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Transistor density continues to increase exponentially, but the power dissi-

pation per transistor improves only slightly with each generation of Moore’s law.

Given constant chip-level power budgets, this exponentially decreases the fraction

of the transistors that can be active simultaneously with each technology genera-

tion. Hence, while the area budget continues to increase exponentially, the power

budget has become a first-order design constraint in current processors. In this

regime, utilizing transistors to design specialized cores that optimize energy-per-

computation becomes an effective approach to improve the system performance.

To pursue this goal, this thesis focuses on specialized processors that reduce

energy and energy-delay product for general purpose computing. The focus on en-

ergy makes these specialized cores an excellent match for many of the commonly

used programs that would be poor candidates for SIMD-style hardware accelera-

tion (e.g. compression, scheduling). However, there are many challenges, such as

lack of flexibility and limited computational power, that limit how effective these

xvii



specialized cores are at targeting general purpose computing. Without addressing

these concerns, these specialized cores would be limited in the scope of applications

that they can effectively target.

This thesis addresses these various challenges involved in making special-

ization a viable approach to optimize general-purpose computing. To this end, this

thesis proposes Patchable Conservation Cores which are flexible, energy-efficient

co-processors that contain the ability to be patched, enabling them to remain use-

ful across versions of their target application. To demonstrate the effectiveness of

these conservation cores in targeting a system workload, this thesis utilizes them to

design a mobile application processor targeting the Android software stack. The

results show that these specialized cores can cover a significant fraction of the

system execution while staying within a modest area budget.

To further increase the fraction of the system execution that these special-

ized cores cover, this thesis proposes Qasics, specialized co-processors capable of

executing multiple general-purpose computations. Qasic design flow exploits the

similar code patterns present within and across applications to reduce redundancy

across specialized cores as well as improve their computational power.

xviii



Chapter 1

Introduction

Transistor density continues to scale but per-transistor switching power is

not scaling down anymore. As a result, given the fixed chip-level power budgets,

the fraction of transistors that can be active at full frequency is decreasing expo-

nentially with each generation of Moore’s Law. This phenomenon is termed as the

Utilization Wall [VSG+10]. The utilization wall results in a dramatic increase in

the amount of dark silicon – silicon that is underclocked or underused because of

power concerns.

The utilization wall phenomenon is making it harder for designers to convert

transistors into performance. Traditionally, increases in transistor counts were used

to increase the application performance by designing faster and more optimized

superscalar pipelines. However, concerns about the microarchitectural scalabil-

ity of these superscalar pipeline designs motivated transition towards multi-core

processors. Multi-core designs continued the system performance scaling by al-

lowing multiple computations to run in parallel. However, the utilization wall

phenomenon limits the effectiveness of these multi-core designs by constraining

the fraction of the chip, and hence the number of computations, that can be si-

multaneously active.

Since utilizing the entire die simultaneously at full frequency is not possible

any more, many of the recent proposals have focussed on specialization to address

the problem of scaling system performance with transistor density. Specialized

circuits are generally faster, and almost always more energy-efficient than their

1
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general-purpose counterparts. To date, however, few of the recent efforts focus on

designing specialized circuits for the general-class of irregular integer programs.

Also, most of the previous application-specific proposals design very narrowly de-

fined co-processors that can only be used by their target application, and even

for their target application, they cannot support changes across application ver-

sions. This thesis proposes mechanisms to provide reconfigurability and generality

in application-specific circuits, that significantly enhances their longevity and en-

ables them to support multiple applications with similar data/control flow.

1.1 Utilization Wall

This section examines the utilization wall in greater detail and demonstrates

how the utilization wall is a consequence of CMOS scaling theory combined with

modern technology constraints.

Scaling Theory Table 1.1 shows how the utilization wall emerges from the

breakdown of classical CMOS scaling as set down by Dennard [DGR+74] in his

1974 paper. The equations in the “Classical Scaling” column governed scaling up

until 130 nm, while the “Leakage Limited” equations govern scaling at 90 nm and

below. CMOS scaling theory holds that transistor capacitances (and thus switching

energy) decrease roughly by a factor of S (where S is the scaling factor, e.g.,

1.4×) with each process shrink. At the same time, transistor switching frequency

improves by S and the number of transistors on the die increases by S2.

In the Classical Scaling Regime, it has been possible to scale supply voltage

by 1/S, leading to constant power consumption for a fixed-size chip running at

full frequency, and consequently, no utilization wall. Scaling the supply voltage

requires that we also scale the threshold voltage proportionally. However, this is

not an issue because leakage, although increasing exponentially, is not significant

in this regime.

In the Leakage Limited Regime, it is no longer possible to scale the thresh-

old voltage because leakage rises to unacceptable levels. Without the correspond-

ing supply voltage scaling, reduced transistor capacitance is the only remaining
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Table 1.1: The utilization wall The utilization wall is a consequence of CMOS
scaling theory and current-day technology constraints, assuming fixed power and
chip area. The Classical Scaling column assumes that Vt can be lowered arbitrarily.
In the Leakage Limited case, constraints on Vt, necessary to prevent unmanageable
leakage currents, hinder scaling, and create the utilization wall.

Param. Description Relation
Classical Leakage
Scaling Limited

B power budget 1 1

A chip size 1 1

Vt threshold voltage 1/S 1

Vdd supply voltage ∼ Vt × 3 1/S 1

tox oxide thickness 1/S 1/S

W, L transistor dimensions 1/S 1/S

Isat saturation current WVdd/tox 1/S 1

p
device power

IsatVdd 1/S2 1
at full frequency

Cgate capacitance WL/tox 1/S 1/S

F device frequency Isat

CgateVdd
S S

D devices per chip A/(WL) S2 S2

P
full die, full

D × p 1 S2

frequency power

U
utilization at

B/P 1 1/S2

fixed power
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counterbalance to increased transistor frequencies and increasing transistor counts.

Consequently, the net change in full chip, full frequency power is rising as S2. This

trend, combined with fixed power budgets, indicates that the fraction of a chip that

can be run at full speed, or the utilization, is falling as 1/S2. Thus, the utilization

wall is getting exponentially worse, increasing the fraction of dark silicon roughly

by a factor of two, with each process generation.

1.2 Specialization for converting transistors into

performance

One promising option to effectively utilize the dark silicon is to design

a set of specialized processing elements tailored for specific applications. The

specialized processors are more efficient than general-purpose processors (by several

orders of magnitude for highly-specialized ASICs), and off-loading portions of a

program to a specialized processor can realize large gains in energy-efficiency and

performance. In this manner, the increases in transistor counts can be used to scale

system performance by providing increased specialization as well as increasing the

percentage of the system execution that runs on specialized processors.

Since the fraction of dark silicon continues to increase exponentially with

each technology generation, the area available for specialized processors will in-

crease accordingly. To utilize this increasing transistor budget effectively, design-

ers must provide an ever increasing amount of specialization with each process

generation. To accomplish this, these specialized processors must be designed au-

tomatically, enabling the designers to target a greater percentage of the workload

execution with increases in transistor counts.

Existing approaches for automatically designing specialized processors pri-

marily seek to build accelerators for regular, streaming loops with predictable

control-flow and memory access patterns [YGBT09, FKDM09, CHM08]. While

these applications are important, they are significantly different from the general

class of irregular integer applications that are important on the desktop. The irreg-

ular integer programs are poor candidates for acceleration via specialized hardware
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because they tend to have much larger hotspots with irregular, hard-to-predict con-

trol flow and memory-access patterns. This is the class of applications that this

thesis focuses on and proposes specialized cores for them. These specialized cores

provide significant energy-efficiency compared to general-purpose processors and

greater configurability than fully-specialized logic. These energy-efficient special-

ized processors improve the system performance with increasing transistor counts

by optimizing energy-per-computation, and hence allowing more computations to

run in parallel.

Next, we introduce the three main parts of this thesis – 1) Patchable Con-

servation Cores (c-cores) [VSG+10, SVG+11], energy-efficient application-specific

circuits with targeted reconfigurability to support changes in source code across

application versions, 2) Application of the Conservation Cores in designing Mobile

Application Processors [GSV+10, GSV+11], and 3) Qasics [VSG+11], energy-

efficient circuits to make the area-energy tradeoff scalable by exploiting similar

code patterns across irregular codes.

1.3 Patchable Conservation Cores: Energy effi-

cient circuits with processor-like lifetimes

To effectively target the hotspots of general-purpose applications, special-

ized circuits must be able to support complex C constructs and must have lifetimes

comparable to those of general-purpose processors. In order to have long lifetimes,

the specialized circuits must remain useful across application versions by support-

ing code changes such as changes in the expression constants, memory layout and

control flow.

Traditionally, application-specific circuits are very narrowly defined and

cannot support any change in the target source code. This inability to support

code changes make ASICs poor candidates for targeting any application that may

have new version releases. This brittleness of ASICs is one of the main obstacles in

their adoption by system designers to target even the mature and very commonly

used applications.
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The key contribution of the Patchable Conservation Core work is to provide

application-specific circuits with reconfigurability mechanisms that would enable

them to support the source code changes that are commonly seen across applica-

tion versions. Conservation Cores support changes in the control-flow, expression

constants, arithmetic operators, and memory layout of data structures. The con-

servation core tool chain automatically generates “configuration patches” for the

new application versions and the conservation core is initialized at the runtime

with the configuration patch corresponding to the application version that is going

to execute on them. This ensures that these conservation cores do not bind the

system users to any particular application version.

1.4 Utilizing Conservation Cores to Design Mo-

bile Application Processors

Specialization has played a major role in the rapid advances in mobile device

capabilities in the recent past. Specialized hardware enables the mobile devices

to provide rich user experience, enabling the user to stay connected, stream mul-

timedia, play games, and navigate using GPS-powered maps. As a result of this

improved functionality, the market for smartphones and other portable devices is

growing rapidly and these mobile devices are expected to outsell desktop PCs in

the coming years [IDC]. To ensure that this growth continues, mobile devices will

need to provide greater functionality with each generation without compromising

on the battery life.

Traditionally, mobile platforms exploit manually-designed specialized hard-

ware to address power concerns and achieve better performance by integrating

specialized cores on an SoC. However, emergence of the new generation of mobile

devices such as those based on Apple iOS and Google Android run an increasingly

diverse collection of applications, straining the traditional model of manually de-

signed specialized hardware. In order to support this increasing functionality, a

new generation of mobile devices must rely on general-purpose application proces-

sors. However, the utilization wall threatens to limit the performance scaling of
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application processors, impeding the evolution of what is becoming the dominant

computing platform for much of the world.

This thesis explores the use of conservation cores to design these energy-

efficient mobile application processors. In particular, this project analyzes the

potential for using conservation cores to design application processors for Android-

based mobile devices. This work demonstrates that our conservation core-based

approach is a good match for the Android platform. The results show that c-cores

were able to cover a significant fraction of system execution and provide significant

energy savings without exceeding the modest area budgets.

1.5 Quasi-ASICs: Trading Area for Energy by Ex-

ploiting Similarity across Irregular Codes

Specialized circuits enable system designers to trade area for energy effi-

ciency. However, for many applications in a system’s workload, it is not scalable

to trade silicon for a specialized co-processor that can only execute a hotspot of

an application. Hence, system designers need to decide on the amount of special-

ization required based on the available area budget and the relative importance of

applications in the system’s workload.

Existing approaches for designing ASICs tend to design specialized proces-

sors that only target a specific piece of code. Hence, to fit within a given area

budget, system designers would need to remove specialization corresponding to

some of the computations used by the system workload. However, this reduction

in the fraction of system execution covered by specialized processors can signifi-

cantly decrease the system’s energy efficiency since the application specific circuits

tend to be more energy-efficient than general-purpose processors by a few orders

of magnitude.

This thesis proposes a new class of specialized circuits, Quasi-ASICs

(Qasics), that enable the system designers to vary the amount of hardware gener-

ality based on the available area budget. The key contribution of the Qasic work

is the insight that similar code patterns exist within and across applications and
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these similar code segments can be exploited to reduce the area requirements with-

out removing functionality. The Qasic tool chain mines for similar computations

across the system workload and builds a configurable circuit that can execute all of

them. As a result, our approach makes the area-energy tradeoff more scalable by

designing specialized processors that support multiple general-purpose applications

while providing energy efficiency comparable to fully specialized logic.

1.6 Organization

Chapter 2 presents the baseline architecture that this work builds on as

well as the methodology to evaluate the performance and energy efficiency of the

system. Chapter 3 describes Patchable Conservation Cores and shows how their

flexibility enables them to support newer versions of their target application. This

chapter also discusses optimizations to reduce the area and energy overheads of

adding flexibility in specialized circuits as well as improve the backward compati-

bility of conservation cores. Chapter 4 demonstrates that these patchable conser-

vation cores can significantly improve the energy efficiency of mobile application

processors. Chapter 5 describes Qasics and discusses how they can trade area

for energy efficiency in a scalable manner. Chapter 6 presents the previous work

on designing heterogeneous architectures as well as work on high-level synthesis.

Chapter 7 concludes.
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Chapter 2

Arsenal: Baseline Architecture

and Tool Chain

This thesis builds on the Arsenal processor, a massively heterogeneous mul-

tiprocessor [Ars]. This chapter provides a high level overview of the Arsenal system,

the baseline heterogeneous tiled architecture used in this thesis for performance

and energy analysis as well as the toolchain for automating the design of specialized

hardware from C source code.

2.1 Arsenal: Massively Heterogeneous

Multiprocessors

This section provides an overview of the Arsenal processor including their

design goals, high-level hardware organization, and execution model.

The main goal of the Arsenal processor design is to ensure that the system

performance scales with the increases in transistor counts in spite of the utilization

wall. Arsenal designs are comprised of 10s to 100s to even 1000s of heterogeneous

specialized processing elements (SPEs), ranging from specialized processors ded-

icated to particular loop nests, to 8-way issue DSPs, graphics accelerators, and

to out-of-order superscalars. Although the utilization wall dictates that Arsenal

systems may use only a small fraction of the die at once, it uses that fraction very

9
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Figure 2.1: The high-level structure of an Arsenal system An Arsenal system
is made up of multiple SPE “complexes” (i.e. tiles).

efficiently. The Arsenal system achieves this efficiency by dynamically varying

which fraction of the chip is active based on the applications that are executing

on them.

2.1.1 Hardware Organization

Figure 2.1 depicts the high level design of an Arsenal processor comprised of

twelve SPE complexes and four banks of shared L2 cache connected by a grid-based

on chip interconnect. Together the complexes, cache banks, and network resemble

recently proposed tiled processors such as Wavescalar [SMSO03], RAW [TLM+04],

or TRIPS [SNL+03]. Instead of uniform tiles, however, the complexes (i.e., the

“tiles”) in an Arsenal processor contain many SPEs. The mix of SPEs in each

complex is different. Arsenal systems organize SPEs into complexes (or tiles)

based on related functions to allow pipeline-sequential style communication. SPEs
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Figure 2.2: High-level Design Flow of an Arsenal system Arsenal system’s
design is customized for the applications that commonly run on them.

likely to be used in sequence are placed in the same complex, so that they can

efficiently communicate through the local L1 cache.

2.1.2 Arsenal Design Flow

Figure 2.2 depicts the generation of a many-core Arsenal processor. The

process begins with the processor designer characterizing the workload by identify-

ing codes that make up a significant fraction of the processors target workload. The

toolchain extracts the most frequently used (or hot) code regions and uses a high-

level synthesis tool to design specialized cores corresponding to these hot regions.

Finally, these specialized cores are integrated with a general-purpose processor to

design a heterogeneous many-core system.

2.1.3 Execution Model

A program executing on an Arsenal processor migrates between SPEs as

its behavior changes. The Arsenal toolchain and run-time environment combine

to create the mapping between different sections of the program and the available
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Figure 2.3: The high-level structure of the baseline architecture The base-
line architecture (a) is made up of multiple individual tiles (b), each of which
contains multiple application-specific circuits (S-cores) (c). These specialized cir-
cuits communicate with the rest of the system through a coherent memory system
and a simple scan-chain-based interface. Not drawn to scale.

SPEs. Programmers and compilers can use a range of tools (e.g. library interfaces,

code similarity measurement technology, and performance prediction models) to

identify which code segments will run most efficiently on different SPEs. The

run-time schedules code onto the available SPEs taking into account the physical

location of the SPEs and other applications competing for the same SPEs. The

mapping of programs to SPEs can also change at runtime to account for observed

changes in program behavior.

2.2 System Overview

The particular instantiation of the Arsenal processor that this thesis studies

as the baseline architecture is shown in Figure 2.3. It consists of an array of

heterogeneous tiles. Each tile contains a general-purpose processor, I-Cache, D-

Cache, set of specialized circuits, and interconnect logic.

