Software may change – HW must remain usable
–  C-cores unaffected by changes to cold regions

  Can support any changes, through patching
–  Arbitrary insertion of code – software exception

mechanism
–  Changes to program constants – configurable registers
–  Changes to operators – configurable functional units

  Software exception mechanism
–  Scan in values from c-core
–  Execute in processor
–  Scan out values back to c-core to resume execution

29

30

Patchability Payoff: Longevity

  Graceful degradation
–  Lower initial efficiency
–  Much longer useful lifetime

  Increased viability
–  With patching, utility

lasts ~10 years for
4 out of 5 applications

–  Decreases risks of
specialization

31

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

GreenDroid:
Energy per Instruction

32

  More area dedicated to c-cores yields higher execution
coverage and lower energy per instruction (EPI)

  7 mm2 of c-cores provides:
–  95% execution coverage
–  8x energy savings over MIPS core

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

En
er

gy
 p

er

In
st

ru
ct

io
n

(p
J)

C-core Area (mm2)

What kinds of hotspots turn into
GreenDroid c-cores?

33

C-core Library #
Apps

Coverage
(est., %)

Area
(est., mm2)

Broad-
based

dvmInterpretStd libdvm 8 10.8 0.414 Y

scanObject libdvm 8 3.6 0.061 Y

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y

src_aligned libc 8 2.3 0.005 Y

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N

less_than_32_left libc 7 1.7 0.013 Y

cached_aligned32 libc 9 1.5 0.004 Y

.plt <many> 8 1.4 0.043 Y

memcpy libc 8 1.2 0.003 Y

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y

DiagonalInterpMC libomx 1 1.1 0.054 N

blitRect libskia 1 1.1 0.008 N

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N

inflate libz 4 0.9 0.055 Y

.

GreenDroid: Projected Energy
Aggressive mobile application processor
(45 nm, 1.5 GHz)

GreenDroid c-cores

GreenDroid c-cores + cold code (est.)

  GreenDroid c-cores use 11x less energy per instruction
than an aggressive mobile application processor

  Including cold code, GreenDroid will still save ~7.5x energy

34

91 pJ/instr.

8 pJ/instr.

12 pJ/instr.

Project Status
  Completed

–  Automatic generation of c-cores from source code to place & route
–  Cycle- and energy-accurate simulation (post place & route)
–  Tiled lattice, placed and routed
–  FPGA emulation of c-cores and tiled lattice

  Ongoing work
–  Finish full system Android emulation for more accurate

workload modeling
–  Finalize c-core selection based on full system Android

workload model
–  Timing closure and tapeout

35

36

GreenDroid Conclusions
  The utilization wall forces us to change how we

build hardware

  Conservation cores use dark silicon to attack
the utilization wall

  GreenDroid will demonstrate the benefits of c-cores
for mobile application processors

  We are developing a 45 nm tiled prototype at UCSD

GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,
University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010 Hot Chips 22

Backup Slides

38

39

Automated Measurement
Methodology
  C-core toolchain

–  Specification generator
–  Verilog generator

  Synopsys CAD flow
–  Design Compiler
–  IC Compiler
–  45 nm library

  Simulation
–  Validated cycle-accurate

c-core modules
–  Post-route gate-level

simulation

  Power measurement
–  VCS + PrimeTime

Source

Rewriter

gcc

C-core
specification
 generator

Verilog
generator

Synopsys flow
Simulation

Power
measurement

Hot code

Hotspot analyzer

Cold code

