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Where does dark silicon come from? 
And how dark is it going to be? 

The Utilization Wall: 

With each successive process generation, the 
percentage of a chip that can switch at full 
frequency drops exponentially due to power 
constraints. 

[Venkatesh, ASPLOS ‘10] 



Scaling 101: Moore’s Law 
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Scaling 101:  
 Transistors scale as S2  



Advanced Scaling: 
   Dennard:  “Computing Capabilities  
                         Scale by S3 = 2.8x” 
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Design of Ion-Implanted MOSFETs with Very Small Dimensions 
Dennard et al, 1974 
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But wait: switching 2.8x times 
as many transistors 
per unit time –  
what about power?? 
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Dennard:   
 “We can keep power consumption  
       constant” 
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Fast forward to 2005:   
 Threshold Scaling Problems due to 
Leakage Prevents Us From Scaling Voltage 
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Full Chip, Full Frequency Power Dissipation 
   Is increasing exponentially by 2x with 
   every process generation 
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Factor of S2 

    = 2X shortage!! 

[ASPLOS 2010, Venkatesh] 



Multicore has a lot of Dark Silicon in 
its Future 

4 cores @ 1.8 GHz 

4 cores @ 2x1.8 GHz 
(12 cores dark) 

2x4 cores @ 1.8 GHz 
(8 cores dark, 8 dim) 

(Industry’s Choice, 
  next slide) 
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Spectrum of tradeoffs 
between # of cores and  
frequency 

Example: 
65 nm  32 nm (S = 2)   

[Hotchips 2010] 
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The utilization wall will change the way 
everyone builds chips. 



This Talk 

 The Dark Silicon Problem 

 How to use Dark Silicon to improve energy efficiency 
   (Conservation Cores) 

 The GreenDroid Mobile Application Processor 



17 

What do we do with Dark Silicon? 
  Idea: Leverage dark silicon to “fight” the 

utilization wall 

  Insights: 
–  Power is now more expensive than area 
–  Specialized logic can improve energy efficiency by 

10-1000x 

  Our Approach: 
–  Fill dark silicon with Conservation Cores, or c-cores, 

which are specialized energy-saving 
    coprocessors that save energy on common apps 
–  Execution jumps from c-core to c-core 
–  Power-gate c-cores that are not currently in use 

  Conservation Cores provide an architectural way to trade 
dark area for an effective increase in power budget! 

Dark Silicon 



  Although they also tend to be more energy-efficient, 
accelerators focus on attaining speedup and target codes 
which are relatively easy to parallelize: medium or high 
parallelism, high regularity and a relatively small code base. 

  Many applications use irregular, non-parallelizable code: 

  Amdahl's Law: Overall energy efficiency depends on the 
fraction of the total code execution that is optimized! 

  To gain large energy savings through specialization: 
–  We need to target irregular code as well as regular code, and  
–  We need many, many such coprocessors to get high coverage 

•  need to solve both design effort and architectural scalability problems 

C-cores compared to Accelerators 



Conservation Cores (C-cores) 
  Specialized coprocessors for 

reducing energy in irregular code 
–  Hot code implemented by c-cores, 

cold code runs on host CPU; 
–  C-cores use up to 18x less energy 
–  Shared D-cache  Coherent Memory 
–  Patching support in hardware 

  Fully-automated toolchain 
–  No “deep” analysis or 

transformations required 
–  C-cores automatically generated from 

hot program regions 
–  Design-time scalable 

•  Emphasize Quantity over Quality! 
•  Simple conversion into HW buys us big 

gains, no need for heroic compiler efforts. 

D-cache 

Host 
CPU 

(general-purpose 
processor) 

I-cache 

Hot code 

Cold code 

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al., 
ASPLOS '10 

C-core 



C-core 
Generation 

for (i=0; i<N; i++) {!
  x = A[i];!
  y = B[i];!
  C[x] = D[y] + x+y+x*y;!
}!

Start with ordinary C code. Irregular 
or regular is fine. Arbitrary control flow, 
arbitrary memory access patterns and 
complex data structures are supported. 
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C-core 
Generation 

Build a CFG; run ordinary 
compiler optimizations. 
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C-core 
Generation 

Each BB becomes a  
datapath; each 
operator turned into 
HW equivalent. 

Memory ops mux’d 
into L1 cache. 

Multiplier and FPUs 
may or may not be 
shared. 
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C-core 
Generation 

Create a state machine  
that determines which BB 
(datapath) is next. 
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0.01 mm2 in 45 nm TSMC 
runs at 1.4 GHz 
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IC Compiler, 
P&R, CTS 
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Generation 
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Via verilog, run 
through standard 

CAD flow. 