A typical system includes 100s of specialized processors designed for key

functions of the target workload set. On each tile, the specialized circuits are

connected to the general-purpose processor via scan chains. The scan chain in-

terface is slow but scales well enabling us to connect 10s of specialized circuits to
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the general-purpose processor. The specialized circuits share the D-Cache with

the general-purpose processor, ensuring coherent memory between the two by con-

struction.

This architecture achieves much of its energy efficiency compared to a con-

ventional tiled architecture system by offloading computations onto these special-

ized circuits. These circuits are automatically designed using a C-to-hardware

compiler (Section 2.3) and achieves significant energy efficiency (up to 40×) com-

pared to a general-purpose processor.

2.2.1 Specialized Processor Hardware Design

This section describes in detail the architecture of the specialized circuits

including their datapath, control unit, cache interface, and scan chain interface to

the CPU.

Datapath and Control Unit By design, the datapath and control unit of the

specialized circuits very closely resembles the data and control flow of the target

source code in Single static assignment form [CFR+89]. The datapath contains

functional units (adders, shifters, etc.) for the arithmetic operations, muxes to

implement control decisions and phi [CFR+89] nodes, and registers to hold program

values across clock cycles.

The control unit implements a state machine that mimics the control flow

of the code. It tracks branch outcomes to determine which state to enter on each

cycle. The control unit sets the enable and select lines on the registers and muxes

so that the correct basic block is active each cycle.

The close correspondence between the program’s structure and the corre-

sponding specialized circuit enables them to support almost arbitrary source code

including struct, union, pointers, and most control flow constructs. This design

model fits well with the higher level goals of this thesis to provide energy-efficient

execution for irregular, hard to parallelize integer applications.
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computeArraySum
{
    sum = 0;
    for(i = 0; i < n; i++)
    {
        sum += a[i];
    }
    return(sum);
}
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Figure 2.4: Specialized Core Design Example An example showing the trans-
lation from C code (a), to the compiler’s internal representation (b), and finally to
hardware (c). The hardware schematic and state machine correspond very closely
to the data and control flow graphs of the C code.

Memory interface and ordering The specialized circuits execute the memory

operations sequentially in the program order to ensure correctness. The specialized

circuits contain a load/store unit for each memory operation in the target source

code and these units connect to the processor’s L1 data cache, guaranteeing a co-

herent memory system between the specialized circuit and CPU by construction.

For executing a memory operation, the load/store unit sends a “request” signal

along with the memory address/value to the L1 data cache and stalls the execu-

tion of the specialized processor until it receives the “valid” signal from the cache

signaling the completion of the memory operation.

Example Figure 2.4(a)-(c) shows a sample source code, its control flow graph,

and the corresponding hardware design for it. The hardware corresponds very

closely to the CFG of the sample code. The datapath has muxes corresponding

to the phi operators in the CFG. Also, the control unit is almost identical to

the CFG, with additional self-loops for memory operations (and other multi-cycle

operations). The datapath has a load unit to access the memory hierarchy to read

the array a.
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2.2.2 The CPU/Specialized-processor Interface

The specialized circuits are connected to the CPU via a set of scan chains.

They receive the initial arguments as well as the “ready” signal from the CPU

using these scan chains. The initial arguments are the live-in values for the com-

putation being off-loaded to the specialized circuit and the ready signal signals the

beginning of the execution. When the specialized circuits complete the off-loaded

computation, they send a “done” signal to the CPU.

2.2.3 The Runtime System

When compiling an application containing functions that can be off-loaded

to a specialized processor, the compiler will insert stubs that enable the application

to choose between using the specialized processor or the CPU at runtime.

At runtime, when an application wants to run a function that has the

corresponding specialized circuit available, it queries the runtime to get access to

the specialized processor. If the specialized processor is available, the application

uses the scan chain interface to pass the initial arguments, start it running, and

then waits for execution to complete. When the done signal is raised by the

specialized processor, control passes back to the stub code which extracts the

return value and passes it back to the application.

If the specialized processor is not available, then the application uses the

CPU version of the function code to continue execution on the general-purpose

processor.

2.3 Methodology

This section presents the details of the toolchain for automatically gener-

ating the hardware for specialized cores from the application code as well as the

methodology for the performance and power measurements of the baseline system.
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Figure 2.5: The C-to-hardware toolchain The various stages of our toolchain
involved in hardware generation, simulation, and power measurement are shown.
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2.3.1 Toolchain

The toolchain for designing specialized cores takes C programs as input,

splits them into datapath and control segments, and then uses a state-of-the-art

EDA tool flow to generate a circuit fully realizable in silicon. The toolchain also

generates a cycle-accurate system simulator for the new hardware. The simulator

provides performance measurements as well as generates traces that drive Synopsys

VCS and PrimeTime simulation of the placed-and-routed netlist.

Figure 2.5 depicts the various stages of the toolchain. The toolchain is

based on the OpenIMPACT (1.0rc4) [Ope], CodeSurfer (2.1p1) [Cod], and LLVM

(2.4) [LA04] compiler infrastructures and accepts a large subset of the C language,

including arbitrary pointer references, switch statements, and loops with complex

conditions.

In the hotspot identification stage, functions or subregions of functions (e.g.,

key loops) are tagged for conversion into specialized cores based on profile informa-

tion. The toolchain uses outlining to isolate the region and then uses exhaustive

inlining to remove function calls. Also, the global variables are passed by reference

as additional input arguments.

The C-to-Verilog stage generates the control and dataflow graphs for the

function in SSA [CFR+89] form. This stage then adds basic blocks and control

states for each memory operation and multi-cycle instruction. The final step of the

C-to-Verilog stage generates synthesizeable Verilog for the specialized core. This

requires converting φ operators into muxes, inserting registers at the definition

of each value, and adding self loops to the control flow graph for the multi-cycle

operations. Then, it generates the control unit with a state machine that matches

the control flow graph. This stage of the toolchain also generates a cycle-accurate

module for our architectural simulator. The further details of this stage can be

found in [VSG+10].

2.3.2 Simulation infrastructure

Our cycle-accurate simulation infrastructure is based on btl, the Raw simula-

tor [TLM+04]. The btl simulator was modified to model a cache-coherent memory
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among multiple processors, to include a scan chain interface between the CPU and

all of the local specialized cores, and to simulate the specialized logic itself.

2.3.3 Synthesis

For synthesis, the toolchain targets a TSMC 45 nm GS process using Syn-

opsys Design Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-SP2). Our

toolchain generates synthesizeable Verilog and automatically processes the design

in the Synopsys CAD tool flow, starting with netlist generation and continuing

through placement, clock tree synthesis, and routing, before performing post-route

optimizations.

2.3.4 Power measurements

In order to measure the power usage of specialized cores, the btl simulator

periodically samples execution by storing traces of all inputs and outputs to the

specialized logic. Each sample starts with a “snapshot” recording the entire register

state of the specialized core and continues for 10,000 cycles. The current sampling

policy is to sample 10,000 out of every 50,000 cycles, and we discard sampling

periods corresponding to the initialization phase of the application.

The power measurement stage feeds each trace sample into the Synopsys

VCS (C-2009.06) logic simulator. Along with the Verilog code our toolchain also

automatically generates a Verilog testbench module, which initiates the simulation

of each sample by scanning in the register values from each trace snapshot. The

VCS simulation generates a VCD activity file, which we pipe as input into Synopsys

PrimeTime (C-2009.06-SP2). PrimeTime computes both the static and dynamic

power for each sampling period.

To model power for other system components, this stage uses processor

and clock power values from specifications for a MIPS 24KE processor in TSMC

90 nm and 65 nm processes [MIP09], and component ratios for Raw reported

in [KTMW03], scaled to a 45 nm process. For its measurements, this stage assumes

a MIPS core frequency of 1.5 GHz with 0.077 mW/MHz for average CPU operation.
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Finally, this stage uses CACTI 5.3 [TMAJ08] for I- and D-cache power.
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Chapter 3

Patchable Conservation Cores:

Energy-efficient circuits with

processor-like lifetimes

Chapter 1 explains the utilization wall phenomenon and the challenges it

presents in effectively using the increasing transistor counts to scale performance.

The previous chapter described the Arsenal system, a massively heterogeneous

tiled architecture that seeks to scale performance in spite of the utilization wall by

synthesizing application-specific circuits targeting the key functions of the system

workload. These application-specific circuits provide energy-efficient execution of

irregular integer codes and can improve the energy efficiency by up to 30X com-

pared to an efficient in-order MIPS processor [TLM+04]. These specialized circuits

enable the Arsenal system to optimize energy-per-computation, which translates

into better system performance by allowing more computations to run in parallel.

However, these application-specific circuits are very tightly coupled to the

source code they target and cannot support any change in the same. Hence, these

circuits are tied to the version of the application they were designed for and cannot

support older or newer application versions. This lack of flexibility makes these

application-specific circuits poor candidates for many of the applications in a sys-

tem’s workload. From a system designer’s standpoint, designing co-processors that

can only target a particular version of an application can cause two main prob-

20



21

lems – these specialized circuits would become unusable as soon as the application

version is upgraded and also, circuits targeting the latest version will provide little

benefit to the users still using the older application versions.

To address these issues, this thesis proposes Patchable Conservation cores

(C-cores), application-specific circuits that remain useful across application ver-

sions, providing them with lifetimes comparable to those of general-purpose pro-

cessors. The main contribution of this work is the novel patching mechanism that

provides these application-specific circuits with targeted reconfigurability to enable

them to support multiple application versions. This work extends the toolchain

presented in the previous section to generate configuration “patches” corresponding

to different application versions. At runtime, the c-core utilizes the configuration

patch to adapt to the application version that wants to run on it. In this manner,

c-cores remain useful across application versions, providing them with lifetimes

comparable to that of a general-purpose processor.

This chapter is organized as follows. Section 3.1 motivates the need for

reconfigurability in application-specific circuits. Section 3.2 describes the recon-

figurability mechanisms that this work proposes to improve the longevity of these

specialized circuits. Section 3.3 explains that patching algorithm for mapping

alternate application versions onto a patchable c-core. Section 3.4 presents the

methodology for designing and configuring the patchable c-cores. Section 3.5 eval-

uates the energy efficiency and longevity of patchable c-cores. Section 3.6 analyzes

the area and energy overheads of the reconfigurability mechanisms and proposes

optimizations to mitigate them without affecting the c-core’s longevity. Section 3.7

proposes a mechanism to further improve the backward compatibility of the patch-

able c-cores. Section 3.8 concludes this chapter.

3.1 Case for Reconfigurability in Application

Specific Circuits

This work seeks to provide energy-efficient execution for mature applica-

tions, applications that have a relatively stable set of core functions. While the code
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base of these applications will change across versions, the source code correspond-

ing to the core functionality changes very infrequently, and when it does change, the

changes tend to be relatively minor. This section analyzes the changes in the core

functions of mature applications across successive versions and uses that analysis

to motivate the need for providing targeted reconfigurability in application-specific

circuits.

To better understand how the core functions change in mature applica-

tions, this section analyzes the changes across successive versions of DJPEG,

CJPEG, Libpng, Sat Solver, MCF, VPR, and Bzip2 and documents the code

change patterns that were commonly seen. Figure 3.1 shows the commonly seen

code change pattern. The analysis shows that supporting these changes would

allow the application-specific circuits to adapt to multiple versions of the applica-

tions listed above, potentially enabling these configurable circuits to remain useful

for eight years on average. These commonly seen source code change patterns are

summarized below.

Control flow changes A commonly seen change in the key functions is the

addition or removal of certain computations. Figure 3.1(a) shows the changes

in the function refresh_potential across versions SPEC2000 and SPEC2006 of

MCF. The main change across the two versions is the removal of a for loop in the

beginning of the function, and the rest of the function code remains the same.

Changes in datapath operators and constants The second kind of common

change patterns includes changes in expression constants and changes in datapath

operators such as loop termination conditions (< replaced by ≤). Figure 3.1(b)

shows the changes in the function sentMTFValues across versions 1.0.2 and 1.0.3

of Bzip2. The only change across the two versions is in the constant value used to

ensure that a program variable value lies within the valid range.

Changes in the memory layout Another form of commonly seen change is in

the layout of the program data structures. These changes include addition, deletion

or rearrangement of structure fields. Figure 3.1(c) shows the changes in the data
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long refresh_potential( network_t *net )
{
    node_t *stop = net->stop_nodes;
    node_t *node, *tmp;
    node_t *root = net->nodes;
    long checksum = 0;

    for( node = root, stop = net->stop_nodes; 
            node < (node_t*)stop; node++ )
        node->mark = 0;

    root->potential = (cost_t) -MAX_ART_COST;
    tmp = node = root->child;
    while( node != root )
    {
      ...   
    }

    ...

    return checksum;
}

MCF SPEC2000

long refresh_potential( network_t *net )
{
    
    node_t *node, *tmp;
    node_t *root = net->nodes;
    long checksum = 0;

    
    

    root->potential = (cost_t) -MAX_ART_COST;
    tmp = node = root->child;
    while( node != root )
    {
      ...   
    }

    ...

    return checksum;
}

MCF SPEC2006
(a)

void sendMTFValues(Estate *s){
   ... 
/*--- Assign actual codes for the tables. --*/                                                                    
   for (t = 0; t < nGroups; t++) {                                                                                   
      minLen = 32;
      maxLen = 0;
      for (i = 0; i < alphaSize; i++) {
         if (s->len[t][i] > maxLen) maxLen = s->len[t][i];                                                           
         if (s->len[t][i] < minLen) minLen = s->len[t][i];                                                           
      }                                                                                                              
      AssertH ( !(maxLen > 20 ), 3004 );
      AssertH ( !(minLen < 1),  3005 );                                                                              
      BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]),                                                         
                          minLen, maxLen, alphaSize );                                                               
   }
   ...
}     

BZIP2 v1.0.2

void sendMTFValues(Estate *s){
   ... 
/*--- Assign actual codes for the tables. --*/                                                                    
   for (t = 0; t < nGroups; t++) {                                                                                   
      minLen = 32;
      maxLen = 0;
      for (i = 0; i < alphaSize; i++) {
         if (s->len[t][i] > maxLen) maxLen = s->len[t][i];                                                           
         if (s->len[t][i] < minLen) minLen = s->len[t][i];                                                           
      }                                                                                                              
      AssertH ( !(maxLen > 17 /*20*/ ), 3004 );
      AssertH ( !(minLen < 1),  3005 );                                                                              
      BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]),                                                         
                          minLen, maxLen, alphaSize );                                                               
   }
   ...
}     

BZIP2 v1.0.3
(b)

struct jpeg_decompress_struct {
  struct jpeg_source_mgr * src;

  JDIMENSION image_width;  
  JDIMENSION image_height; 
  
  double output_gamma;    
  
  boolean raw_data_out;    

boolean quantize_colors;    
...
}

DJPEG v5

struct jpeg_decompress_struct { 
  struct jpeg_source_mgr * src;
 
  JDIMENSION image_width;   
  JDIMENSION image_height; 
 
  double output_gamma; 
  boolean buffered_image; 
  boolean raw_data_out; 
  J_DCT_METHOD dct_method; 
  boolean do_fancy_upsampling; 
  boolean do_block_smoothing;
  boolean quantize_colors; 
...
}

DJPEG v6
(c)

Figure 3.1: Commonly seen source code modification patterns across ap-
plication versions The figure shows changes across versions of a) MCF, b) Bzip2,
and c) DJPEG. The changes are shown in bold.



24

structure jpeg_decompress_struct across versions 5.0 and 6.0 of DJPEG. The

data structure’s member variables are reorganized and new variables are added

(for ex. buffered_image). While the source of the hot spot functions in DJPEG

does not change across versions, the change in the data structure layout changes

the offsets used to calculate the memory addresses for load/store operations.

The above analysis shows that while the source code for the key functions

might change across application versions, the majority of the code in a key function

tends to remain the same. Hence, across application versions, hardware implemen-

tation is available for the majority of the code in a key function and the new version

should ideally be able to reuse the available hardware, albeit at a lower level of

performance/energy efficiency.

3.2 Reconfigurability support in Conservation

Cores

The analysis of successive application versions, presented in the previous

section, revealed a number of common change patterns, all of which were relatively

minor changes in source code. As discussed in Section 2.2.1, the c-core control unit

and datapath very closely correspond to the program structure. Hence, the changes

in c-core hardware design would mirror the changes in the source code. Fortunately,

c-cores can support many of these changes effectively with very modest amounts

of reconfigurability. This thesis proposes the following three patching mechanisms

for adjusting the c-core behavior after they have been fabricated.

Configurable constants The first patching mechanism generalizes hard-coded

immediate values into configurable registers. This mechanism supports changes to

the values of compile-time constants and the insertion, deletion, or rearrangement

of structure fields.

Generalized single-cycle datapath operators To support the replacement

of one operator with another, the second patching mechanism generalizes any
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addition or subtraction to an adder-subtractor, any comparison operation to a

generalized comparator, and any bitwise operation to a bitwise ALU. A small

configuration register is then added for each such operator, determining which

operation is currently active.

