
INVITED: BaseJump STL: SystemVerilog Needs
a Standard Template Library for Hardware Design

Michael Bedford Taylor
Bespoke Silicon Group

University of Washington
http://bjump.org/stl

ABSTRACT
We propose a Standard Template Library (STL) for synthesizeable
SystemVerilog that sharply reduces the time required to design
digital circuits. We overview the principles that underly the design
of the open-source BaseJump STL, including light-weight latency-
insensitive interfaces that yield fast microarchitectures and low bug
density; thin handshaking rules; fast porting of hardened chip re-
gions across nodes; pervasive parameterization and specialization,
and static error checking. We suggest extensions to SystemVerilog
that will make it a more functional design language, and discuss
our validation, including with the DARPA CRAFT-sponsored 16nm
TSMC Celerity SoC with 511 RISC-V cores and 385M transistors.
80% of the modules for the design were instantiated directly from
BaseJump STL, reducing verification time, accelerating develop-
ment, and showing the promise of the approach.

CCS CONCEPTS
• Hardware→ Very large scale integration design; VLSI sys-
tem specification and constraints;

KEYWORDS
Hardware Design

1 INTRODUCTION
Improvements in hardware design productivity have significantly
lagged corresponding improvements in software design produc-
tivity, despite the rising importance of specialization [5, 6, 8–11]
to address the dark silicon problem [12, 13]. Modern software pro-
gramming languages have extensive libraries of useful routines
that are tested, reusable, and highly composable. These libraries
act as a multiplier on programmer productivity, allowing them to
rapidly connect together large portions of pre-written code into
large, powerful applications. In the C/C++ software world, one of
the most transformative such libraries was the C++ Standard Tem-
plate Library (STL), which originated outside of the C++ language
but was later folded in. Early C/C++ libraries focused on providing
I/O calls and a portability interface, but, much like IP cores today in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3199848

the FPGA/ASIC world, these were “leaf” level routines, rather than
building blocks that can be composed to implement new classes
of computation and data movement. The STL, in contrast, focused
on four classes of composable blocks: containers, algorithms, func-
tions, and iterators. Containers implemented high-performance
data structures that employed asymptotically optimal algorithms
for insertion, retrieval, and removal and which through the use
of templates, could be applied to arbitrary datatypes. Algorithms
provided ways of manipulating this data, for example searching,
sorting, union, intersection, and merging. Iterators provided an
uniform interface for code to access containers regardless of their
implementation. Functions could be used to customize the behavior
of algorithms, for example, specifying a comparison operator for
a sort algorithm. A final key feature of the STL was its focus on
performance; in many cases, the code generated by the STL was
more efficient than typical hand-written programmer code, since
its use of templates allowed customized code to be generated for a
particular data type and particular size parameters, and the libraries
were written by a small number of world-class programmers, and in
open source versions, is continuously improved via crowd-sourcing.

In this paper, we describe an experiment in which we generalize
these insights from the C++ STL and apply it the task of creat-
ing a library to accelerate synthesizeable hardware design in the
SystemVerilog hardware design language. The result is an open
source library named BaseJump STL. BaseJump STL has been used
by 40+ designers. BaseJump has been used to design both FPGA
and ASIC HW. Four distinct chips designed with BaseJump STL
have been taped out, fabricated, and tested, including a 511-core
heterogeneous RISC-V core, a ten-core RISC-V array, and a high-
speed source synchronous communication chip. Two of these chips
were in TSMC 180nm, and two were in TSMC 16nm. Additionally,
8 unique RTL-to-GDS tapeins were performed in 90nm technology
by third-party users. Finally, BaseJump STL has been used in FPGA
designs that span Virtex-6, Spartan-6, and Zynq FPGA lines. Base-
Jump has a unique portability interface that allows designs to be
rapidly retargeted across FPGA generations, between process nodes
and between different foundry providers; for example BaseJump
STL enabled a team at UC San Diego to do an emergency port of
a 250nm chip design to a 180nm tapeout without changing any of
the design’s source code.