C-cores Experimental Data 
  We automatically built 21 c-cores for 9 "hard" 

applications like Spec, Mediabench, etc. 

–  45 nm TSMC 

–  Vary in size from 
0.10 to 0.25 mm2 

Application # 
C-cores 

Area 
(mm2) 

 bzip2 1 0.18 
 cjpeg 3 0.18 
 djpeg 3 0.21 
 mcf 3 0.17 
 radix 1 0.10 
 sat solver 2 0.20 
 twolf 6 0.25 
 viterbi 1 0.12 
 vpr 1 0.24 
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Typical Energy Savings 

RISC baseline 
91 pJ/instr. 

C-cores 
8 pJ/instr. 

 ~11x  
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Examing today’s smartphone 

  Lots of irregular code (desktop  mobile) 

  Utilization Wall problem is even worse on mobile! 
–  Active Power budget is set by 

(battery capacity) / (# hrs active use between recharges)  
rather than thermal design point. 



Hardware 

Linux Kernel 

Libraries Dalvik 

Applications 

Android™ 

  Google’s OS + app. environment for mobile devices 

  Java applications run on the  
Dalvik virtual machine 

  Apps share a set of libraries 
(libc, OpenGL, SQLite, etc.) 



Applying C-cores to  
Android 
  Android is well-suited for c-cores 

–  Concentrated set of commonly used applications 
•  73% of time in top 51 apps 
•  33% of time just in browser 

–  Lots of hot code is inside the  
 Libraries and Dalvik VM; 

   c-cores that target these parts 
  are reused across many apps. 

Hardware 

Linux Kernel 

Libraries Dalvik 

Applications 

C-cores 



Targeted 

Broad-based 

  Profiled common Android apps to find the hot spots, including: 
–  Google: Browser, Gallery, Mail, Maps, Music, Video 
–  Pandora 
–  Photoshop Mobile 
–  Robo Defense game 

  Broad-based c-cores 
–  72% code sharing 

  Targeted c-cores 
–  95% coverage with just 

43,000 static instructions 
(approx. 7 mm2) 

Android Workload Profile 



GreenDroid Tiled Architecture 
  Scalable C-core fabric 
  16-tiles on a NOC 
  Each tile contains 

–  6-10 Android c-cores 
(~125 total) 

–  32 KB D-cache 
(shared with CPU) 

–  RISC “host” core 
•  32 bit, in-order, 

7-stage pipeline 
•  16 KB I-cache 
•  Single-precision FPU 

–  On-chip network router 
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GreenDroid Tile Floorplan 

  Norm to 45 nm: 
–  1.0 mm2 per tile 
–  1.5 GHz 

  25% RISC core,  
I-cache, and  
on-chip network 

  25% D-cache 
  50% C-core “fill” 

1 mm 

1 mm 

OCN 
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GreenDroid: Using c-cores to reduce energy 
in mobile application processors 

Android 
workload 

Automatic 
c-core 
generator 

C-cores 
Placed-and-routed chip 
with 9 Android c-cores 

"The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future," 
Goulding-Hotta et al., IEEE Micro Mar./Apr. 2011 



GreenDroid: Projected Energy 
  GreenDroid c-cores use 11x less energy per instruction 

than an aggressive mobile application processor 

  Including cold code, GreenDroid will still save ~7.5x energy 

Aggressive mobile application processor 
(45 nm, 1.5 GHz) 

GreenDroid c-cores, 45 nm 

GreenDroid c-cores + cold code (est.) 

91  pJ/instr. 

8  pJ/instr. 

12  pJ/instr. 



Quad-core GreenDroid Prototype 

  Four heterogeneous tiles with 
~40 C-cores. 

  Synopsys IC Compiler 
  28-nm Global Foundries 
  1.5-2 GHz 
  2 mm^2 
  In verification stages 
  Multiproject Tapeout w/ UCSC 
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The UCSD GreenDroid Team 

greendroid.org 

Prof. Taylor Prof. Swanson 

Heroic 
 Students 



Conclusions 

  Dark Silicon is opening up a whole new class of 
exciting new research areas. (Submit to DaSi!) 

  Conservation cores use dark silicon to attack 
the utilization wall. 

  GreenDroid is evaluating the benefits of c-cores for 
mobile application processors; a 28-nm prototype is 
underway. 





Patchability Payoff: Longevity 

  Graceful degradation 
–  Lower initial efficiency 
–  Much longer useful lifetime 

  Can support any changes, 
through patching 
–  Arbitrary insertion of code – 

software exception mechanism 
–  Changes to program constants 
–  Changes to operators 