Control flow changes In order to handle changes in the CFG’s structure and

changes to basic blocks that go beyond what the above mechanisms can handle, the

third patching mechanism provides a flexible exception mechanism. The control

path contains a bit for each state transition that determines whether the c-core

should treat it as an exception.

When the state machine makes an exceptional transition, the c-core stops

executing and transfers control to the general-purpose core. The exception handler

extracts current variable values from the c-core via the scan-chain-based interface,

performs a portion of the patched execution, transfers new values back into the

c-core, and resumes execution. The exception handler can restart c-core execution

at any point in the CFG, so exceptions can arbitrarily alter control flow and/or

replace arbitrary portions of the CFG.

The next section describes the patch generation algorithm for mapping the

newer application versions onto a patchable c-core. The patching algorithm utilizes

this mapping to determine the reconfiguration state necessary to allow a c-core to

continue to run code even after it has been changed from the version used to

generate that c-core.

3.3 Patching Algorithm

This section describes the patching algorithm this thesis proposes. The

patching algorithm works directly on the program’s dataflow and control flow

graph, a representation that can be generated from either source code or a compiled

binary. This enables the patch generation to happen at assembly level, allowing

the new application versions to run on the specialized hardware without any source

code modifications.
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Original Version
sumArray(int n, int*a)
{
    int i = 0;
    int sum = 0;
    for(;i<n;i++)
    {
         sum += a[i];
    }

    return(sum);
}

New Version
sumArray(int n, int*a)
{
    int i = 0;
    int sum = 0;
    for(;i<n;i++)
    {
         sum += a[i];
    }
    sum = sum % 256;
    return(sum);
}

(a) (b)

F
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return sum 
to SW
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Figure 3.2: Handling changes in control flow across versions (a) The original
and new source for sumArray() is shown. (b) The mapping between the new and
the original version of sumArray’s CFG covers most of the target version in two
hardware regions. (c) Transfers of control between the hardware and software
regions require an exception.
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R2 R5 R3

+ *

R1 R4

R13 R15 R12

-*

R14 R11

Match

R22 R25 R23

+ *

R21 R24

R26

No Match

B1

B2 B3

Figure 3.3: Basic block matching Target block B3 can be mapped onto the
hardware for original block B1, but target block B2 does not match B1 and cannot
be mapped: There is no consistent mapping between the register names in bold.

When a c-core-equipped processor ships, it can run the latest version, re-

ferred to as the original version, of the targeted applications without modification.

When a new version of an application becomes available, the patching algorithm

determines how to map the new version of the software, referred to as the target

version, onto the existing c-core hardware. The goal of the patching process is to

generate a patch for the original hardware that will let it run the target software

version.

The patching algorithm proceeds in four stages: basic block mapping, con-

trol flow mapping, register remapping, and patch generation.

3.3.1 Basic block mapping

The first stage of the algorithm identifies which hardware basic blocks in

the original hardware can run each basic block in the target application. Since

the original hardware includes generalized arithmetic operators and configurable

constant registers, there is significant flexibility in what it means for two basic

blocks to match. Two basic blocks match if the following conditions are true.
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• The basic blocks have the same number of instructions, not including uncon-

ditional jumps (which only affect the control path and, therefore, have no

effect on the generated hardware).

• The data flow graphs of the two basic blocks are isomorphic up to operators

at the nodes and constant values.

• For each instruction in the target basic block, there is a corresponding in-

struction in the original that it is compatible with. That is, the original

instruction is either identical to the target, or can be patched to turn it into

the target instruction.

Figure 3.3 shows one original block, B1 and two target blocks, B2 and B3.

The mapping process will mark B3 as a possible match for B1, and B2 as not

matching B1.

3.3.2 Control flow mapping

The next step of the patching algorithm is building a map between the

control flow graphs of the original and target versions. This step identifies regions

of the target control flow graph that map perfectly onto disjoint portions of the

original hardware. These portions of the function are called hardware regions, and

they will execute entirely in hardware under the patch. Ideally, all basic blocks

in the target will map to basic blocks in the original, and there will be a single

hardware region. In practice this will sometimes not be possible. The target

version may have basic blocks inserted or deleted relative to the original, or one of

the basic blocks may have changed enough that no matching basic block exists in

the original. The exception mechanism executes the remaining, unmapped software

regions on the general purpose processor.

To divide the control flow graph, the algorithm starts by matching the

entry node of the target graph with the entry of the original graph. The algorithm

proceeds with a breadth-first traversal of the target graph, greedily adding as many

blocks to the hardware region as possible. When the hardware region can grow no

larger, the region is complete.
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A region stops growing for one of two reasons: It may reach the end of

the function or run up against another hardware region. Alternatively, there may

be no matching basic blocks available to add to the region because of a code

modification. In that case, the patching algorithm marks the non-matching basic

blocks as part of the software region and selects the lowest depth matching basic

block available to seed the creation of a new hardware region. This stage of the

algorithm terminates when the entire function has been partitioned into hardware

regions and software regions.

Figure 3.2 illustrates this portion of the algorithm. Figure 3.2(a) shows the

original software version of a function called sumArray() and its CFG. Figure 3.2(b)

shows the target version of sumArray() which has an extra operation. Most of the

new sumArray() is mapped onto the original c-core in two hardware regions, but

the new operation is mapped to a separate software region because the hardware

for it does not exist in the original c-core. Any transition to this region will be

marked as an exception.

3.3.3 Register mapping

The next phase of the algorithm generates a consistent local mapping be-

tween registers in the original and target basic block for each matched basic block

pair. In this mapping, the output of the first instruction in the original basic block

corresponds to the output of the first instruction in the target basic block, and so

on.

The next step is to combine these per-block maps to create a consistent

register mapping for each hardware region. To construct the mapping, the patch-

ing algorithm analyzes the basic block mapping for each of the basic blocks in the

region. This data yields a weighted bipartite graph, in which one set of nodes

corresponds to the register names from the original code and the second set corre-

sponds to register names from the target code. An edge exists between an original

register, r1, and a target register, r2, if there exits a basic block pair that maps

r2 onto r1. The weight of the edge is the number of basic block pairs that contain

this register mapping.
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Figure 3.4: The Patching Algorithm Toolchain The various stages of our
toolchain involved in hardware generation, patching, simulation, and power mea-
surement are shown. The bold box contains the patch generation infrastructure
based on our patching enabled compiler.

Next, the algorithm performs a maximum cardinality, maximum weight

matching on the graph. The resulting matching is the register map for that hard-

ware region. Finally, each pair of corresponding basic blocks is examined to see if

their register names are consistent with the newly created global map. If they are

not, the target basic block is removed from the hardware region and placed it in

its own software region.

3.3.4 Patch generation

At this point, the patching algorithm has all the information required to

generate a patch that will let the target code run on the original hardware. The

patch itself consists of three parts:
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• the configuration bits for each of the configurable components including the

datapath elements and the configurable constant registers

• exception bits for each of the control flow edges that pass from a hardware

region into a software region

• code to implement each of the software regions

The software region code is subdivided into three sections. First, the pro-

logue uses the scan chain interface to retrieve values from the c-core’s datapath

into the processor core. Next, the patch code implements the software region. The

region may have multiple exit points, each leading back to a different point in the

datapath. At the exit, the epilogue uses the scan chain interface again to insert

the results back into the datapath and return control to the c-core.

3.3.5 Patched execution example

Figure 3.2(c) shows how c-cores use the exception mechanism to patch

around software regions generated during the control flow mapping stage. When

the c-core execution reaches the false edge of the for loop condition, it makes an

exceptional transition which freezes the c-core and transfers control to the CPU.

The CPU retrieves the application’s software exception handler corresponding to

the edge that raised the exception, and the handler executes the prologue, patch

code, and epilogue before returning control to the c-core.

3.4 Methodology

This section describes the methodology for designing patchable c-cores and

generating configuration patches corresponding to different application versions.

The bold box in Figure 3.4 shows how the patching system fits into the toolchain

explained in Section 2.3.
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3.4.1 Generation of Patchable Conservation Core

Hardware

The hardware generation compiler extends the C-to-Verilog compiler (Sec-

tion 2.3.1) to provide support for the reconfigurability mechanisms. The hardware

compiler instantiates the datapath operators in the program as generalized ALUs,

stores the expression constants and memory offsets in 32-bit registers, and extends

each state transition edge in the control unit with a 1-bit exception register.

Also, the hardware compiler adds two new groups of scan chains to c-cores.

The first group of scan chains connects all of the reconfiguration state including the

exception registers, registers for storing configurable constants and memory offsets,

and the configuration registers in each of the generalized datapath operators. This

scan chain group is used to initialize the c-core with the configuration patch before

the application execution begins. The second group of scan chains connects the

registers storing the datapath state. These datapath scan chains allow the CPU

to manipulate arbitrary state during an exception. Since each c-core can contain

hundreds of registers, the datapath state registers are divided amongst up to 32

scan chains to ensure that CPU can access the datapath state without significant

overhead.

3.4.2 Generating Configuration Patch

The toolchain generates the application configuration patch to store the

reconfiguration state. This includes the exception register values, expression con-

stant and memory offset values, and operator index values in the ALU configuration

registers. This stage stores the configuration patch in a binary file. At runtime,

the application reads this configuration patch file to initialize the c-core using the

scan chain interface explained in the previous section.

Figure 3.4 shows how the configuration patch is generated for new applica-

tion releases. The toolchain generates the configuration patch by matching the new

application version’s binary to the c-core hardware design based on the patching

algorithm described in Section 3.3.
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3.5 Results

This section describes the performance and efficiency of the patchable c-core

architecture and its impact on application performance and energy consumption.

Also, this section discusses the gains in longevity due to the patching mechanism.

3.5.1 Energy savings

This section presents the analysis of patchable c-cores for six versions of

bzip2 (1.0.0−1.0.5), and two versions each of cjpeg (v1−v2), djpeg (v5−v6), mcf

(2000−2006), and vpr (4.22−4.30). Table 3.1 summarizes the c-cores. The table

shows that the hot spots of the above-mentioned benchmarks vary greatly in size

as well as complexity. Also, the data shows that the same set of functions accounts

for a sizable fraction of execution of different application versions, implying that

the c-cores will remain useful across application version releases.

Figure 3.5 shows the relative energy efficiency, EDP improvement, and

speedup of c-cores versus a MIPS processor executing the same code. For fair-

ness, and to quantify the benefits of converting instructions into c-cores, we ex-

clude cache power for both cases. The data show that patchable c-cores are up to

15.96× as energy-efficient as a MIPS core at executing the code they were built to

execute. The data also shows that the c-cores are able to support multiple versions

effectively. On average, the c-cores are 8.68× more energy-efficient than a MIPS

core at executing alternate versions of the code they were designed to execute. The

non-patchable c-cores are even more energy efficient, but their inability to adapt

to software changes limits their useful lifetime.

Figure 3.6 shows the energy delay improvements provided by a c-core-

enabled architecture at the application level. This is a full system evaluation

including the runtime and CPU/c-core interface overheads and the energy con-

sumed by the memory hierarchy and interconnect. The data shows that the c-

core-enabled architecture improves the energy efficiency by 33% on average com-

pared to the baseline tiled architecture. Moreover, in a c-core-enabled system,

the dynamic energy of computation accounts for less than half of the total energy
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Table 3.1: Conservation core statistics The c-cores we generated vary greatly
in size and complexity. In the “Key” column, the letters correspond to application
versions and the Roman numerals denote specific functions from the application
that a c-core targets. “LOC” is lines of C source code, and “% Exe.” is the
percentage of execution that each function comprises in the application.

C-core Ver. Key LOC % Exe.
Area (mm2) Freq. (MHz)
Non-P. Patch. Non-P. Patch.

bzip2
fallbackSort 1.0.0 A i 231 71.1 0.128 0.275 1345 1161
fallbackSort 1.0.5 F i 231 71.1 0.128 0.275 1345 1161

cjpeg
extract MCUs v1 A i 266 49.3 0.108 0.205 1556 916

get rgb ycc rows v1 A ii 39 5.1 0.020 0.044 1808 1039
subsample v1 A iii 40 17.7 0.023 0.039 1651 1568

extract MCUs v2 B i 277 49.5 0.108 0.205 1556 916
get rgb ycc rows v2 B ii 37 5.1 0.020 0.044 1808 1039

subsample v2 B iii 36 17.8 0.023 0.039 1651 1568
djpeg

jpeg idct islow v5 A i 223 21.5 0.133 0.222 1336 932
ycc rgb convert v5 A ii 35 33.0 0.023 0.043 1663 1539
jpeg idct islow v6 B i 236 21.7 0.135 0.222 1390 932
ycc rgb convert v6 B ii 35 33.7 0.024 0.043 1676 1539

mcf
primal bea mpp 2000 A i 64 35.2 0.033 0.077 1628 1412
refresh potential 2000 A ii 44 8.8 0.017 0.033 1899 1647
primal bea mpp 2006 B i 64 53.3 0.032 0.077 1568 1412
refresh potential 2006 B ii 41 1.3 0.015 0.028 1871 1639

vpr
try swap 4.22 A i 858 61.1 0.181 0.326 1199 912
try swap 4.3 B i 861 27.0 0.181 0.326 1199 912
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Figure 3.5: Conservation core energy efficiency Our patchable c-cores pro-
vide up to 15.96× improvement in energy efficiency compared to a general-purpose
MIPS core for the portions of the programs that they implement. The gains are
even larger for non-patchable c-cores, but their lack of flexibility limits their useful
lifetime (see Figure 3.7). Each subgroup of bars represents a specific version of an
application (see Table 3.1). Results are normalized to running completely in soft-
ware on an in-order, power-efficient MIPS core (“SW”). “unpatchable” denotes a
c-core built for that version of the application but without patching support, while
“patchable” includes patching facilities. Finally, “patched” bars represent alter-
nate versions of an application running on a patched c-core. For all six versions
of bzip2 (A-F), the c-core’s performance is identical.
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Figure 3.6: Full application system energy, EDP, and execution time for
c-cores At system level, the patchable c-cores reduce the application energy re-
quirements by up to 2× compared to a general-purpose MIPS core. Each subgroup
of bars represents a specific version of an application (see Table 3.1). Results are
normalized to running completely in software on an in-order, power-efficient MIPS
core (“SW”). “on HW.A” denotes a c-core built for that version of the application
but without patching support, while “on HW.AP” includes patching facilities. Fi-
nally, “on HW.BP” bars represent alternate versions of an application running on
a patched c-core. For all six versions of bzip2 (A-F), the c-core’s performance is
identical.
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Figure 3.7: Conservation core effectiveness over time The patchable c-cores
are able to support changes in code across versions of stable applications, enabling
them to deliver efficiency gains over a very long period of time.

consumption, making memory system and interconnect the dominant components

of system energy consumption.

3.5.2 Longevity

Figure 3.7 quantifies the ability of the proposed patching mechanisms to

extend the useful lifetime of c-cores. The horizontal axis measures time in years,

and the vertical axis is energy efficiency normalized to software. The lines represent

what the c-cores built for the earliest software version can deliver, both with and
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without patching support. For instance, vpr 4.22 was released in 1999, but when a

new version appears in 2000, the non-patchable hardware must default to software,

reducing the energy efficiency factor from 6.2× down to 1×. In contrast, patchable

hardware built for 4.22 has a lower initial efficiency factor of 3.4×, but it remained

there until March 2009. For djpeg and bzip2, the results are even more impressive:

Those c-cores deliver 10× and 6.4× energy efficiency improvements for covered

execution over 15 and 9 year periods, respectively.

The above discussion shows that the patchable c-cores can provide lifetimes

comparable to that of general-purpose processors. These improved lifetimes com-

bined with significant energy efficiency make c-cores ideal candidates for many

commonly used applications.

3.6 Patching Overhead Analysis and Optimiza-

tions

The previous sections demonstrate that the reconfigurability mechanisms

can provide processor-like lifetimes for application-specific circuits. This section

analyzes the cost of these reconfigurability mechanisms in terms of their impact on

area and energy consumption and proposes optimizations to reduce these overheads

without significantly affecting the lifetimes of patchable c-cores.

3.6.1 Cost of Reconfigurability

The patchable c-cores utilize reconfigurability to ensure longevity. Table 3.2

shows that the c-cores extensively use patching constructs. The data shows that

more than half of the instructions use configurable registers, and 16% to 31% of

instructions use configurable datapath operators. The impact of utilizing these

patching mechanisms on area and energy consumption is examined in more detail

below.

Area overhead Patching area overhead comes in four forms. The first is the

increase in area caused by replacing simple, fixed-function datapath elements (e.g.,
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Figure 3.8: Area and power breakdown for patchable c-cores Adding patch-
ability approximately doubles a c-core’s area (a) and power (b) requirements.

adders, comparators) with configurable ones. The second form comes from the

conversion of hard-wired constant values to configurable registers. Third, there is

extra area in the scan chains that allows us to insert, remove, and modify arbitrary

values in the c-core. Finally, patchable c-cores require additional area in the control

path to store edge exception information.