Of course, other approaches have been proposed to increase
design productivity, such as high-level synthesis (HLS). Much as
C/C++ has not been obsoleted by high-productivity languages like
Python or TensorFlow due to the needs of lower-level systems
programming, so too will SystemVerilog continue to play a role for
highly tuned, crafted, hardware.

https://doi.org/10.1145/3195970.3199848

2 WHAT SHOULD BE IN A HARDWARE
DESIGN STL?

The mapping of the concept of the high-level idea of a C++ STL to
the equivalent concept in SystemVerilog is not a straight-forward
question. Informed by our construction of many previous systems,
we settled upon a number of key features:

(1) Portability Interface. The STL should provide interfaces
that allow a design to be moved, unchanged, between ASIC
process nodes and vendors, as well as to different FPGA
vendors.

(2) Leaf Building Blocks. The STL shall provide a portable
interface to leaf building blocks, such as SRAMs, register
files, clock generators, and high-speed I/O interfaces.

(3) Efficient Hardware Primitives. The STL should provide
hardware primitive implementations commonly used by ex-
pert designers to create efficient hardware, for example, par-
allel prefix circuits.

(4) Latency InsensitiveDesign.To support interfacing ofmod-
ules that have internal state, the STL should provide the right
set of Latency-Insensitive Interfaces [4] that allow hardware
to be composed correctly without considering the internals
of the composed blocks, and without introducing power,
performance, or area overhead. Moreover, these interfaces
should allow wire delay to be managed in a portable way.

(5) Parameterization. The STL primitives should be elegantly
parameterized to allow them to be reusable. Moreover, the
implementations shall be pervasively specialized based on
the input parameters, to allow code that is more efficient than
can be reasonably written by humans. Parameters should
also be used to capture slight variations in common modes of
operation (e.g. count leading zeros from high to low versus
from low to hi), improving code factoring, reducing bugs,
and reducing module count.

(6) Efficient Plumbing. The STL should provide hardware
primitive implementations that support efficient data move-
ment. It should provide a spectrum of implementations, to
cover both functionality and usage differences. For example,
FIFOs stage data but there are a small number of fundamen-
tal ways to do it based on the demands of the surrounding
logic. We need well-designed, bug-free asynchronous FIFOs,
as well as implementations of FIFOs that are optimized, for
example, based on whether reads and writes are performed
every cycle, or less frequently. Moreover, these components
should support efficient, minimalist, higher-level primitives
like virtual channels, credit-counters, crossbars, and network
routers.

(7) Coding Style. The STL shall use consistent coding styles
and helper macros that reduce bugs and increase code under-
standing. For example, the use of low-true signals is avoided,
since it is a hold-over from older days of logic design and
leads to bugs. Non-synthesizable code shall be avoided gen-
erally, but when they are necessary for testing libraries (e.g.
a clock generation module), they shall be clearly marked in
the module name (e.g. bsg_nonsynth_clock_gen).

(8) Metaprogramming. Metaprogramming refers to code that
generates code. The primary interface to meta-programmed
routines shall be SystemVerilog, as opposed to using Python-
or Scala- embedded DSLs, which are less succinct for leaf
code and have harder learning curves. The STL shall make
judicious use of metaprogamming constructs, such as gener-
ate statements. Where SystemVerilog generate statements
become inefficient or awkward, python scripts shall be used
to generate a SystemVerilog function that exhaustively lists
the hardware generated for each combination of parameters.
This generated code shall look like it is written by humans.
This generated code is what is used by users of BaseJump
STL, although the python scripts are available to verify cor-
rectness.

(9) Testing Suite. The STL shall have unit tests for eachmodule.

3 PORTABILITY
Portability across ASIC and FPGA implementations is a desirable
goal. The two most important aspects for portability with respect to
ASIC versus FPGA flow are the treatment of reset logic and the use
of process-specific hard cells like memories or synchronizer flops
and level-shifters. Regarding reset signals, while FPGA flows allow
registers to be initialized to a constant value via bitstream, ASICs
require proper reset signals. In BaseJump STL, we address the reset
issue by having explicit reset lines for logic in the interfaces of
modules that may require reset logic, for example some memory
block implementations may need a reset wire because they will be
accompanied by some flops in a wrapper.

