
GreenDroid:
An Architecture for the
Dark Silicon Age

Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng,
Vikram Bhatt, Joe Auricchio,

Steven Swanson, Michael Bedford Taylor

University of California, San Diego

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency
 (Conservation Cores)

 The GreenDroid Mobile Application Processor

Where does dark silicon come from?
And how dark is it going to be?

The Utilization Wall:

With each successive process generation, the
percentage of a chip that can switch at full
frequency drops exponentially due to power
constraints.

[Venkatesh, ASPLOS ‘10]

Scaling 101: Moore’s Law

90 65 45 32 22 16 11 8 nm

S =
22

16
= ~1.4x

16 cores 64 cores

MIT Raw Tilera TILE64

180 nm 90 nm S = 2x
Transistors = 4x

Scaling 101:
 Transistors scale as S2

Advanced Scaling:
 Dennard: “Computing Capabilities
 Scale by S3 = 2.8x”

S

S2

S3

1
Design of Ion-Implanted MOSFETs with Very Small Dimensions
Dennard et al, 1974

If S=1.4x …

S

S2

S3

1

S2 = 2x
More Transistors

If S=1.4x …

Advanced Scaling:
 Dennard: “Computing Capabilities
 Scale by S3 = 2.8x”

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

If S=1.4x …

Advanced Scaling:
 Dennard: “Computing Capabilities
 Scale by S3 = 2.8x”

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

But wait: switching 2.8x times
as many transistors
per unit time –
what about power??

If S=1.4x …

Advanced Scaling:
 Dennard: “Computing Capabilities
 Scale by S3 = 2.8x”

Dennard:
 “We can keep power consumption
 constant”

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

Dennard:
 “We can keep power consumption
 constant”

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

Scale Vdd by S=1.4x
S2 = 2x

Fast forward to 2005:
 Threshold Scaling Problems due to
Leakage Prevents Us From Scaling Voltage

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

Scale Vdd by S=1.4x
S2 = 2x

Full Chip, Full Frequency Power Dissipation
 Is increasing exponentially by 2x with
 every process generation

S

S2

S3

1

Factor of S2

 = 2X shortage!!

[ASPLOS 2010, Venkatesh]

Multicore has a lot of Dark Silicon in
its Future

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice,
 next slide)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm 32 nm (S = 2)

[Hotchips 2010]

Multicore has a lot of Dark Silicon in
its Future

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice,
 next slide)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm 32 nm (S = 2)

[Hotchips 2010]

The utilization wall will change the way
everyone builds chips.

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency
 (Conservation Cores)

 The GreenDroid Mobile Application Processor

17

What do we do with Dark Silicon?
  Idea: Leverage dark silicon to “fight” the

utilization wall

  Insights:
–  Power is now more expensive than area
–  Specialized logic can improve energy efficiency by

10-1000x

  Our Approach:
–  Fill dark silicon with Conservation Cores, or c-cores,

which are specialized energy-saving
 coprocessors that save energy on common apps
–  Execution jumps from c-core to c-core
–  Power-gate c-cores that are not currently in use

  Conservation Cores provide an architectural way to trade
dark area for an effective increase in power budget!

Dark Silicon

  Although they also tend to be more energy-efficient,
accelerators focus on attaining speedup and target codes
which are relatively easy to parallelize: medium or high
parallelism, high regularity and a relatively small code base.

  Many applications use irregular, non-parallelizable code:

  Amdahl's Law: Overall energy efficiency depends on the
fraction of the total code execution that is optimized!

  To gain large energy savings through specialization:
–  We need to target irregular code as well as regular code, and
–  We need many, many such coprocessors to get high coverage

•  need to solve both design effort and architectural scalability problems

C-cores compared to Accelerators

Conservation Cores (C-cores)
  Specialized coprocessors for

reducing energy in irregular code
–  Hot code implemented by c-cores,

cold code runs on host CPU;
–  C-cores use up to 18x less energy
–  Shared D-cache Coherent Memory
–  Patching support in hardware

  Fully-automated toolchain
–  No “deep” analysis or

transformations required
–  C-cores automatically generated from

hot program regions
–  Design-time scalable

•  Emphasize Quantity over Quality!
•  Simple conversion into HW buys us big

gains, no need for heroic compiler efforts.

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,
ASPLOS '10

C-core

C-core
Generation

for (i=0; i<N; i++) {!
 x = A[i];!
 y = B[i];!
 C[x] = D[y] + x+y+x*y;!
}!

Start with ordinary C code. Irregular
or regular is fine. Arbitrary control flow,
arbitrary memory access patterns and
complex data structures are supported.

BB1

BB0

BB2

CFG

C-core
Generation

Build a CFG; run ordinary
compiler optimizations.

BB1

BB0

BB2

CFG

+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +
Datapath

C-core
Generation

Each BB becomes a
datapath; each
operator turned into
HW equivalent.

Memory ops mux’d
into L1 cache.

Multiplier and FPUs
may or may not be
shared.

BB1

BB0

BB2

CFG

+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +
Datapath

Inter-BB
State Machine

C-core
Generation

Create a state machine
that determines which BB
(datapath) is next.