Table 3.3 compares the area requirements for patchable and non-patchable

structures. The costs on a per-element basis vary from 160 µm2 per configurable

constant register to 365µm2 per add/subtract unit. The standard cell libraries

include scan chains in registers automatically, but they are not easily accessible in

the tool flow. Instead, our toolchain implements the scan chains explicitly, which

results in additional overhead that could be removed with proper support from the

tool flow.

Figure 3.8(a) shows the breakdown of area for the patchable c-cores for the

earliest version of each of our 5 target applications. Patching support increases

the area requirements of c-cores by 89% on average.
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Power overhead Patching support also incurs additional power overhead. Fig-

ure 3.8(b) shows the impact of adding each of the three components described

above. Overall, patching support approximately doubles the power consumption

of the c-cores, with the majority of the overhead coming from the configurable

registers.

Performance overhead In the c-core toolchain, adding patchability does not

change the structure of the datapath, but it does potentially increase the critical

path length and, therefore, the achievable clock speed. On average, patchable

systems achieve 90% of the application performance of non-patchable systems.

3.6.2 Optimizations to Reduce the Patching Overheads

This section presents a detailed analysis of how the patching constructs are

utilized by stable workloads to achieve longevity. Using this analysis, this the-

sis proposes improvements to the reconfigurability mechanisms that trade a small

amount of flexibility (in terms of what code changes are patchable) for greatly

reduced overhead (area and power). The analysis is based on the workloads de-

scribed in Section 3.5 as well as other irregular programs from SPEC 2000 [SPE00]

(Twolf), Sat Solver [TH04], and Splash [WOT+95] (Radix).

Reduced-width Configurable Constants Most programs use many compile-

time constants such as program constants and structure offsets. To support changes

in these across versions, the patching mechanism replaces every compile-time con-

stant with a 32-bit register that is configurable at run-time.

This study analyzes the bit width requirements of the compile-time con-

stants and how they change across versions. In our workloads, 87% of all compile-

time constants can be represented by 8 or fewer bits. Moreover, even for compile-

time constants longer than 8 bits, the software changes across versions only affected

the low-order bits. In order to exploit this for reducing the patching overhead, 8-

bit configurable registers were used to represent the lower bits of the program

constants, leaving the original upper 24 bits fixed. In this manner, the reduced-
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Table 3.2: Conservation core details “States” is the number of states in the
control path, “Ops” is the number of assembly-level instructions, and “Patching
Constructs” gives a breakdown of the different types of patching facilities used in
each conservation core.

C-core Ver. States Ops
Loads/
Stores

Patching Constructs
Add-

Cmp.Bit.
Const.Exc.

Sub Reg. Bit
bzip2

fallbackSort 1.0.0 285 647 66 / 38 138 78 33 323 363
fallbackSort 1.0.5 285 647 66 / 38 138 78 33 323 363

cjpeg
extract MCUs v1 116 406 41 / 25 152 11 0 235 127

get rgb ycc rows v1 23 68 14 / 3 16 2 0 39 25
subsample v1 32 85 9 / 1 16 8 1 34 40

extract MCUs v2 116 406 41 / 25 152 11 0 235 127
get rgb ycc rows v2 23 68 14 / 3 16 2 0 39 25

subsample v2 32 85 9 / 1 16 8 1 34 40
djpeg

jpeg idct islow v5 97 432 39 / 32 180 4 21 238 101
ycc rgb convert v5 40 82 24 / 3 19 4 0 40 44
jpeg idct islow v6 97 432 39 / 32 180 4 21 238 101
ycc rgb convert v6 40 82 24 / 3 19 4 0 40 44

mcf
primal bea mpp 2000 101 144 36 / 16 22 21 0 94 122
refresh potential 2000 44 70 17 / 5 6 10 0 35 54
primal bea mpp 2006 101 144 36 / 16 22 21 0 94 122
refresh potential 2006 39 60 16 / 4 3 8 0 29 47

vpr
try swap 4.22 652 1095 123 / 86 108 149 0 367 801
try swap 4.3 652 1095 123 / 86 108 149 0 367 801

Table 3.3: Area costs of patchability The AddSub unit can perform addition
or subtraction. Similarly, Compare6 replaces any single comparator (e.g., ≥) with
any of (=, 6=,≥, >,≤, <). Constant values in non-patchable hardware contribute
little or even “negative” area because they can enable many optimizations.

Structure
Area

Replaced by
Area

(µm2) (µm2)
adder 270

AddSub 365
subtractor 270

comparator (GE) 133 Compare6 216
bitwise AND, OR 34

Bitwise 191
bitwise XOR 56

constant value ∼ 0 32-bit register 160
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width configurable constants can still handle most software changes and reduces

the energy and area overheads by 51% and 45%, respectively.

Operation-specific Configurable Constants The programs use compile-time

constants to store expression constants as well as memory offsets. The patching

mechanism replaces compile-time constants in all the arithmetic operations as well

as memory offsets with configurable registers.

This study analyzes the operation classes whose expression constants might

change across versions. The analysis of the workload set shows that, across ver-

sions, the compile-time constants representing the memory offsets change often

across versions. Also, the expression constants in branch operations might change

across versions. However, program constants in other arithmetic operations did

not change across versions. To exploit this, the configurable constants target the

memory offsets and branch operations and leave the program constants in other

arithmetic operations fixed. This patching improvement still handles software

changes in memory operations and branches in hardware, but if a value changes in

other arithmetic operations, the c-core can use the exception mechanism to patch

around the offending basic block. This operation-specific configurable constant

optimization reduces the energy overhead by an additional 11% and area overhead

by 18%.

Configurable ALUs The patching mechanism replaces specific fixed-function

operators in the datapath with a more general equivalent. For example, an adder

becomes an add/subtract unit, and a less-than comparator generalizes to a 6-

function comparator unit able to compute all six (in)equalities. This mechanism

could be used to fix application bugs such as less-than becoming less-than-or-equal

in a loop condition.

The analysis of the workload set shows that these datapath operator changes

are less common than changes to constants, so including configurable ALUs more

judiciously and falling back on the exception mechanism when necessary can reduce

area overhead by as much as additional 18%. Alternatively, multiple datapath

operators can share a configurable ALU. This approach would reduce the area
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overhead without sacrificing the reconfigurability of the c-cores.

Impact of patching optimizations

The patching mechanism optimizations reduce the overhead of patching by

using reduced-width configurable constants and providing configurable constants

for selective operations. The optimizations can further reduce the area overhead by

multiplexing configurable ALUs across multiple datapath operators or eliminating

the configurable ALUs and relying on the exception mechanism to support the

software changes.

Figure 3.9 shows the impact of the patching optimizations on area and en-

ergy overheads. The bar labeled c-core includes the full patching mechanisms. The

remaining bars show the energy improvements for the patching optimizations de-

scribed above: 8b Const uses 8-bit constant registers; Op Sel provides configurable

constants only for selective operation classes; ALU Opt. reduces the number of

configurable ALUs; and finally, No Patch removes all the patching support, mak-

ing them unable to support any change in source across versions. All the bars

are normalized to the last bar, and hence represent the overhead of the patching

mechanisms.

3.7 Backward Patching

Section 3.2 presents reconfigurability mechanisms to improve a c-core’s

longevity. These reconfigurability mechanisms were based on the commonly seen

source code modification patterns and were effective at “future proofing” the c-

cores. This section explains how to improve c-core’s support for the legacy “in-use”

versions by exploiting the knowledge about the source code of older application

versions. For exposition purposes, the patchable c-core with improved backward

compatibility support is called c-cores-bc in this section. The c-cores-bc supports

all the previously proposed patching mechanisms for supporting newer application

releases. In addition, they also provide additional configurability in their control

flow to support older “in-use” versions.
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Figure 3.9: Impact of patching optimizations on the area and energy
requirements of patchable c-cores The graph shows that the patching opti-
mizations can significantly reduce the area and energy overheads of the reconfig-
urability mechanisms.
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Old Version
sumArray(int n, int*a)
{
    int i = 0;
    int sum = 0;
    for(;i<n;i++)
    {
         sum += a[i];
    }

    return(sum);
}

Original Version
sumArray(int n, int*a)
{
    int i = 0;
    int sum = 0;
    for(;i<n;i++)
    {
         sum += a[i];
    }
    sum = sum % 256;
    return(sum);
}
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Figure 3.10: Conservation Core design with support for changes in control
flow in older application versions The old and original source for sumArray()
is shown (a). The changes between the old and the original version of sumArray’s
CFG is shown in dashed lines (b). The conservation core design that can execute
the old and original versions of sumArray without requiring an exception (c).

The patchable c-cores use the exception mechanism to handle changes in the

control flow, as shown in Figure 3.2. However, the c-cores can incur high overhead

for using the exception mechanism because of the slow CPU/c-core interface and

execution of the patch code on the general-purpose processor. The c-cores can

avoid this exception overhead for the older application versions by leveraging the

fact that these changes in control flow are known at the time of c-core design. The

c-core design flow can exploit this knowledge to design c-cores-bc that are better

equipped to handle these control flow changes, as shown in Figure 3.10. In the

figure, the control flow of the c-cores-bc can, at runtime, adapt to support the

control flow of both the original application version as well as the older version.

This allows the c-cores-bc to support multiple versions with different control-flows

without requiring the exception mechanism.

The c-cores-bc design flow merges the source code changes from the older

application versions to the current application version and uses this merged source

to design the hardware. The rest of this section describes the methodology for

designing c-cores-bc and analyzes their energy efficiency as well as lifetime.
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Figure 3.11: The Backward Compatible Conservation Core Toolchain The
various stages of our toolchain involved in hardware generation, patching, simula-
tion, and power measurement are shown. The bold box contains the compiler for
designing backward compatible c-cores based on the source code of current and
older “in-use” versions.
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3.7.1 Methodology

Figure 3.11 shows the toolchain for designing the c-cores-bc. The bold box

in the figure shows how the backward patching mechanism fits into the toolchain

explained in Section 3.4.

The c-cores-bc synthesis toolchain accepts the source code of current and

older “in-use” application versions as input. The c-core identification stage profiles

the application and tags the key functions for conversion into c-cores.

The backward patching compiler accepts the source code of key functions

from the current and older application versions as input. The code merging stage

merges the control flow changes from older application versions with the current

version and generates the new source for the c-cores-bc. This new source im-

plements the functionality of both the current and older versions and hence, can

support all the involved versions without using the expensive exception mecha-

nism at runtime. The details of this source code merging algorithm for designing

c-cores-bc is presented in Chapter 5.

The configuration generator stage modifies the application source to pass

the configuration state that the c-cores-bc utilizes to adapt to the corresponding

application version at runtime. The current implementation passes the application

version number as an additional function argument to the c-cores-bc. The c-cores-

bc uses this version information to guard all the version-specific code segments, as

shown in Figure 3.10(c).

The c-cores-bc’s source is then converted into hardware and integrated with

the general-purpose processor using the methodology presented in Section 3.4. The

next section analyzes the energy efficiency and longevity of the resultant c-cores-bc.

3.7.2 Results

Energy Savings Figure 3.12 presents c-cores-bc energy efficiency across appli-

cation versions and compares it to that of c-cores. The results show that c-cores-bc

provide significant energy-improvements compared to the baseline processor for all

application versions and can be up to 7× more energy-efficient than c-cores for

the older versions. Also, for the latest application version, c-cores-bc is almost as
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Figure 3.12: Improvements in the backward compatibility of Conservation
Cores The energy-efficiency of the older versions improves significantly (up to 7×)
with minimal impact on that of newer ones.

energy-efficient as the c-core (less than 10% difference on average).

Longevity Figure 3.13 demonstrates the effects of the backward patching tech-

nique on the longevity of the c-cores. The graphs plot the energy efficiency of

c-core and c-cores-bc compared to that of a general-purpose processor over a pe-

riod of time measured in years. The average energy improvements that c-core and

c-cores-bc provide is shown by the Average C-core and Average C-cores-bc curve

respectively. The graph shows that c-cores-bc can maintain their energy efficiency

over longer periods of time by effectively supporting the older versions. For ex-

ample, c-cores-bc provides 14× energy efficiency for MCF for a span of ten years,

whereas the c-core can do so only for four years. This is because c-core’s energy

efficiency for the legacy versions of MCF dips to 8×. Moreover, these improve-

ments in backward compatibility are obtained without significantly decreasing the

energy efficiency of the c-cores-bc for the current and newer application versions

(less than 10% difference on average).

The above results show that the backward compatibility of the c-cores can
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be significantly improved by designing compound circuits that can adapt to the

control flow of different application versions at runtime. The results also show that

this additional configurability comes at little expense to the energy efficiency of

the c-cores. These results are in keeping with the working assumption of this work,

which is that the key functions in mature applications do not change significantly

across versions, and hence, it is possible and desirable to provide reconfigurability

mechanisms in application-specific circuits, thus enabling these circuits to have

lifetimes comparable to those of general-purpose processors.

3.8 Conclusion

This chapter proposes patchable conservation cores, energy-efficient circuits

with targeted reconfigurability so that these circuits remain useful across applica-

tion versions. The main contribution of this work is the patching mechanism that

enables the newer application releases to be mapped onto the patchable c-core with-

out any source code modifications. The patching mechanism can provide enough

flexibility to ensure that c-cores will remain useful for up to 15 years, far beyond

the lifetime of most processors. This work also analyzes the area and energy over-

heads of these patching mechanisms and proposes optimizations to reduce them

without significantly affecting the c-core’s longevity. Also, this work proposes tech-

niques to improve the backward compatibility of the c-cores, allowing them to run

the legacy versions as efficiently as the latest version. Specialization has emerged

as an effective approach to scale system performance in spite of the utilization

wall phenomenon. However, lack of flexibility in application-specific circuits limits

the scope of the applications that they can target. To address this applicability

issue, this thesis proposes patching mechanisms that provide application-specific

circuits with increased flexibility, making them a suitable candidate for targeting

the mature applications in a system’s workload.
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Chapter 4

Utilizing Conservation Cores to

Design Mobile Application

Processors

The market for smartphones and other portable devices continues to grow

rapidly. These mobile devices provide a rich user experience, enabling people to

stay connected, stream multimedia, play video games, and navigate using GPS-

powered maps. Moreover, this trend of mobile devices providing greater function-

ality and supporting a more diverse application set is only expected to continue

with the emergence of a new generation of mobile devices such as those based on

Apple iOS [App] and Google Android [Gooc]. However, these increasingly diverse

mobile applications strain the traditional model of manually designing specialized

hardware to address the power concerns and achieve better performance. In order

to provide this increasing functionality, new generations of mobile devices rely on

general-purpose processors, called the application processors.

At the same time, as explained in Chapter 1, the utilization wall phe-

nomenon is limiting the fraction of a chip that can be active simultaneously at full

frequency. While the utilization wall phenomenon is applicable across all compu-

tational domains, it is especially limiting for mobile devices because of restricted

power budgets. This threatens to limit the performance scaling of application

processors, impeding the evolution of what is becoming the dominant computing

53
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platform for much of the world.

This work explores the potential for designing energy-efficient mobile ap-

plication processors by utilizing patchable conservation cores, explained in the

previous chapter. In particular, the work primarily focuses on designing energy-

efficient application processors for the Android-based mobile devices. The main

contribution of this work is to analyze the software stack of Android and use this

analysis to design conservation cores that can cover significant fraction of the An-

droid execution while staying within modest area budgets. This work demonstrates

that majority of the Android application execution time is spent in the Android

libraries and the Dalvik virtual machine [Goob], and leverages this fact to design

c-cores that can improve the energy efficiency and performance across a wide range

of current Android applications and potentially, future applications as well.

This chapter is organized as follows. Section 4.1 explains the applicability

of our c-core-based approach to the Android system. Section 4.2 presents the

Android’s internal architecture. Section 4.3 explains our approach for designing c-

cores targeting the hot code segments in the Android system. Section 4.4 examines

the area requirements of the c-cores that our approach designs and the energy

savings that these c-cores provide. Section 4.5 concludes this chapter.

4.1 Applicability of Conservation Cores to An-

droid

This work proposes an energy-efficient application processor for Android-

based mobile devices. This section first gives some background information about

the Android platform and then uses this analysis to demonstrate that c-cores are

a good fit for the Android system.

4.1.1 Android Platform Analysis

The Android software stack is shown in Figure 4.1. The core of the Android

platform comprises a collection of native libraries written in C and C++ that imple-
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Figure 4.1: Android Software Stack The various layers of the Android’s internal
architecture [Gooc].

ment most of the widely used services such as compression, window compositing,

2-D and 3-D graphics, and HTML rendering. This software stack layer also con-

tains the Dalvik virtual machine (DVM). The Dalvik virtual machine executes the

user application code, compiled down to the byte code, and provides access to the

native libraries via Java Native Interface calls.