Synchronizer flops and level shifters are fairly uniform across
process nodes, so generic module interfaces are easy to define. In
ASIC and FPGA flows, SRAMs and register files are typically instan-
tiated using memory generators. The interfaces of the memories
have idiosyncratic interfaces and properties, seldom agreeing on
whether signals are low or high true, how mask bits are specified,
or behavior on simultaneous reads and writes. These factors need
to be aggregated and unified into usable interfaces for portability.
Another portability constraint is the need to specify standard cells,
with specific placement constraints. For example in the Synopsys IC
Compiler flow, rp_groups are used to indicate groups of standard
cells that are placed contiguously, and these groups can be easily
placed at particular locations in the chip.

To achieve portability, we introduce the concept of a hard shadow
directory that contains process technology tuned replacements
for BaseJump STL modules (e.g. bsg_mem/bsg_mem_1r1w_sync.v’s
shadow is hard/tsmc/16/bsg_mem/bsg_mem_1r1w_sync.v). These files
subsume the standard portable file of the same name in the standard
BaseJump STL directory structure but have exactly the same inter-
face. So for example, for TSMC 16, we use a bsg_mem_1r1w_sync
module which based on widths_p and els_p, instantiates a hard-
ened memory-generator-created SRAM, but on other combinations,
calls back to the standard synthesizeable code in bsg_mem_1r1w_sync,
allowing fine grained substitution according to whichever imple-
mentation is most optimal for that configuration of SRAM. Typi-
cally, these modules take a harden_p flag which allows the tools
to flag if a hardened version has not been substituted, and also

allows the user to override the hardening of a module and to use
the synthesizeable version instead.

Memory portability using BaseJump STL is achieved by enforc-
ing a coding style that requires explicit instantiation of a set of
BaseJump STL memory primitives instead of using SystemVerilog-
inferred memories, or using standard flip-flops as synchronizers.
Here is an example interface for a memory:

module
bsg_mem_1r1w_sync_mask_write_bit
#(parameter width_p=-1
, parameter els_p=-1
, parameter write_then_read_same_addr_p=0
, parameter addr_width_lp=`BSG_SAFE_CLOG2(els_p)
, parameter harden_p=0
)
(input clk_i
, input reset_i

, input w_v_i
, input [width_p-1:0] w_mask_i
, input [addr_width_lp-1:0] w_addr_i
, input [width_p-1:0] w_data_i

, input r_v_i
, input [addr_width_lp-1:0] r_addr_i

, output logic [width_p-1:0] r_data_o
);

bsg_mem_1r1w_sync_mask_write_bit_synth
#(.width_p(width_p)
,.els_p (els_p)
,.write_then_read_same_addr_p(write_then_read_same_addr_p)
,.harden_p(harden_p)
) synth
(.*);

/* assertions checking for read/write address collision */
...
/* initial begin that prints out memory parameters */
endmodule

The above example shows the interface for a memory with 1
read port and 1 write port, both synchronous, which can be an
arbitrary width and contain an arbitrary number of words, and
allows for individual bits to be selected for writing via a mask. A
critical correctness issue for ASIC portability are the semantics
of simultaneous read and writes to SRAMs. In some memories, a
simultaneous read and write destroys the contents of that memory
cell. In other memories, a simultaneous read and write results in
correct writes of the data, but incorrect read values are returned. In
other memories, the side effects are that the write occurs and then
the read occurs. The parameter write_then_read_same_addr_p
indicates the intent of the designer as to whether they expect the
ram to be able to successfully perform a simultaneous write and

Figure 1: ready-valid-and (rv->&) synchronization.

read of the same address, with the write appearing to go first1.
The use of this parameter is critical to avoid portability even when
memories have different semantics. The implementation of the
module thunks down onto a synthesizeable implementation (or a
hard block with synthesized logic to adjust the semantics) if the
behavior is unsupported directly by the hard block.

In some cases, analog or mixed signal IP blocks may have highly
idiosyncratic interfaces for which there is no conceivable general
interface. In most of these cases, these items are best placed at the
top-level of the design, which conveniently sequesters non-portable
code into the one top-level file of the design.

4 LATENCY-INSENSITIVE HARDWARE
DESIGN

Latency-Insensitive Hardware Design [4] is powerful design tech-
nique that drives designers to decompose their systems into a set
of connected modules that have simple standardized handshake
interfaces. These interfaces allow modules to be connected in new
ways without having to reason about the timing inside the mod-
ules. Additionally, they allow the system to be correct even if the
number of cycles that a downstream module takes can vary. Ef-
fectively latency-insensitive interfaces localize the control logic
within a module, eliminating the need to have timing diagrams
and datasheets for modules to convey correct usage. (See [7] for a
survey of the diversity of interfaces found across a broad corpus of
SystemVerilog code.)