BB1

BB0

BB2

CFG

+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +
Datapath

Inter-BB
State Machine

0.01 mm2 in 45 nm TSMC
runs at 1.4 GHz

.V

Synopsys
IC Compiler,
P&R, CTS

C-core
Generation

.V

Via verilog, run
through standard

CAD flow.

C-cores Experimental Data
  We automatically built 21 c-cores for 9 "hard"

applications like Spec, Mediabench, etc.

–  45 nm TSMC

–  Vary in size from
0.10 to 0.25 mm2

Application #
C-cores

Area
(mm2)

 bzip2 1 0.18
 cjpeg 3 0.18
 djpeg 3 0.21
 mcf 3 0.17
 radix 1 0.10
 sat solver 2 0.20
 twolf 6 0.25
 viterbi 1 0.12
 vpr 1 0.24

D-cache
6% Datapath

3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Typical Energy Savings

RISC baseline
91 pJ/instr.

C-cores
8 pJ/instr.

 ~11x

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency

 The GreenDroid Mobile Application Processor

Examing today’s smartphone

  Lots of irregular code (desktop mobile)

  Utilization Wall problem is even worse on mobile!
–  Active Power budget is set by

(battery capacity) / (# hrs active use between recharges)
rather than thermal design point.

Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

  Google’s OS + app. environment for mobile devices

  Java applications run on the
Dalvik virtual machine

  Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)

Applying C-cores to
Android
  Android is well-suited for c-cores

–  Concentrated set of commonly used applications
•  73% of time in top 51 apps
•  33% of time just in browser

–  Lots of hot code is inside the
 Libraries and Dalvik VM;

 c-cores that target these parts
 are reused across many apps.

Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores

Targeted

Broad-based

  Profiled common Android apps to find the hot spots, including:
–  Google: Browser, Gallery, Mail, Maps, Music, Video
–  Pandora
–  Photoshop Mobile
–  Robo Defense game

  Broad-based c-cores
–  72% code sharing

  Targeted c-cores
–  95% coverage with just

43,000 static instructions
(approx. 7 mm2)

Android Workload Profile

GreenDroid Tiled Architecture
  Scalable C-core fabric
  16-tiles on a NOC
  Each tile contains

–  6-10 Android c-cores
(~125 total)

–  32 KB D-cache
(shared with CPU)

–  RISC “host” core
•  32 bit, in-order,

7-stage pipeline
•  16 KB I-cache
•  Single-precision FPU

–  On-chip network router

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1
C

P
U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

GreenDroid Tile Floorplan

  Norm to 45 nm:
–  1.0 mm2 per tile
–  1.5 GHz

  25% RISC core,
I-cache, and
on-chip network

  25% D-cache
  50% C-core “fill”

1 mm

1 mm

OCN

D $

C
P

U

I $

 C C
 C

 C

 C

 C

 C

 C

 C C

GreenDroid: Using c-cores to reduce energy
in mobile application processors

Android
workload

Automatic
c-core
generator

C-cores
Placed-and-routed chip
with 9 Android c-cores

"The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future,"
Goulding-Hotta et al., IEEE Micro Mar./Apr. 2011

GreenDroid: Projected Energy
  GreenDroid c-cores use 11x less energy per instruction

than an aggressive mobile application processor

  Including cold code, GreenDroid will still save ~7.5x energy

Aggressive mobile application processor
(45 nm, 1.5 GHz)

GreenDroid c-cores, 45 nm

GreenDroid c-cores + cold code (est.)

91 pJ/instr.

8 pJ/instr.

12 pJ/instr.

Quad-core GreenDroid Prototype

  Four heterogeneous tiles with
~40 C-cores.

  Synopsys IC Compiler
  28-nm Global Foundries
  1.5-2 GHz
  2 mm^2
  In verification stages
  Multiproject Tapeout w/ UCSC

D$

CPU I$

ASPLOS ‘10

C-cores;
Patching;
Util. Wall

HOTCHIPS ‘10

GreenDroid;
Dark Silicon

Selective
 Depipelining;
Cachelets

 +

HPCA ’11

C-cores for
FPGAs

FPL ’11

Selective
 Depipelining for
 FPGAs

 +

IEEE MICRO ‘11

GreenDroid
P&R Tile

FCCM ’11

=

sum

sum i

+

=

sum

sum sum

*

=

sum

sum

alu

mux

sum i

sum += i sum *= sum

sum = alu(sum,
 mux(sum,i,muxControl),
 aluControl)

MICRO ’11

Automatic
C-core
General-
ization

The UCSD GreenDroid Team

greendroid.org

Prof. Taylor Prof. Swanson

Heroic
 Students

Conclusions

  Dark Silicon is opening up a whole new class of
exciting new research areas. (Submit to DaSi!)

  Conservation cores use dark silicon to attack
the utilization wall.

  GreenDroid is evaluating the benefits of c-cores for
mobile application processors; a 28-nm prototype is
underway.

Patchability Payoff: Longevity

  Graceful degradation
–  Lower initial efficiency
–  Much longer useful lifetime

  Can support any changes,
through patching
–  Arbitrary insertion of code –

software exception mechanism
–  Changes to program constants
–  Changes to operators