Android architecture seeks to concentrate the performance-critical “hot”

code in the native libraries, which the Android applications can utilize to imple-

ment their key functionality. The remainder of the application code, much of which

will be relatively “cold,” runs on the Dalvik virtual machine, making the DVM

code “hot” as well. In this manner, most of the “hot” code that runs on the appli-

cation processor belongs to the Android software stack. The next section discusses

how this “library-centric” design of Android is a good match for the c-core-based

approach proposed in this thesis.
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4.1.2 Case for using c-cores to optimize mobile application

processors

Android’s internal architecture relies very heavily on a small number of

shared software components, and there is a core set of commonly used applica-

tions (such as the web browser, video, music, and email programs) that represent

common-case usage across a large number of users. Targeting these shared compo-

nents will enable the c-cores to significantly reduce the system’s energy consump-

tion. A c-core-based approach can exploit the Android’s internal architecture in

the following two ways. First, the c-cores can target key portions of the native

libraries and Dalvik in order to provide energy reduction across the general class

of applications that run on the phone. These are termed as broad-based c-cores. In

our studies, these broad-based c-cores can collectively cover an average of 72% of

the execution of a typical Android mobile phone workload. Second, the c-cores can

target specific applications that many Android users run. These targeted c-cores

can, depending on the silicon area dedicated to them, cover from 80% to 90% to

even 95% of the targeted workload. Although targeted c-cores may not achieve

energy savings for new Android application releases, the rapid replacement cycle

of smartphones suggests that it is reasonable to continually develop new c-cores

for inclusion in future Android application processors as new applications achieve

popularity.

The above discussion demonstrates that the c-cores can cover a significant

fraction of the code execution on an application processor in Android-based mobile

devices. Also, as more area becomes available for specialization with each technol-

ogy generation, the c-core-based application processors can execute the Android

system more efficiently and incorporate hardware support for an ever increasing

number of desired functionalities.

4.2 Android Software Stack

This section describes the Android software platform including the Android

applications, application framework, shared libraries, and the Android runtime.
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Android applications Android applications are written in Java. The appli-

cation code has access to the application framework APIs that they can use to

design their application user interface, access system resources such as the notifi-

cation bar, as well as access data from other applications. This application model

facilitates the reuse of components across applications.

Android shared libraries Android shared libraries implement most of the

widely used services such as system C library, window composting, and graph-

ics libraries. These Android libraries consist of many of the performance-critical

functions, are highly optimized for execution on mobile devices and are accessible

to the application code via application framework APIs. These shared libraries

enable the application code, written in Java, to implement much of their function-

ality in native C code. By design, these shared libraries would implement much of

the “hot” code that executes in the Android system.

Dalvik virtual machine The Dalvik virtual machine (DVM) executes the ap-

plication code that is compiled down to the Dalvik executable format. The Dalvik

virtual machine is optimized for running on a slow CPU with low main memory

without draining too much of the battery power. However, given that it is a virtual

machine executing the application code, executing a computation on the Dalvik

virtual machine is not as energy-efficient as executing the computation directly

on the CPU. Hence, given that all the application code written in Java executes

on the Dalvik virtual machine, ensuring that the execution of virtual machine is

energy-efficient is very critical as well.

The above discussion explains the high level design of the Android software

stack and shows that as a result of this design, the shared libraries and the Android

runtime account for much of the code that executes on the application processor.

The next section profiles the Android system and provides further details about

the hot code segments in the Android system.
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4.3 Designing Conservation Cores for Android

The main goal of this section is to motivate the effectiveness of automat-

ically generated application-specific circuits in optimizing the energy efficiency of

application processors. Traditionally, mobile devices use hardware accelerators

that were manually designed for very specific computations such as graphics op-

erations. However, as the software stack of mobile devices becomes increasingly

general-purpose, the fraction of the code that executes on the application proces-

sor increases considerably. This section demonstrates that a large of fraction of

this general-purpose code can be supported in hardware within very modest area

budgets.

This section profiles the Android system executing many of the commonly

used Android applications. Next, this profile is used to characterize the hot code

segments in the Android system. Finally, based on this hot code analysis, this

section presents our approach for designing the c-core-based mobile application

processors.

4.3.1 Profiling the Android System

This section explains the profiler tool for profiling the execution of the

Android system. The profiler traces every instruction that executes on the CPU

including the kernel code. The next section post processes this instruction trace

to collect information about the hot code segments.

Android emulator The profiling step uses a QEMU-based Android emula-

tor [Gooa] to run the complete Android system including the Android shared

libraries, the Dalvik virtual machine and the Linux kernel.

The tracing records every instruction from every process that runs on the

CPU. This includes all the code in the native libraries, Dalvik virtual machine as

well as the linux kernel. This enables the analysis of the complete Android system

so that the hot code segments can be accurately determined. The tracing also

provides information about the memory system including the memory operations
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executed and the cache hit/miss statistics. Moreover, this tracing does not need

any modifications to the application and occurs completely inside the emulator.

This enables the easy addition of more applications, as they become popular, to

our workload.

Android workload The profiling is done on a workload consisting of com-

monly used Android applications in order to profile typical smartphone execu-

tion. The workload comprises a diverse set of user-level applications including the

Web Browser, Google Mail, Google Maps, Google Music, Google Video, Pandora,

Photoshop Mobile, and RoboDefense.

4.3.2 Characterizing the hotspots in the Android system

This section analyzes the hot code segments in the Android system that

were found using the profiling methodology described in the previous section. The

analysis first examines the amount of static code that the hardware would need to

support in order to cover a significant fraction of the application execution. Then,

the analysis looks into how to provide this hardware support in a scalable manner

such that these specialized processors can provide energy improvements for a wide

range of commonly used applications.

Application Coverage

The fraction of the application execution spent on a c-core, or coverage,

is one of the key factors in determining how much benefit c-cores can provide.

For c-cores to achieve high coverage in a reasonable amount of area, a relatively

small fraction of the application’s instructions must account for a large fraction of

the dynamically executed instructions as well as that of the application execution

time. Figure 4.2 plots the fraction of the dynamically executed ARM instructions

(y-axis) covered by the number of static ARM instructions (x-axis) for our Android

application workload. In the figure, the top graph shows the average data across

all the applications, while the graphs below plot it for each of the applications. The

data shows that a relatively small number of static instructions account for a very
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Figure 4.2: Static Instruction Count vs Dynamic Instruction Count Cov-
erage The graphs plot the dynamic instruction count coverage against the num-
ber of static instructions required to get that coverage. The results show that a
small number of static instructions account for a large fraction of the dynamic
instructions that execute on the CPU. The top graph plots the results averaged
across all the applications, while the graphs below show the results for the An-
droid applications - PhotoShop, Browser, Email, Gallery, Maps, Video, Pandora,
and RoboDefense in that order.
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Figure 4.3: Basic block count vs Application execution coverage The graphs
plot the application execution coverage against the number of basic blocks required
to get that coverage. The results show that a small number of basic blocks account
for a large fraction of the application execution time. The top graph plots the
results averaged across all the applications, while the graphs below show the results
for the Android applications - PhotoShop, Browser, Email, Gallery, Maps, Video,
Pandora, and RoboDefense in that order.
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Figure 4.4: Breakdown of Application Runtime across Android Software
Stack The graph plots the breakdown of application runtime across different layers
of the Android software stack. The graph shows that majority of the application
runtime is spent in the shared libraries.

large fraction of the dynamically executed instructions. On an average, supporting

2000 static instructions was enough to cover 80% of the dynamic instructions.

Figure 4.3 plots the application execution coverage (y-axis) versus the num-

ber of basic blocks required (x-axis) for our Android application workload. This

graph focusses on the fraction of total application execution time that the c-cores

can support. The graph shows that the c-cores can cover a significant fraction of

the application execution by supporting a relatively small number of basic blocks.

In particular, the c-cores can cover 90% of application execution on an average by

supporting 2000 basic blocks in the hardware, and this execution coverage can be

as high as 98% for certain applications.
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Code Reuse Across Applications

The above analysis shows that the c-cores can cover a significant fraction of

an application execution by supporting a relatively small number of basic blocks.

In order to provide good end user experience, the c-cores should be able to cover

significant execution fraction across a wide range of commonly used applications.

However, providing specialization specific to each application can limit the number

of features that can be supported in hardware. The analysis below addresses this

scalability issue by demonstrating that a majority of the application execution

time is spent in the Android shared libraries, not in the application code itself.

Moreover, the analysis shows that, across our workload set, there is significant

code reuse across the code that executes for each application. This suggests that

supporting a small fraction of the shared library in the hardware can provide

benefits for a large number of applications.

Figure 4.4 presents the breakdown of the application execution time across

the application native code (shown as .text), the different shared libraries in the

Android system (shown as Non-prelinked Libraries, Prelinked App Libraries, Pre-

linked System Libraries), the linker, and finally the linux kernel (shown as Kernel).

The graph shows that the majority of the application execution time is spent in

the shared libraries. The applications on an average spend 78% of the execution

time in the shared libraries. This implies that the c-cores targeting these shared li-

braries can potentially optimize the execution of many applications and also, these

c-cores would be easily accessible to the newer applications that use these libraries.

The next experiment quantifies the code reuse across our application set

and proposes an approach for exploiting this code reuse to maximize the benefits

that the c-cores provide. To measure the code reuse, the analysis identifies identical

basic blocks across the execution traces of different applications. The results show

that, across our applications, 72% of the dynamic execution occurs in the code that

is shared across more than one application. Such a high level of code reuse drives

down the amount of static code that the c-cores need to cover in order to achieve

good overall coverage of dynamic execution. The next section discusses how the

code reuse data is incorporated into the algorithm for selecting the code segments
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that when converted into c-cores provide the maximum execution coverage.

Conservation core Identification

This section presents the algorithm for selecting the code segments from the

Android system and the application code that should be converted into c-cores.

The main goal of this algorithm is to maximize the energy efficiency of the mobile

application processor while minimizing the area requirement of the c-cores. The al-

gorithm approximates the energy efficiency as the coverage that the c-cores provide

and approximates the c-core’s area requirement as the number of static instructions

supported by them. This energy approximation holds because, as shown in the

previous chapter, the c-cores are significantly more energy-efficient than general-

purpose processors, and offloading execution on to the c-cores improves the mobile

application processor’s energy efficiency. The area approximation is less precise be-

cause the area requirements of different instructions might vary. However, this first

order approximation allows the algorithm to explore a wide range of energy-area

tradeoff scenarios for designing the mobile application processors. Also, a more

accurate area approximation model is proposed in the next section that addresses

the inaccuracies.

The algorithm accepts as input the profile information of the Android work-

load set. For each application in the workload set, the algorithm processes the pro-

file information to find the hot basic blocks that account for much of the execution.

At this point, for each application, the algorithm has a breakdown of the time it

spends in various basic blocks. The next step involves determining the code reuse

across applications and using that to quantify each basic block’s global coverage,

the coverage that the basic block provides for the Android system as a whole. The

algorithm calculates the global coverage of each basic block as an arithmetic mean

of the coverage that the basic block provides across all the applications. Since the

global coverage metric is the coverage that the basic block provides for the Android

system, the algorithm can use this metric to compare the relative importance of

each basic block. The algorithm defines the quality metric of each basic block b as

globalCoverageb/areab, where globalCoverageb is the global coverage of the basic



65

block and areab is its area requirement. The algorithm sorts all the basic block in

descending order of their quality metric and tags the basic blocks for conversion to

c-cores until the target coverage is achieved or the area budget runs out. In this

manner, the c-core-identification algorithm explores the energy-area tradeoff space

and selects a number of pareto optimal design points.

Next, this section analyzes how effective the code regions selected by the

c-core identification algorithm are at covering significant portions of the Android

system execution while staying within modest area budgets. Figure 4.5 shows a

cumulative distribution of the percentage of dynamic coverage vs. the number of

static instructions converted into c-cores. In the figure, the top graph plots the

coverage that c-cores provide for the Android system. The dark-gray curve repre-

sents coverage for the broad-based c-cores, and the light-gray curve above it shows

the coverage for the targeted c-cores. The results show that the c-cores can support

90% of the system execution across our workload by implementing approximately

20000 static instructions. The majority of the execution coverage that the c-cores

provide belongs to the broad-based c-cores (64% coverage) implying that the ma-

jority of these c-cores would be useful across many of the existing applications and

even future applications that utilize the shared components. Moreover, as the area

available for specialization increases, the coverage that the c-cores provide can be

as high as 95%.

In Figure 4.5, the bottom eight graphs show the coverage that the c-cores

provide for each of the individual applications. The data shows that the c-cores

provide significant execution coverage across all these applications. The c-cores can

support at least 80% of the execution for each application if they support 20,000

static instructions. This implies that the broad-based c-cores and targeted c-cores

designed above are effective at supporting significant fraction of the execution

across all the applications in our workload.

The above analysis shows that small amount of static code accounts for

a large fraction of execution across many applications. By supporting these hot

code segments in hardware, the c-cores can optimize the execution of many of the

commonly used Android applications. The analysis also shows that the majority
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Figure 4.5: Android Execution Coverage vs Static Instructions Converted
into Conservation cores The graph plots the Android execution coverage against
the number of static instructions required to get that coverage. The results shows
that supporting a small number of static instructions in hardware can provide
coverage for a large fraction of the Android execution. The top graph plots the
coverage provided by broad-based c-cores and targeted c-cores for the Android
system, while the graphs below shows the coverage that these c-cores provide for
each of the Android applications.
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of these c-cores would target shared code segments that are used across many

of the existing applications and hence, can potentially provide benefits for future

applications as well. Moreover, with each generation, the c-cores would be able to

provide higher execution coverage, which enables the mobile application processors

to continuously improve their support for the Android system.

4.4 Results

The previous section analyzes the Android system execution and proposes

a methodology for designing c-cores targeting a significant fraction of the Android

execution. This section examines the amount of area that c-cores would need to

provide this coverage and the possible energy efficiency improvements they can

provide. Based on the results presented in [VSG+10], this section builds an ana-

lytical model to approximate the area requirements of the c-cores for these Android

hotspots. Also, this section analyzes how the average dynamic energy per instruc-

tion metric varies with the area available for specialization.

4.4.1 Area requirement

In order to estimate the area requirements of the c-cores, this section first

builds an area model based on the instruction mix and the area requirements of

the c-cores presented in Chapter 3. The designing of the area model was aided

by the fact that c-core’s design very closely resembles the structure of the code

it targets and has generalized datapath operators and constant values to support

the patching mechanisms. The resultant area model was able to estimate the

area within 10% of the actual area on average with a standard deviation of 14.7%.

Based on our area model, conservatively, 1 mm2 area can implement approximately

3000 static instructions. With more aggressive area optimization techniques such

as those presented in [SVG+11], c-cores can implement approximately 6000 static

instructions in 1 mm2. This chapter uses the conservative area model for all the

analysis presented below.

Figure 4.6 plots the c-core’s coverage of the Android execution as the area
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Figure 4.6: Android Execution Coverage vs Conservation core Area The
graph plots the Android execution coverage against the c-core’s area requirement.
The results show that majority of the Android execution can be covered by c-
cores within very most area budgets. The top graph plots the coverage provided
by broad-based c-cores and targeted c-cores for the Android system, while the
graphs below show the coverage that these c-cores provide for each of the Android
applications.
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available for specialization increases. The graph shows that if 2.75 mm2 area is

allocated for c-cores, they can cover 80% of the execution across all the applica-

tions. To put this area requirement in perspective, the die size of the NVIDIA’s

latest mobile application processor, called Tegra 2 [Ana], is 49 mm2. Hence, allo-

cating a little less than 6% of this mobile application processor for c-cores would

enable them to provide hardware support for the majority of the Android execu-

tion. Moreover, the graph shows that allocating 2.75 mm2 area for c-cores would

support majority of the execution ( greater than 70%) for all the applications in

the workload set, implying that this c-core-based approach for designing mobile

application processors can be effective across a wide range of Android applications.

4.4.2 Energy-Area Tradeoff

The above analysis explains how the area available for the c-cores effects

the fraction of the Android execution that executes on them. In this section, the

analysis focusses on the improvements in the energy efficiency that the c-cores

provide.

To estimate the energy savings, this work uses the energy model that

the work in [GSV+10] proposes. According to their model, considering dynamic

power, on an average the c-cores consume 8 pJ/instruction compared to the 91

pJ/instruction for the baseline MIPS processor, an improvement of 11×. These

values include data cache access energy which is shared between the c-cores and

the MIPS processor; for non-D-cache operations, c-cores reduce dynamic energy by

over 34×. This large gap in the execution efficiency demonstrates the importance

of achieving high c-core coverage; any code running on the MIPS processor is 11×
more expensive.