Of course, some logic does benefit from cycle-accurate reasoning,
for example, a heavily bypassed processor pipeline with complex
interactions between instructions. In these cases, it makes sense
to compose the system so that the latency insensitivity property
applies to the interface of the module but not necessarily the inter-
nals.

A typical interface between two Latency-Insensitive modules is
shown in Figure 1. In this paper, we term this ready-valid-and, or
rv->&, indicating that only the & gate depends on the ready and
valid signal. At the beginning of the cycle, both Producer (P) and
Consumer (C) send their willingness to send data and to receive it,
respectively. During the cycle, the signals propagate across the chip.
At the end of the cycle, the Producer and Consumer independently
1We chose this approach because a hardened 1R1W SRAM that does not support
this can be easily modified with some additional standard cells to do write-to-read
bypassing, where as read-then-write is much more expensive.

Figure 2: rv->& is not universal.

AND the signals together to determine whether the exchange of
data has occurred. There are a number of desirable properties of
this arrangement. First, there are no combinational loops in the
system. Second, the ready and valid signals have almost an entire
cycle to transfer between producer and consumer, whichmeans that
producer and consumer can be placed almost an entire clock cycle
of wire delay apart, making them a good fit for communication
between blocks at the top-level of the design, and even more so
when hierarchical physical design flows are used. In cases where a
greater wire latency is implied, an intermediate node can be inserted
that also speaks the same protocol and forwards data packets on,
typically using a 2-element buffer.

A challenge with rv->&, however, is that it is not universal.
There are simple pieces of hardware that cannot be built with these
interfaces. The problem is, as shown in Figure 2 in some cases, a
producer or consumer needs to combine an input ready or valid
signal with other information before committing to an action, which
violates the invariants of rv->&.

For universality, BaseJump STL adds two more interfaces, shown
in Figure 3. We call the interface where a producer computes a valid
signal based on the consumer’s ready signal ready-then-valid, or
r->v, and we say that the producer is demanding, because it re-
quires up-front information and the consumer is helpful, as it offers
the information up-front. We call the interface where a consumer
computes a ready signal based on the producer’s valid signal valid-
then-ready, or v->r, and we say that the consumer is demanding,
because it requires up-front information and the producer is helpful,
because it offers the information up-front. These two interfaces
enable more conditional behavior on the part of the producer and

Figure 3: Two interfaces for universality: ready-then-valid
r->v and valid-then-ready v->r.

Consumer Consumer
Demanding Helpful

Producer Demanding Use a FIFO r->v
Producer Helpful v->r rv->&

Figure 4: Taxonomy of producer-consumer interfaces based
on if producer and consumer are helpful or demanding.

consumer, and make our library of handshakes more universal.
However, they carry a few limitations. First, because a round trip
is required for the signal to go from the producer to the consumer
and back, or visa versa, the modules can be at most half a cycle
of wire latency away, and often less, since the computation of the
dependent signal usually requires at least a few gates. Inherently
these interfaces are more local, and should not be placed at the
top-level of the chip between two distant modules. So rv->& is
better suited for long links, because in that interface, both sides of
the link are helpful.

But what if both the producer and the consumer are demanding?
In this case, they are not directly compatible. We solve this by
inserting a FIFO; typical FIFOs are helpful on both ends, telling
the producer side at the beginning of the cycle if it has free space,
and telling the consumer side at the beginning of the cycle if it has
data. So a FIFO is a universal interfacer and automatically converts
between incompatible interfaces.

As shown in Figure 4, we can, based on a given consumer-
producer pair, easily determine which interface makes the most
sense. However, in practice, we will not be designing producers
and consumers together, since we want modules of many different
types to inter-operate. Instead, we will have whatever interface it
is that a module was designed with. The good news is, there is only
one case that does not work with a simple converter module: the
case where the producer is r->v and the consumer is v->r. When
these two demanding interfaces are paired, a FIFO would have to
be added.

Which of these interfaces should we use for a module? Generally
speaking, the first rule is that we want an interface that requires
no additional logic to be added, one that is the most natural for the
module. The second rule is, all else being equal, we should chose
interfaces that are helpful over those that are demanding. This,
way, we will only be adding FIFOs when absolutely needed, and
the overhead of latency insensitive design is minimized.

5 A WISHLIST FOR SYSTEMVERILOG
In the design of the several hundred modules for BaseJump STL,
we discovered a number of shortcomings of SystemVerilog (and
the synthesis tools) that could potentially be improved (apologies
if some of these have been addressed at the time of publication!):

(1) Arrays of interfaces are not widely supported across tools,
but arrays of structs are.We resorted to splitting bidirectional
interfaces into structs to get around this issue, because arrays
of structs are very useful.

(2) Better support for zero-width signals would greatly help
parameterized modules. In many cases, a module can scale

from N items downto one item, and a pointer to one item
requires zero wires. In many cases, we had to use a macro
‘define BSG_SAFE_CLOG2(x) (((x)==1) ? 1 : $clog2((x)))
to use widths of one instead of zero to allow the full spectrum
of sizes to work with a module.

(3) Better support for forcing users to define parameters rather
than requiring users to set defaults. For many modules, there
is no sense of a reasonable default, and any default that is
actually used is the wrong one. Currently, we define these
(mostly numerical) parameters as the string "inv", to get the
tools to fail fast if there is no good default value.

(4) True type polymorphism, where we can pass a struct or other
type into a module. Useful for containers, etc. Leads to true
C++ style flexibility.

(5) Declaration of bit widths using [0+:width_p] notation.

(6) The ability for modules to have output parameters, so that
they may compute and return the widths of their outputs.

(7) Bitwidth inference with an easy way to see the inferred
width.

(8) Better generate statement debugging (i.e. a preprocessor that
outputs the expanded version.)

(9) A language construct to indicate in a module that a signal is
unused, reducing spuriouswarnings from tools. This is useful
to maintain uniform interfaces while porting across differ-
ent architectures, for example for leaf-level process-specific
blocks that sometimes require a reset line and sometimes do
not.

6 EFFECTIVE HARDWARE PRIMITIVES
We list here a representative subset of the hardware primitives that
we organically added to BaseJump STL. All modules are parame-
terized with data path widths, number of inputs, and number of
internal storage items, when possible.

(1) bsg_fpu_add, bsg_fpu_cmp, bsg_fpu_mul.
Floating point operators.

(2) bsg_idiv_iterative,bsg_imul_iterative:
Iterative Divider and Multiplier.

(3) bsg_crossbar_o_by_i:
Arbitrary crossbar generator. Any number of inputs, outputs,
and variable width.

(4) bsg_mux:
Variable els_p -input mux, with width_p bits per input.

(5) bsg_transpose :
Transpose 2D bit vector. a[i][j] -> a[j][i].

(6) bsg_reduce, bsg_scan :
Parallel Prefix Scan and Reduce Operations.

(7) bsg_gray_to_binary, bsg_binary_plus_one_to_gray:
Gray code support.

(8) bsg_mesh_router, bsg_mesh_router_buffer,
bsg_mesh_stitch, bsg_noc_links:
Efficient Network on Chip.

(9) bsg_tag_client, bsg_tag_master, bsg_tag_trace_reply:
JTAG/SPI style remote state setter with Clock Domain Cross-
ing.

(10) bsg_async_fifo, bsg_async_credit_counter,
bsg_async_ptr_gray, bsg_launch_sync_sync,
bsg_sync_sync:
Clock domain crossing logic.

(11) bsg_decode, bsg_decode_with_v, bsg_encode_one_hot,
bsg_priority_encode_one_hot_out, bsg_priority_encode,
bsg_thermometer_count :
Decoders & Encoders.

(12) bsg_level_shift_up_down_sink, bsg_level_shift_up_down:
Level shifters.

(13) bsg_dff, bsg_dff_en, bsg_dff_negedge_reset, bsg_dff_reset,
bsg_dff_reset_en.
Flop trays.

(14) bsg_tiehi, bsg_tielo:
For safely tying input pins to logical 0 or 1; avoids ESD
issues. (Example use: Allows controlled placement of tie
cells attached to I/O Pads to avoid crosstalk.)