Figure 4.7 shows the average dynamic energy per instruction vs. area ded-

icated to the c-cores. The graph shows that with mere 2.75 mm2 for c-cores,

the dynamic energy requirement for the Android system goes down by 73% over

an already power-efficient MIPS processor. Also, these c-cores reduce the energy

requirements for all the applications in the workload, with the benefits ranging

between 63% − 83%. Furthermore, if the area budget is increased to around 6
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Figure 4.7: Dynamic energy per instruction (pJ) vs Conservation core
Area The graph plots the average dynamic energy per instruction against the
c-core’s area requirement. The results shows that energy requirements can be
reduced by over 70% with just an area budget of 2.75 mm2.
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mm2, then the dynamic energy savings increase to 5.5× and this trend continues

as the area budget increases.

This section has shown that our c-core-based approach provides significant

energy savings and scalable amounts of specialization within a tight area budget,

in an automated fashion. Thus, our approach for designing mobile application

processors is an ideal fit for the Android system.

4.5 Conclusion

This chapter proposes a c-core-based approach for designing mobile ap-

plication processors, where the application processor comprises of c-cores target-

ing hotspots across a wide range of common mobile applications. This approach

enables increased specialization with each generation of mobile devices without

requiring any software application re-implementations. The results show that

a mobile application processor system consisting of a selection of targeted and

broad-based c-cores can reduce the processor energy consumption of a rich An-

droid workload by 73% and these improvements continue to increase as the area

budget available for c-cores increases.

The traditional approach of manually designing specialized hardware com-

ponents and optimizing mobile applications for the hardware system design is no

longer scalable. The approach presented in this chapter enables the mobile devices

to become increasingly powerful and run a more diverse set of applications with

each technology generation.
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Chapter 5

Quasi-ASICs: Trading Area for

Energy by Exploiting Similarity

across Irregular Codes

Chapter 1 explained the technological trends behind the current utilization

wall phenomenon, and used it to motivate specialization as an effective solution

to achieve Moore’s law style performance scaling. Chapter 1 also presented the

two critical challenges — lack of flexibility, and lack of generality — that system

designers need to address in order to ensure that specialized cores can effectively

target a wide range of commonly used general-purpose programs. Chapter 3 pre-

sented our approach for addressing the first challenge, namely the lack of flexibility

in application-specific circuits. This rigidity of application-specific circuits limits

how long they remain useful because these circuits cannot support any change

in the source code they target, but most of the commonly used general-purpose

programs are routinely updated with newer versions containing new features, ad-

ditional optimizations or essential bug fixes. To make application-specific circuits

a suitable candidate for general-purpose programs, our approach proposed Patch-

able Conservation Cores (C-cores), energy-efficient co-processors that target a sin-

gle task and contain targeted reconfigurability to support changes in the target

program’s control-flow, datapath operators and memory layout. In this manner,

our approach allows the energy-efficient co-processors to remain useful for up to 15

73
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years, and improve the application’s energy delay product by up to 20× compared

to a general-purpose processor.

This chapter addresses the second challenge that limits the wide applica-

bility of application-specific circuits, namely their lack of generality. The lack of

generality results in very narrowly defined specialized cores that can only target a

very specific task. This makes these specialized cores a poor candidate for provid-

ing hardware support for a significant fraction of execution of a varied application

set. From a system designer’s point of view, designing co-processors that can

support only one specific task can cause two main problems. Firstly, for many

applications in a system’s workload, it is not profitable to trade silicon for special-

ized co-processors that can only support that application. Secondly, supporting a

large number of tasks in hardware would necessitate designing a large number of

specialized cores, which in turn would make it difficult to place all of them close to

the general-purpose processor. This results in the increase of the overhead involved

in offloading a computation from a CPU to a specialized core, hence limiting the

benefits that these specialized cores can provide for short running computations.

To address the lack of generality challenge, this chapter proposes Quasi-

ASICs, specialized cores that unlike the traditional ASICs which target one specific

task, can support multiple general-purpose computations. These Qasics allow a

system designer to trade between area and energy efficiency in a fine-grained man-

ner. The Qasic design flow accomplishes this by varying the required number

of Qasics as well as their computational power based on the relative importance

of the applications and the area budget available to optimize these applications.

While the increase in Qasic’s computational power comes with marginal decrease

in their energy efficiency, these Qasics are still an order of magnitude more energy-

efficient than general-purpose processors. In this manner, our approach can signifi-

cantly reduce the number of specialized processors as well the area budget required

compared to that of fully-specialized logic, without compromising on the fraction

of system execution that the specialized logic supports.

Qasics achieve energy- and area-efficiency by leveraging code similarity

within and across applications. The Qasic tool chain mines for similar computa-
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Figure 5.1: Trade offs between area and energy efficiency The x-axis varies
the area budget available for specialization, normalized to the area budget required
to implement all our application hotspots (Table 5.1) using fully-specialized logic.
The y-axis measures energy consumption relative to an in-order MIPS processor.
As area budgets decrease, Qasics energy efficiency declines much more slowly than
it does for fully-specialized logic, because Qasics can save area by increasing the
Qasic’s computational power rather than removing functionality.

tions across the system’s workload and designs a Qasic that can execute all these

computations. This allows Qasics to reduce area requirements without reducing

the fraction of the program that executes on specialized hardware.

Figure 5.1 demonstrates that compared to the Patchable Conservation Core

approach, Qasics give up very little efficiency in return for substantial area savings.

As the area budget decreases (left to right on the X-axis), the Qasic toolchain

designs Qasics with greater computational power to ensure that they continue to

support all the application hotspots in hardware. This increase in the generality

of Qasics enable them to provide significant energy efficiency even as the area

budget decreases, unlike c-cores that sees a 4× decrease in their energy efficiency.

This chapter addresses many of the challenges involved in designing a Qa-

sic-enabled system. The first challenge lies in identifying similar code patterns

across a wide range of general-purpose applications. The hotspots of a typical

general-purpose application tend to have many hundreds of instructions, com-
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plex control-flow and irregular memory-access patterns, making the task of finding

similarity both algorithmically challenging and computationally intensive. The

second challenge lies in exploiting the similar code patterns to reduce hardware

redundancy by designing generalized code-structures that can execute these code

patterns. The third challenge involves making the area-energy tradeoffs to ensure

that these co-processors fit within the area budget. Addressing this challenge en-

tails finding efficient heuristics that approximate an exhaustive search of the design

space but avoid the exponential cost of that search. The final challenge involves

modifying the application code/binary appropriately to enable the applications to

offload computations on to the Qasics at runtime.

This chapter evaluates the proposed toolchain by designing Qasics for the

find, insert, delete operations of the commonly used data structures, namely

link-list, binary tree, AA tree, and hash table. The results show that designing

just four Qasics can support all these data structure operations and can pro-

vide 13.5× energy savings over a general-purpose processor. On a more diverse

general-purpose workload consisting of twelve applications selected from different

application domains (including SPECINT, Sat Solver, Vision, EEMBC, among

others), the results show that Qasics reduce the required number of application-

specific circuits by over 50% and the area requirement by 23% compared to the

fully-specialized logic while providing energy-efficiency within 1.27X of that of

fully-specialized logic.

The rest of this chapter is organized as follows. Section 5.1 motivates the

Qasic approach in the context of other proposals. Section 5.2, 5.3, and 5.4.2

describes the Qasic design and hardware generation flow. Section 5.5 evaluates

the Qasic approach. Section 5.6 concludes.

5.1 Motivation

To effectively utilize the available transistor budget, this chapter proposes

a design methodology that varies the Qasic’s computational power based on the

area budget available for specialization. The Qasic design methodology is based
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  iNumChanges = 0;
                                                                                                                                                             
  

  litWasTrue = GetTrueLit(iFlipCandidate);                                                                                                                   
  litWasFalse = GetFalseLit(iFlipCandidate);                                                                                                                 
                                                                                                                                                             
  aVarValue[iFlipCandidate] = 1 - aVarValue[iFlipCandidate];                                                                                                 
                                                                                                                                                             
  pClause = pLitClause[litWasTrue];                                                                                                                          
  for (j=0;j<aNumLitOcc[litWasTrue];j++) {   
                                                                                                                
    aNumTrueLit[*pClause]--;                                                                                                                                 

    if (aNumTrueLit[*pClause]==0) {                                                                                                                          
                                                                                                                                                             
      aFalseList[iNumFalse] = *pClause;                                                                                                                      
      aFalseListPos[*pClause] = iNumFalse++;                                                                                                                                                                                                                             
      UpdateChange(iFlipCandidate);                                                                                                                          
      aVarScore[iFlipCandidate]--;                                                                                                                           
                                                                                                                                                             
      pLit = pClauseLits[*pClause];                                                                                                                          
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        iVar = GetVarFromLit(*pLit); 
                                                                                                                        
        UpdateChange(iVar);                                                                                                                                  
        aVarScore[iVar]--;                    
                                                                                                               
        pLit++;                                                                                                                                              
      }                                                                                                                                                      
    }                                                                                                                                                        
    if (aNumTrueLit[*pClause]==1) {                                                                                                                          
      pLit = pClauseLits[*pClause];                                                                                                                          
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        if (IsLitTrue(*pLit)) {                                                                                                                              
          iVar = GetVarFromLit(*pLit);      
                                                                                                                 
          UpdateChange(iVar);                                                                                                                                
          aVarScore[iVar]++;                                                                                                                                 
          aCritSat[*pClause] = iVar;                                                                                                                         
          break;                                                                                                                                             
        }                                                                                                                                                    
        pLit++;                                                                                                                                              
      }                                                                                                                                                      
    }                                                                                                                                                        
    pClause++;                                                                                                                                               
  }                                                                                                                                                          
                      

if (iLookVar == 0) {
    return(0);
  }

  iNumLookAhead = 0;

  for (j=0;j<iNumDecPromVars;j++) {
    UpdateLookAhead(aDecPromVarsList[j],0);
  }

  litWasTrue = GetTrueLit(iLookVar);
  litWasFalse = GetFalseLit(iLookVar);

 

 pClause = pLitClause[litWasTrue];
  for (j=0;j<aNumLitOcc[litWasTrue];j++) {

    

if (aNumTrueLit[*pClause]==1) {
      

pLit = pClauseLits[*pClause];
      for (k=0;k<aClauseLen[*pClause];k++) {
        iVar = GetVarFromLit(*pLit);

        UpdateLookAhead(iVar,-1);
       

         pLit++;
      }
    }       
    if (aNumTrueLit[*pClause]==2) {                                                                                                                          
      pLit = pClauseLits[*pClause];
      for (k=0;k<aClauseLen[*pClause];k++) {                                                                                                                 
        if (IsLitTrue(*pLit)) {                                                                                                                              
          iVar = GetVarFromLit(*pLit);      
                                                                                                                 
          if (iVar != iLookVar) {                                                                                                                            
            UpdateLookAhead(iVar,+1);                                                                                                                        
            break;                                                                                                                                           
          }                                                                                                                                                  
        }                                                                                                                                                    
        pLit++;
      }
    }
    pClause++;
  }                    

BestLookAheadScoreFlipTrackChangesFCL

Figure 5.2: Similar code patterns present across the hotspots of a Sat
Solver tool Figure highlights the similar code patterns that are present across
the hotspots in UBC Sat Solver tool.
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Table 5.1: A Diverse Application Set The table lists applications that this
chapter uses to evaluate the Qasic design flow.

Benchmark Type Application HotSpots

Spec CPU 2000-2006

Twolf new dbox, new dbox a,
newpos a, newpos b

Mcf refresh potential
primal bea mpp

Bzip2 fullGtU
LibQuantum cnot, toffoli

EEMBC Consumer
RGB/CMYK CMYfunction
RGB/YIQ YIQfunction

Image Compression
CJPEG ycc rgb extractMCU
DJPEG jpeg idct, rgb ycc

Sat Solver
UBC Sat BestLookAheadScore

FlipTrackChangesFCL
Splash Radix slave sort

SD VBS

Image pre-processing calc dX, calc dY
imageBlur

Disparity finalSAD, findDisparity
integralImage2D

on the insight that similar code patterns exist within and across applications. This

section quantifies the available similarity and uses this to motivate the Qasic

design methodology.

To begin with, this section examines the hotspots in the Novelty+p SAT

solver from the UBC project [TH04] to give some insight on the kinds of similarity

available. Figure 5.2 shows the source code for the two hotspots and highlights the

similar code segments. The example shows that while the two hotspots as a whole

do not have similar control-flow, there are similar code patterns present across

them. The Qasic design methodology seeks to exploit these similar code patterns

to effectively tradeoff between energy efficiency and area efficiency (Figure 5.1).

Next, this section quantifies the similarity across a diverse set of applications

selected from SPEC 2000 [SPE00], Splash [WOT+95], EEMBC-consumer [Emb],

UBC Sat [TH04], and SD-VBS [VAJ+09] benchmark suites (described in Table 5.1).

This section measures the available similarity across these application hotspots as

follows. The first step is to profile the applications to find the “hotspots” where the

application spends most of their time (listed in Table 5.1). The second step builds
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Figure 5.3: Similarity available across hotspots of diverse application set
(Table 5.1)The X plots shows the amount of similarity present and Y axis shows
the percentage of pairs that have certain merge percentage shown on the X axis.

the Program Dependence Graphs (PDG) [FOW87] for these hotspot functions.

The final step finds the similar code segments across these hotspots by searching

for isomorphic subgraphs across their PDGs (Section 5.2.2 discusses the similarity

algorithm). The similarity between the hotspots is quantified as the fraction of

matching nodes between their PDGs.

The results, shown in Figures 5.3 & 5.4, demonstrate that significant sim-

ilarity exists within and across applications. Figure 5.3 bins the hotspot pairs

based on the amount of similarity present between them. The X axis shows the

similarity bins and the Y axis shows number of hotspot pairs present in the bins.

The data shows that most of the hotspot pairs (> 90%) had some similar code

patterns (50% node matched) and more importantly, at least 50% of the hotspot

pairs had significant similarity (> 80% nodes matched). Also, Figure 5.4 shows
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Figure 5.4: Quantifying Similarity Present Within and Across Applica-
tion Domains. The graph quantifies similarity present across different classes of
applications.
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that significant similarity exists within and across application domains as well.

To exploit the available similarity, the Qasic toolchain merges application

hotspots with similar code structure and builds one Qasic for them. This design

methodology provides the following benefits:

1. Fewer number of specialized circuits and reduced area require-

ments: This chapter realizes these reductions by designing Qasics that

can support multiple similar computations. The Qasic toolchain found

these similar computations across hotspots of the same application (such

as term_newpos_a and term_newpos_b from Twolf), across different appli-

cations in the same application domain (such as different image conversion

algorithms), and even across applications from different application domains

(such as Bzip2 and Disparity).

2. Generality: The Qasics tend to have more flexible control and data flow

compared to fully specialized hardware because they are designed to target

multiple code segments. As a result, Qasic’s computational power can ex-

tend beyond the code segments for which they were designed. For example,

in our benchmark set, the imageBlur kernel uses a 5-stage filter [VAJ+09]

and the edgeCharacteristics kernel uses a 3-stage filter. However, the Qa-

sic formed by merging imageBlur and edgeCharacteristics can execute both

the kernels with either image-filter, providing this Qasic with additional

computational power.

3. Better backward compatibility for application-specific hardware: In

order to remain useful across software versions, application-specific hardware

must be able to adapt to changes in the code it supports. The design method-

ology that this section proposes can be utilized to improve the application-

specific circuit’s support for the legacy “in-use” versions, as shown in Sec-

tion 3.7
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Application 
HotSpots

Select Best 
QASIC Set 

Merge Matched 
Expression

Similar Code 
Regions Present

Yes

No

Linearize Program 
Dependence Graphs

QASIC  Specification 
Generation

Create Dependence 
Graphs

Merge Similar 
Components

Figure 5.5: Qasic Design Flow The design flow from application hotspots to
Qasic generation is shown.

5.2 Quasi-ASIC Design Flow

This section presents the details of the Qasic design flow (shown in Fig-

ure 5.5). The design flow accepts the target application set and the area budget

as input and generates as output a set of Qasics that fit within the available area

budget and can support a significant fraction of the execution of target applica-

tions.

The design flow starts with a set of dependence graph for each of the ap-

plication hotspots. At each stage, the toolchain selects the dependence graph pair

with similar code patterns, merges the dependence graph pair to build a new de-

pendence graph, and replaces the dependence graph pair with the new merged

graph. This process continues until the toolchain is unable to find similar code

segments across the dependence graphs or the area goals are met. These steps are

described in greater detail below.

Figure 5.6(a)-(d) shows the process of merging similar hotspots, compute-

Sum and computePower, to form a Qasic.



83

5.2.1 Dependence Graph Generation

The Qasic toolchain internally represents the application hotspots as Pro-

gram Dependence Graphs(PDG) [FOW87], where nodes represent statements and

edges represent control and data dependencies. The PDG representation of the

hotspots is better suited for finding matching code regions than control flow graphs

or program text because it enables the code pattern matching to be based on the

program semantics rather than the program code text. Using PDG, the toolchain

gets rid of all the false dependencies, preserving only the “real” control and data

dependences. Figure 5.6(a) shows the PDG for a simple loop that computes sum

of first n numbers. The solid edges represent control dependence and dashed ones

represent data dependence. Unlike a control flow graph, there is no edge between

the nodes sum = 0 and i = 0 because these statements are independent of each

other.