(15) bsg_mem_1r1w, bsg_mem_1r1w_sync,
bsg_mem_1r1w_mask_write_bit,
bsg_mem_1r1w_mask_write_var, bsg_mem_1r1w_sync_synth,
bsg_mem_1r1w_synth, bsg_mem_1r1w_sync:
1-read port, 1-write port memory.

(16) bsg_mem_1rw_sync, bsg_mem_1rw_sync_mask_write_bit,
bsg_mem_1rw_sync_mask_write_byte,
bsg_mem_1rw_sync_mask_write_byte_synth,
bsg_mem_1rw_sync_mask_write_var,
bsg_mem_1rw_sync_synth:
1-read-or-write port memory.

(17) bsg_mem_2r1w, bsg_mem_2r1w_sync,
bsg_mem_2r1w_sync_synth, bsg_mem_2r1w_sync:
2-read port, 1-write port memory.

(18) bsg_mem_3r1w:
3 read-port, 1 write-port memory.

(19) bsg_mem_banked_crossbar:
Variable banked memory with crossbar on each side.

(20) bsg_mem_multiport:
Flexible # of ports memory.

(21) bsg_ascii_to_rom.py:
Converts from ASCII to SystemVerilog case statement.

(22) bsg_fifo_1r1w_large, bsg_fifo_1r1w_large_banked,
bsg_fifo_1r1w_narrowed, bsg_fifo_1r1w_pseudo_large,
bsg_fifo_1r1w_small, bsg_fifo_1r1w_small_credit_on_input,
bsg_fifo_1rw_large:
FIFOs.

(23) bsg_two_fifo, bsg_relay_fifo, bsg_fifo_shift_datapath,
bsg_fifo_tracker, bsg_fifo_shift_datapath:
More FIFOs and components.

(24) bsg_channel_tunnel:
Virtualizemany ready/valid streams over a single ready/valid
stream. Use to tunnel multiple streams of traffic over a NOC,
or off-chip.

(25) bsg_round_robin_n_to_1, bsg_round_robin_1_to_n,
bsg_round_robin_fifo_to_fifo:
Channel multiplexing, demultiplexing, data redistribution.

(26) bsg_serial_in_parallel_out, bsg_parallel_in_serial_out:
Widening / Narrowing logic.

(27) bsg_hypoteneuse:
CORDIC-based Euclidean distance calculator.

(28) bsg_adder_cin, bsg_popcount, bsg_rotate_right:
Combinational operators.

(29) bsg_mux_bitwise, bsg_muxi_bitwise :
Bitwise muxing.

(30) bsg_mul, bsg_mul_pipelined:
Signed / Unsigned, Pipelined / Unpipelined Radix-4 Booth-
encoded Multiplier.

(31) bsg_circular_ptr, bsg_counter_clear_up,
bsg_counter_clock_downsample, bsg_counter_en_overflow,
bsg_counter_up_down, bsg_counter_w_overflow,
bsg_wait_after_reset, bsg_wait_cycles:
Counters.

(32) bsg_lfsr:
Variable size LFSR.

(33) bsg_and, bsg_inv, bsg_nor2, bsg_nor3,
(34) bsg_nand, bsg_xnor, bsg_xor, bsg_clkbuf:

Hardened gatestacks for placement in ICC or Cadence.

7 CONCLUSIONS
Our initial version of BaseJump STL has been released to the public,
and we are looking to expand the breadth of hardware modules
implemented, and also the performance, specialization and flexibil-
ity of the library. Our eventual hope is to, with the help of others,
incorporate an evolved version of the library into the SystemVerilog
language standard.

We encourage you to download the code from
http://bjump.org/stl, and welcome your additions to the open
source project!

ACKNOWLEDGMENTS
We thank themembers of the Bespoke Silicon Group, who have used
BaseJump STL to design four chips from 180nm down to 16nm, and
including a 511-core RISC-V chip [1], demonstrating its usability
and portability. We thank the developers of our BaseJump FPGA
Firmware, who exercised BaseJump STL for Virtex-6, Spartan-6,
and Zynq FPGAs.