The Qasic design flow uses CodeSurfer tool [Cod] to create PDGs for the

input code segments. The output of this stage is a pool of PDGs of the application

hotspots. The subsequent steps of the design flow increase the generality of these

PDGs and reduce hardware redundancy in this PDG pool until the area budget is

met.

5.2.2 Mining for Similar Code Patterns

This step seeks to find dependence graph pairs from the Qasic PDG

pool that are similar to each other. The problem of finding similar code pat-

terns across application hotspots can be reduced to finding similar subgraphs

(subgraph-isomorphism) across their PDGs. The subgraph-isomorphism is a well

studied [Epp95, FK98, HWP03] problem in the field of graph algorithms. Our

algorithm for mining similar code patterns is based on the FFSM algorithm pro-

posed by Huan et al. [HWP03]. This section presents a brief description of the

FFSM algorithm and the optimizations that were made to tailor this algorithm to

the problem of finding similar code fragments.

The graph matching algorithm (FFSM) takes as input two graphs, G1, G2,

where every node in both the graphs have a unique ID as well as type label. The
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algorithm considers two nodes for matching only if they have the same type label.

The algorithm begins by selecting a node n1 randomly in G1 and finds a matching

node n2 for n1 in G2. Then, it tries to grow the matched subgraph by comparing

the neighbors of n1 and n2 as well as performing other join operations on the

matched subgraphs (refer to [HWP03] for details). The algorithm returns when it

cannot grow the subgraph any further.

The Qasic toolchain extends the FFSM matching algorithm in several

ways to tailor it to the problem of finding similar code patterns in PDGs. First,

instead of picking and matching nodes in a random order, our matching algorithm

focuses on finding similar loop bodies. This behavior is desirable since most of

the application execution time is spent in loops. Secondly, the PDG node type

encodes the program structure so as to prune “illegal” matches and reduce the

search space. For example, all the nodes within a loop body should have “similar”

node type and different from the node type of any nested loop nodes within that

loop. This node type definition ensures that two nodes would match only if they

perform similar arithmetic operations (for example addition and branch operations

are not similar ), similar memory operations (such as array/pointer access), and

the control/data edges associated with these two nodes match.

For example, when trying to find similar code patterns across computeSum

and computePower, shown in Figure 5.6(a), this stage would map the sum+=i

node in computeSum to sum*=sum of computePower, among others. All the

node mappings that this stage produces are shown in Figure 5.6(b).

The output of this stage is a list of dependence graph pairs that have similar

code patterns present across them. For each of these similar dependence graph

pairs, this stage also produces a mapping of the similar code patterns across them.

5.2.3 Merging Program Dependence Graphs with similar

code structure

This stage of the Qasic design flow accepts as input the similar dependence

graph pairs that the previous stage produces. For each dependence graph pair, this

stage merges their mapped nodes to form a new Qasic dependence graph that is
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computeSum(int n)
{
   int sum = 0;
   for(i=0;i<n;i++)
   {
       sum += i;
   }
   return(sum);
}

i=0 i++

sum=0
i < n

sum+=i

computePower(int n)
{
   int sum = 2;
   for(i=0;i<n;i++)
   {
       sum *= sum;
   }
   return(sum);
}

i=0 i++

sum=2
i < n

sum*=sum

i=0 i++

init 
sumi < n

mux 
(sum,i)

sum= 
alu(sum,in)

i=0;
i=0

i++;
i++

sum=0
sum = 2i < n;

i < n

sum += i;
sum *= sum

Expression Merging PDG 
Sequentialization

computePower(int n)
{
   sum = QASIC(n, COMPUTE_POWER)
   return(sum);
}

computeSum(int n)
{
   sum = QASIC(n, COMPUTE_SUM)
   return(sum);
}

QASIC(int n, int CONTROL_SIGNALS)
{
   i=0;
   sum = mux(0,2,CONTROL_SIGNALS)
   for(i=0;i<n;i++)
   {
       in = mux(sum,i,CONTROL_SIGNALS);
       sum = ALU(sum,in, CONTROL_SIGNALS);
   }
   return(sum);
}

Merging PDGs

(a)

(b) (c) (d)

i = 0
sum = mux(0,2)

phi(i)
phi(sum)

i < n

in = mux(i, sum)
sum=alu(sum,in)

i++

return(sum)

F

(e)
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Data Path
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Graph
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Figure 5.6: Quasi-Architecture Example An example showing the differ-
ent stages involved in conversion of source code segments, computeSum and
computePower (a) to Qasic hardware (f). The resultant Qasic can perform the
functionality of the two input code segments as well as other functions like n!, c2

n
.

The solid lines represent the control dependence and the dashed lines represent
the data dependence for the program dependence graphs ((a), (b),(c)).
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capable of supporting all the computations that either of its input dependence

graph can support.

The main challenge in this step is to ensure that the Qasic PDGs it pro-

duces are linearizable, in that there is a sequential ordering of the PDG nodes

that respects all the data and control dependences. To preserve this linearizable

property, the Qasic’s PDG must be reducible and have no circular data/control

dependence. A PDG is reducible if each of its loop body has a single entry point.

As the first step, this stage ensures that there are no circular dependence

in the merged PDG using control, data, and inferred (explained later) dependence

edges. This stage eliminate the circular dependences by removing the least number

of node matches that would break all the dependence cycles. The next step is to

merge the loop entry nodes and in the process, ensure that each loop body has

only one entry point. During this step, for each code region with multiple entry

points, the toolchain adds dummy control nodes as entry points to maintain a

reducible control dependence graph. Next, this stage builds a one-to-one map

between variables of the two PDGs based on the nodes that got matched. The

toolchain uses this variable map to match the declaration and phi nodes that were

ignored in the Section 5.2.2 to reduce subgraph matching time. At this point, this

stage merges the two PDGs to form a new PDG of the Qasic that can execute

computation corresponding to both the merging pdgs.

Figure 5.6(b) shows the PDG of the Qasic that our toolchain designs by

merging the dependence graphs of computeSum and computePower, shown in Fig-

ure 5.6(a).

The Qasic PDG contains additional node and edge attributes to enable

PDG linearization (Section 5.2.4).

1. Node Attributes: Each node in the PDG contains a list of variables defined

and used by that node. This node attribute is extended to contain a list of

conditionally defined and used variables. For example, in Figure 5.6(b) sum

+=i; sum∗=sum node conditionally consumes variable i because only one

of its input code segments (computeSum) consumes i.

2. Edge Attributes: The PDG is augmented with conditional data depen-
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dences. The conditional edges result from edges present in only one of the

two PDGs being merged. For example, computeSum in Figure 5.6(b) has

data dependence between i++ and sum +=i but there is no data depen-

dence between i++ and sum∗=sum. This leads to a conditional dependence

from i++ to sum+=i; sum∗=sum in the Qasic’s PDG.

At this point, this stage has designed a Qasic PDG corresponding to each

similar dependence graph pair that the previous stage produced. Each of these

newly designed Qasics have greater computational power than the two depen-

dence graphs they were formed from because they can support the computations

that either of their input dependence graph can support. Moreover, these Qasics

requires lesser area compared to its input dependence graphs because they elimi-

nate hardware redundancy across the input dependence graphs by merging similar

computations.

The final step of this stage is to select the Qasic that, when compared to the

dependence graph pair they were formed from, will provide the maximum benefits

in terms of the area saved and increase in the computational power. Section 5.3

explains in detail our heuristic for performing this Qasic selection. Once the best

Qasic candidate is chosen, this stage replaces the two input PDGs with the chosen

Qasic’s PDG in the PDG pool.

At the end of this stage, the toolchain loops back to the second stage (Sec-

tion 5.2.2) to find other potential PDG pairs for merging. Eventually, the Qasic

set becomes distinct enough that no substantial similarity can be found across

them. At that point, the toolchain proceeds to generate the Qasic specifications

explained in the next section.

5.2.4 Qasic Generation

The fourth stage of the toolchain sequentializes the PDGs of the Qasic set

to produce the Qasic specification in C, which is used to generate Verilog code

by the backend of our toolchain. The two steps involved in this stage are merging

the matched expressions present in each Qasic PDG node and sequentializing the

Qasic’s data and control dependences.
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sum += i sum *= sum

sum = alu(sum, 
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Figure 5.7: Expression Merging An example showing merging of the expression
trees of the two input expressions to build the new merged expression tree and the
corresponding expression.

while(i<n)         A
{
    if(...)              P      
    {
         a = 5;
         b = a + 6;
    }
    if(...)              Q
    {
         a = 5;
         c = a + 6;
    }    
    if(...)              R
    {
         d = a;
         e = b;
    }
}

P Q

R

Data Dependence 
Graph

Figure 5.8: Inferred Dependence Example The solid and dashed lines show
true and inferred dependences. There is an inferred dependence edge from P to Q
because no valid ordering of P,Q,R orders Q before P (Section 5.2.4).
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Merging Expressions This step generates a valid C-expression corresponding

to each node of a Qasic. The Qasic PDGs that the previous step designs consist

of multiple C-expressions in each of its nodes. For example, in Figure 5.6(b), a

Qasic PDG node contains the expressions sum += i (from computeSum PDG)

and sum *= sum (from computePower PDG). To design this merged C-expression,

this stage builds expression trees using ANTLR [Ter], which are then merged into a

single expression tree. This merged tree directly translates to a valid C-expression.

This process is shown in Figure 5.7. This step achieves much of the area reduction

seen in our results by reusing datapath operands and operators. For example,

in Figure 5.6(c), the Qasic eliminates hardware redundancy by merging i < n

expression used in both computeSum and computePower. Figure 5.6(c) shows

the result of merging expressions for the PDG shown in Figure 5.6(b).

Linearizing Qasic PDGs The PDGs are inherently parallel representation of a

program. However, in order to produce Qasic specification in C, this stage would

need a valid ordering of nodes consistent with the control and data dependence

edges. The ordering of control edges in a Qasic PDG is straightforward and

the previously proposed techniques for reducible graphs [FOW87] work in our

case as well. Sequentializing the data dependence is more challenging because

of the conditional data flow edges as well as conditionally defined-used variables

in the PDG nodes. This stage uses the following technique to sequentialize data

dependences including the conditional node and edge attributes of Qasic PDG

nodes.

The main goal of our technique is to order the nodes in the presence of

conditional data dependence without employing backtracking (computation time

for backtracking-based techniques can get very expensive, exponential in the worst

case, as the PDG’s size and complexity increases). Our technique uses the data

dependence edges and use/def analysis to build inferred dependences between chil-

dren of same control node. The inferred dependence is defined as follows: Let us

say that parent node A has child nodes P and Q. The child P has inferred de-

pendence on child Q if there exists a child R of parent node A such that child P

produces some value b that child R consumes, child Q produces some value a that
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child R consumes, and child P also produces the value a. This implies that only

valid ordering among them is for child P to execute before child Q. An example of

this is shown in Figure 5.8. The subgraph P produces values a and b, subgraph Q

produces values a and c. There is no dependence between P and Q. The subgraph

R consumes value a from Q and b from P causing an implicit ordering between

P and Q. This stage uses the data dependence, inferred dependence and use/def

analysis to linearize the data dependence. To handle additional node and edge

attributes of the Qasic PDG, the data structures used in data dependence seri-

alization algorithm are extended with these attributes as well. Our linearization

algorithm, based on inferred dependence, lends itself to easily support conditional

data dependence and the algorithm’s computation time scales well w.r.t. the size

and complexity of the Qasic PDG.

The Qasic formed by merging computeSum and computePower is presented

in Figure 5.6(d). Based on the value of the CONTROL_SIGNALS, this Qasic can

be configured to support the computations performed by computeSum as well

as computePower. In addition, this Qasic can also be configured to perform

other operations such as factorial, c2
n
, besides computeSum and computePower

by configuring the control lines to the mux, ALU and init value of sum.

5.2.5 Modifying Application Code to utilize Qasics

The Qasic toolchain also modifies the application code to allow it to offload

the computations on to the Qasic at the runtime. The toolchain does this by

determining a valid setting of the Qasic’s CONTROL_SIGNAL input that would allow

the Qasic to execute the computation desired by the calling application. For

example, Figure 5.6(d) shows how the application code is modified to use the

Qasic. In this example, the computeSum function sends the function argument

values as well as an additional argument that would configure the ALU in the Qasic

to perform addition. Moreover, the toolchain also inserts stubs in the application

code to query the runtime for the availability of a matching Qasic(not shown

in the figure for simplicity). In case no matching Qasic is present or available

at runtime, then the application defaults to running the software version of the
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function on the general-purpose processor.

5.3 Qasic-selection heuristic

The previous section describes the design methodology for merging appli-

cation hotspots and building the appropriate Qasic set for them. Section 5.2.3

described the methodology for merging two hotspots with similar code structures.

However, a hotspot can match well with multiple other hotspots. For exam-

ple, integralImage2D hotspot in Disparity matches well with multiple hot spots

(slave sort in Radix, findDisparity in Disparity) belonging to different application

classes and having different code sizes. In general, there are exponentially different

alternatives for merging the application hotspots to form the final Qasic set. This

section presents the Qasic-selection heuristic to decide which hotspots to merge

to make the best area-energy tradeoffs.

Our tool chain’s goal is to find the set of Qasics that will most significantly

reduce the power consumption while fitting within the available area budget. The

reduction in power consumption that a Qasic can deliver is a combination of its

power efficiency and fraction of programs that it executes. Formally, a Qasic b

occupies area Ab, consumes power Pb, has speedup Sb, and has coverage Cb (relative

application importance determined by system-level profiling).

To evaluate b, this section defines a quality metric Qb = CbSb

AbPb
. To select a

good set of Qasics to build, the Qasic toolchain will need to compute Qb for an

enormous number of candidate Qasics. Computing precise values for Sb and Pb

in each case is not tractable since it requires full-fledged synthesis and simulation.

To avoid this overhead, this stage makes the following approximations.

First, this stage conservatively assumes that the speedup, Sb, is always 1. As

shown in Chapter 3, the specialized cores for integer programs are typically no more

than twice as fast as a general purpose processor. This stage estimates Ab based

on the datapath operators and register counts. Next, the Qasic-selection heuristic

assumes that power consumption is proportional to area. This approximation is

valid if we assume constant activity factors, constant clock frequencies, and circuit
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tional attributes. Our linearization algorithm based on inferred de-
pendence lends itself to easily support conditional data dependence
and the algorithm’s computation time scales well w.r.t. the size and
complexity of the QASIC PDG.

The final linearized QASIC formed by merging computeSum
and computePower is presented in Figure 6(d). Based on the
value of the CONTROL_SIGNALS, this QASIC can be configured
to support the computations performed by computeSum as well
as computePower. In addition, this QASIC can also be config-
ured to perform other operations such as factorial, c2n

, besides
computeSum and computePower by configuring the control
lines to the mux, ALU and init value of sum.

3.5 Modifying Application Code to utilize QASICs
Our toolchain also modifies the application code to allow it to
offload the computations on to the QASIC at the runtime. The
toolchain does this by determining a valid setting of the QASIC’s
CONTROL_SIGNAL input that would allow the QASIC to execute
the computation performed by the application. For example, Fig-
ure 6(d) shows how the application code is modified to use the QA-
SIC. In this example, the computeSum function sends the func-
tion argument values as well as an additional argument that would
configure the ALU in the QASIC to perform addition. Moreover, the
toolchain also inserts stubs in the application code to query the run-
time for the availability of a matching QASIC(not shown in the fig-
ure for simplicity). In case no matching QASIC is present or avail-
able, then the application defaults to running the software version
of the function on the general-purpose processor.

4. QASIC-selection heuristic
Justify the area and power approximations bet-
ter

In the previous section, we described our design methodology for
merging application hotspots and building QASICs for them. Sec-
tion 3.3 described our methodology for merging two hotspots with
similar code structures. However, a hotspot can match well with
multiple other hotspots. For example, integralImage2D hotspot
in Disparity matches well with multiple hot spots (slave_sort in
Radix, findDisparity in Disparity) belonging to different appli-
cation classes and having different code sizes. In general, there
are exponentially different alternatives for merging the application
hotspots to form the final QASIC set. In this section, we present
our heuristic to decide which hotspots to merge to make the best
area-energy tradeoff at each step.

Our tool chain’s goal is to find the set of QASICs that will most
significantly reduce the power consumption while fitting within the
available area budget. The reduction in power consumption that
a QASIC can deliver is a combination of its power efficiency and
fraction of programs that it executes. Formally, a QASIC b occupies
area Ab, consumes power Pb, has speedup Sb, and has coverage Cb

(relative application importance).
To evaluate b, we define a quality metric Qb = CbSb

AbPb
. To select

a good set of QASICs to build, we will need to compute Qb for an
enormous number of candidate QASICs. Computing precise values
for Sb and Pb in each case is not tractable since it requires full-
fledged synthesis and simulation. To avoid this overhead, we make
two assumptions.