We thank Pulkit Bhatnagar, Bandhav Veluri, Scott Davidson,
Shaolin Xie, Luis Vega, Chun Zhao, Paul Gao, Tommy Jung, Moein

Khazraee, Richard Park, Christopher Torng, Shengye Wang, and
Lu Zhang who contributed to BaseJump STL.

We thank Linton Salmon, the DARPA CRAFT Program, and the
members of the Michigan/UCSD/Cornell CERTUS/Celerity team,
including Christopher Batten, Ronald G. Dreslinski, Rajesh K. Gupta,
Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott
Davidson, Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao,
Austin Rovinski, Loai Salem, Ningxiao Sun, Christopher Torng, Luis
Vega, Bandhav Veluri, Xiaoyang Wang, Shaolin Xie, Chun Zhao,
Ritchie Zhao, Ian Galton, Patrick P. Mercier, Mani Srivastava, and
Zhiru Zhang.

We thank also our chip design friends on the RISC-V [2] and
Chisel [3] projects, including Krste Asanovic, Yunsup Lee, Andrew
Waterman, Jonathan Bachrach, Borivoje Nikolic and the UC Berke-
ley team.

We thank our UW EE 477 Winter 2018 class, that built 8 unique
accelerator-based chips, from RTL to GDS, in 90nm, using BaseJump
STL, in 5 weeks.

We thank Stephen Twigg, Derek Lockhart and Richard Ho of
Google for feedback on our latency-insensitive approach.

REFERENCES
[1] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson,

Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao, Austin Rovinski, Loai
Salem, Ningxiao Sun, Christopher Torng, Luis Vega, Bandhav Veluri, Xiaoyang
Wang, Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Batten, Ronald G.
Dreslinski, Ian Galton, Rajesh K. Gupta, Patrick P. Mercier, Mani Srivastava,
Michael Bedford Taylor, and Zhiru Zhang. 2017. Celerity: An Open Source
RISC-V Tiered Accelerator Fabric. In HOTCHIPS.

[2] Krste Asanović and David A. Patterson. 2014. Instruction Sets Should Be Free: The
Case For RISC-V. Technical Report UCB/EECS-2014-146. EECS Department, Uni-
versity of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-146.html

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic. 2012. Chisel: Constructing hardware in a Scala embedded
language. In DAC.

[4] L. P. Carloni. 2015. From Latency-Insensitive Design to Communication-Based
System-Level Design. Proc. IEEE 103, 11 (Nov 2015), 2133–2151.

[5] Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Au-
ricchio, Jonathan Babb, Michael Taylor, and Steven Swanson. 2010. GreenDroid:
A Mobile Application Processor for a Future of Dark Silicon. In HOTCHIPS.

[6] Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram Bhatt, Steven
Swanson, and Michael Taylor. 2012. GreenDroid: An Architecture for the Dark
Silicon Age. In Asia and South Pacific Design Automation Conference (ASPDAC).

[7] Chintan Kaur, Ravi Narayanaswami, and Richard Ho. 2016. EASI2L: A Speci-
fication Format for Automated Block Interface Generation and Verification. In
DVCon2016.

[8] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Taylor. 2017. Moonwalk: NRE
Optimization in ASIC Clouds or, accelerators will use old silicon. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[9] Ikuo Magaki, Moein Khazraee, Luis Vega, and Michael Taylor. 2016. ASIC Clouds:
Specializing the Datacenter. In International Symposium on Computer Architecture
(ISCA).

[10] Michael Taylor. 2014. A Landscape of the New Dark Silicon Design Regime. In
Design Automation and Test in Europe.

[11] Michael Taylor. 2017. The Evolution of Bitcoin Hardware. Computer, IEEE
(Sept-Oct. 2017).

[12] Michael B. Taylor. 2012. Is Dark Silicon Useful? Harnessing the Four Horsemen
of the Coming Dark Silicon Apocalypse. In Design Automation Conference (DAC).

[13] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. 2010.
Conservation cores: reducing the energy of mature computations. InArchitectural
Support for Programming Languages and Operating Systems (ASPLOS).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

	Abstract
	1 Introduction
	2 What should be in a hardware design STL?
	3 Portability
	4 Latency-Insensitive Hardware Design
	5 A Wishlist for SystemVerilog
	6 Effective Hardware Primitives
	7 Conclusions
	Acknowledgments
	References