First, we conservatively assume that the speedup, Sb, is always
1. We synthesized and simulated fully specialized hardware for
fragments from integer programs and found that the they are typi-
cally no more than twice as fast as a general purpose processor. We
estimate Ab based on the datapath operators and register counts.
Next, we assume that power consumption is proportional to area.
This approximation is valid if we assume constant activity factors,
constant clock frequencies, and circuit capacitance that grows lin-

early with circuit area. The Cb value is estimated based on system-
level profiling.

Although there is invariably some error introduced due to these
approximations, we believe that the loss of accuracy is more than
compensated by the improvements in computational tractability.

With these assumptions we can approximate Qb as Q�
b = Cb

A2
b
.

We use X �� Y to denote the QASIC that results from merging
the QASICs for X and Y (Section 3). While estimating AX��Y

is straightforward, estimating CX��Y is more challenging because
X �� Y can implement other code segments beyond X and Y .
Currently, we set CX��Y = Cx + Cy as a conservative estimate.
In the future, we intend to use some form of cross-validation to
measure CX��Y more accurately to promote generality.

To evaluate the quality of a set of QASICs, B, we sum the value
of Q� for each QASIC. The goal of the QASIC design flow is to
maximize

Q�
B =

X
b∈B

Q�
b =

X
b∈B

Cb

A2
b

subject to
X
b∈B

Ab < Abudget.

(1)
Algorithm 1 contains the pseudo-code for our QASIC-selection

heuristic that starts with a fully specialized ASIC for each fragment
and merges them to create QASICs. It iteratively selects QASIC
pairs that maximize Q�

B (Line 2) and merges them to form a more
general QASIC that has a greater computational power than its input
QASIC pair.

1: while |B| > 1 do
2: (b1, b2) = varmax(b1∈B,b2∈B)

Cb1��b2
A2

b1��b2

− Cb1
A2

b1

− Cb2
A2

b2

3: B = B \ {b1, b2}
4: B = B ∪ {b1 �� b2}
5: Record the merging of b1 and b2 and the resulting values of

Q�
B and

P
b∈B Ab.

6: end while

Algorithm 1. Greedy clustering algorithm The algorithm for
deciding which QASICs to build. B is initially the set of fully-
specialized ASICs, one for each of the fragments selected by
the profiler.

5. QASIC Architecture Design
In this section, we describe our hardware generation compiler and
integration of these QASICs with general purpose processor.

5.1 QASIC Hardware Generation
Our hardware generation compiler is built on the C-to-HW com-
piler proposed in c-cores [21] for generating Verilog from C source
code. This compiler also generates a cycle-accurate module for our
architectural simulator. Figure 6(d-f) presents this hardware gener-
ation step for the example QASIC designed in Section 3.3.

The compiler builds the hardwares datapath and control state
machine based on the data and control flow graphs of the QASIC
source code in Static Single Assignment [7] form. In addition to
standard C data operators, our hardware compiler also supports
QASIC-specific operations such as ALU and data-selector (shown as
mux in Figure 6(d)). The generalized arithmetic operations, ALUs,
in a QASIC’s dataflow graph are instantiated as functional units in
the hardware’s datapath. The data-selectors in a QASIC’s dataflow
graph are instantiated as a mux operator. To optimize the QASIC’s
energy-efficiency, the computation of the data-selector’s inputs are
predicated on the data-selector’s control signal. Hence, based on
the control signal, only one of the inputs is computed.

The memory operations in the dataflow graph are instantiated as
load/store units in the hardware datapath. The load-store units con-

7 2011/3/21

Figure 5.9: Greedy Clustering Algorithm The algorithm for deciding which
Qasics to build. B is initially the set of fully-specialized ASICs, one for each of
the fragments selected by the profiler.

capacitance that grows linearly with circuit area.

With these assumptions this stage approximates Qb as Q′
b = Cb

A2
b
.

In this section, for expository purposes, X ./ Y denotes a Qasic that

results from merging the Qasics for X and Y (Section 5.2). While estimating

AX./Y is straightforward, estimating CX./Y is more challenging because X ./ Y

can implement other code segments beyond X and Y . Currently, this stage sets

CX./Y = Cx + Cy as a conservative estimate.

To evaluate the quality of a set of Qasics, B, this stage sums the value of

Q′ for each Qasic. The goal of the Qasic design flow is to maximize

Q′
B =

∑
b∈B

Q′
b =

∑
b∈B

Cb

A2
b

subject to
∑
b∈B

Ab < Abudget. (5.1)

Algorithm 5.9 contains the pseudo-code for our Qasic-selection heuristic

that starts with a fully specialized ASIC for each fragment and merges them to

create Qasics. It iteratively selects Qasic pairs that maximize Q′
B and merges

them to form a more general Qasic that has a greater computational power than

either of its input Qasic pair.

5.4 Methodology

The Qasic toolchain is built around the OpenIMPACT (1.0rc4) [Ope],

CodeSurfer (2.1p1) [Cod], and ANTLRWORKS (1.3.1) [Ter] compiler infrastruc-

tures and accepts a large subset of the C language, including arbitrary pointer
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Figure 5.10: Qasic Toolchain The various stages of the toolchain involved in de-
signing Qasics, generating the hardware for Qasics, as well as measuring Qasic’s
performance and power efficiency are shown.
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references, switch statements, and loops with complex conditions. Figure 5.10

shows how the Qasic design flow fits into the toolchain explained in Section 2.3.

5.4.1 Designing Qasics for the target application set

This section presents the different stages involved in designing Qasics that

can execute the hotspots of the target application set. The first step profiles the

target application set and identifies the code regions that account for a significant

fraction of the application execution. Next, the Qasic design flow (Section 5.2)

accepts these code regions as input and designs a set of Qasics that are expected

to fit within a modest area budget and support most of the code regions that the

profiling stage identified. The next section explains the generation of the Qasic

hardware.

5.4.2 QASIC Hardware Design

The Qasic hardware compiler extends the C-to-Verilog compiler that Sec-

tion 3.4 presents to provide support for Qasic specific operations, namely ALU

and data-selector (shown as mux in Figure 5.6 (d)). The generalized arithmetic

operations, ALUs, in a Qasic’s dataflow graph are instantiated as functional units

in the hardware’s datapath. The data-selectors in a Qasic’s dataflow graph are in-

stantiated as a mux operator. To optimize the Qasic’s energy-efficiency, the com-

putation of the data-selector’s inputs are predicated on the data-selector’s control

signal. Hence, based on the control signal, only one of the inputs is computed.

Figure 5.6(f) shows the hardware architecture of the Qasic shown in Fig-

ure 5.6 (d). The datapath and control state machine of the Qasic hardware closely

resembles the control/dataflow graph of the Qasic source code (Figure 5.6(e)).

The synthesis flow to generate placed and routed Qasics as well as the

methodology for measuring the performance and energy efficiency of these Qasics

is similar to the flow explained in Section 2.3. The next section evaluates the

Qasics that this section generates.
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/*l1: sum 1..n */
sum=0; 
for(i=0;i<n;i++)
    sum += i;

/*l2: n! */
sum=1; 
for(i=i;i<=n;i++)
    sum *= i;

/*l3: 2n  */
sum=1; 
for(i=0;i<n;i++)
    sum += sum;

/*4: a2n
  */

sum=a; 
for(i=1;i<n;i++)
    sum *= sum;

/*5: sum array "a" */

sum=0; 
for(i=0;i<n;i++)
    sum += a[i];

/*l6: product of
values in "a" */
sum=1; 
for(i=0;i<=n;i++)
    sum *= a[i];

/*l7: sum of 
abs value in "a"  */
sum=0; 
for(i=0;i<n;i++)
{
  if(a[i]<0)
    sum -= a[i];
  else
    sum += a[i];
}

/*l8: Count powers 
of 2 in "a" */
 sum=0; 
for(i=0;i<n;i++)
  if(a[i] & (a[i]-1) == 0)
    sum += 1;

Figure 5.11: Micro-Benchmark Set: Eight simple loops We use these eight
loops to compare our design methodology against the optimal exponential solution.
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Figure 5.12: Coverage vs Qasic count As the number of Qasics drops, their
combined coverage increases to include programs beyond those in Figure 5.11.
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Figure 5.13: Qasic quality vs. Qasic Count As the number of Qasics drops,
the computational power of each Qasic increases, but their power efficiency drops.
As a result, Q declines.
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5.5 Results

This section firstly evaluates our Qasic selection heuristic by comparing it

to the optimal solution found via exhaustive search. The next experiment demon-

strates that relatively few Qasics can support the commonly used operations on

multiple data structures. Moreover, these Qasics provide an order-of-magnitude

more energy efficiency than general-purpose processors. In addition, for a more

diverse application set (Table 5.1), the data shows that our methodology can sig-

nificantly reduce the required number of specialized circuits as well as the area

requirements compared to fully-specialized logic while continuing to provide ASIC-

like energy efficiency.

5.5.1 Evaluating the Qasic-selection Heuristic

This section evaluates the Qasic-selection heuristic by comparing the Qa-

sics it designs to those that the exhaustive optimal algorithm designs, with the

micro-benchmark set shown in Figure 5.11 as the target application set. Given the

area budget and coverage for individual loops, knowledge of the optimal Qasic set

is required to establish the upperbounds for energy efficiency and area efficiency.

To this end, the first step of this experiment was to manually synthesize all the

possible Qasic sets that the exhaustive search finds. The next step measures, for

each of these Qasic sets, their additional computational power beyond the loops

for which they were designed. The final step is to select the best (as measured by

Equation 5.1) set of Qasics that, combined, can execute all eight loops and fit

within the area budget.

The next step is to run Algorithm 5.9 on the loops in Figure 5.11 to find the

Qasic sets that our toolchain would design. This experiment uses these Qasic

sets to compare the Qasic-selection heuristic to the optimal solution under differ-

ent system design constraints. These design constraints include varying the area

budget available for Qasics as well as different coverage scenarios where random

weights are assigned to each loop. In all cases, the heuristic found the optimal

solution, demonstrating that our heuristic performs well.
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Figure 5.12 shows the increase in the computational power of the Qasic

set as our toolchain reduces the number of Qasics required to support the target

application set. The results show that reducing the Qasic count by 40%-50%

improves the computational power significantly. This indicates that as the number

of computations that a Qasic is designed to support increases, so does the ability

of that Qasic to support other computations that are a slight variation of its

target computations.

Figure 5.13 shows the effect of increases in the computational power and

area efficiency of Qasics on its quality metric, Q. The figure shows that while the

improvements in area efficiency and computational power are able to offset any

increases in the Qasic’s power consumption initially (until 50%-60% decrease in

the Qasic count), the metric value starts to degrade as the area budget, and hence

the Qasic count, decreases significantly. This ability of the Qasics to trade off

between different system resources in a fine-grained manner is crucial from a system

designer’s perspective when they are trying to design processor architectures.

The low computational complexity and near optimality of our heuristic

algorithm allows it to scale to handle large target application sets. This ability is

critical because a system’s target workload set tends to be very large in general.

5.5.2 Evaluating Qasic’s Area and Energy Efficiency

This section evaluates the ability of our toolchain to support a significant

fraction of the target system execution in hardware using a relatively small number

of Qasics that fit within a limited area budget.

Figure 5.14 presents area and power efficiency graphs of the Qasics for

our micro-benchmarks (Figure 5.11). The X-axis plots the number of hotspots

pairs that got merged to form Qasics. The results show that Qasics reduces the

required number of specialized cores by 87.5% and reduces the area requirement

by 56% compared to that of fully-specialized hardware. Moreover, the Qasic’s

energy efficiency is within 1.26× of that of fully-specialized logic. These results are

in keeping with the area savings that were achieved for the hand-designed Qasics

used in the previous section. For the micro-benchmarks, the Qasic design flow
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Figure 5.15: Impact of generalization on the area and energy Efficiency
of Qasics targeting commonly used data structures The labels on the area
and power curves show the ratio of area and energy requirements of the Qasic set
compared to that of fully-specialized circuits.

and the Qasic-selection heuristic performs almost as well as our hand-designed

Qasics and the optimal exponential solution.

Evaluating Qasic’s ability to target an application domain

This section designs Qasics for the find, insert, delete operations for

the commonly used data structures, namely link-list, binary tree, AA tree, and

hash table. Figure 5.15 shows how the toolchain varies the Qasic design based

on the area budget available for specialization. The X-axis plots the number of

Qasics that the toolchain designs to fit within the available area budget. The left

and right Y-axes show how our toolchain trades between area and energy efficiency.

The results show that relatively few Qasics can support all these 12 data structure

operations while improving the energy efficiency by more than 13.5× compared to

our baseline general-purpose processor.

Next, this section demonstrates that our toolchain can provide hardware

support for an increasing number of the commonly used tasks in a system’s work-

load by designing a relatively few number of specialized cores. Figure 5.16 plots the

number of features supported in hardware against the required number of distinct
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Figure 5.16: Scalability of Qasic’s approach The graph shows that relatively
few Qasics can support multiple commonly used data structures, while c-cores
need a new specialized processor for every distinct functionality.

Qasics. The data shows that just four Qasics can support all these operations,

while the c-cores approach would need to design eleven specialized cores. This 63%

decrease in the required number of specialized cores allow us to closely integrate

hardware support for greater number of features with a processor pipeline. For

example, for our scan chain based interconnect design, Qasics reduce the inter-

connect overhead (measured as the number of connections between the CPU and

the specialized cores) by 54% compared to c-cores.

Evaluating Qasic’s ability to target a diverse workload

This section evaluates the ability of the Qasic design flow to support the

hotspots belonging to a diverse workload listed in Table 5.1. The results are

shown in Figure 5.17. The X-axis plots the number of Qasics required to cover

all the application hotspots. The left-most point on the X-axis corresponds to

fully-specialized logic, and hardware generality (i.e., the average number of com-

putations that a Qasic supports) increases from left to right. The results show

that our toolchain can reduce the number of specialized co-processors required to

cover all application hotspots by over 50% (which in turn reduces the interconnect

overhead by 1.57×). Also, Qasics reduce the total area requirements by 22%
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compared to that of fully-specialized hardware, while incurring a 27% increase in

energy consumption. The first few merges result in area reduction without any

impact on power consumption. This is because leakage energy goes down as the

area is reduced and that offsets any increase in dynamic energy. For the subse-

quent merges, our approach ensures that energy-efficiency degrades gracefully with

decreases in the total area budget. These results show that our toolchain can ef-

fectively reduce hardware redundancy while providing ASIC-like energy-efficiency.

Figure 5.17 also demonstrates how increase in the transistor budget can be

translated to improvements in energy-efficiency by our toolchain. The area-energy

tradeoff performed by our toolchain varies with the area budget. For example, if the

area budget is increased by 10%, then the energy-efficiency of the Qasics improves

by 28%. Hence, with each process generation, our toolchain will effectively utilize

the additional transistors to design more energy-efficient co-processors.

Generality As discussed in the previous section, for the micro-benchmarks, the

computational power of the Qasics increases considerably (40% of the optimal

Qasic design) within the first few iterations of Algorithm 5.9 without any effect

on their energy efficiency. For the full-size benchmarks, the Qasics were able to

support more general forms of image-filters beyond the ones used in the original

applications [VAJ+09]. In the future, this work can be extended to promote the

Qasic’s computational power more aggressively by exploring ways to accurately

determine a Qasic’s computational power. The biggest challenge here would be

to automatically find interesting variants of the input code segments that can be

used to evaluate the computational power of the Qasics.

Application-level energy savings Figure 5.19 shows that, compared to the

baseline tiled system, a Qasic-enabled system consisting of just thirteen Qa-

sics can provide significant energy efficiency improvements for a diverse system

workload. This experiment models the complete system including the overheads

involved in accessing the runtime system as well the overheads for offloading com-

putations on to the Qasics. The data show that, at the application level, Qasics

save 45% of energy on average compared to a MIPS processor, and the savings can
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Figure 5.19: Quasi-ASIC enabled System Energy Efficiency The graphs
show the energy and EDP reductions that Qasics provide compared to an in-
order, power efficient MIPS core (”SW”). Results are normalized to running on
the MIPS core (lower is better). The Qasics can reduce the application energy
consumption and energy-delay product by up to 79% and 83% respectively.
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be as high as 79%. Also, Qasics reduce application energy-delay product by 46%

on average. The energy savings for these Qasic-enabled systems are significant,

and as shown in the previous section, the energy-efficiency will only improve as

the transistor budget increases.

5.6 Conclusion

Technology scaling trends will continue to increase the number of available

transistors while reducing the fraction that can be used simultaneously. To effec-

tively utilize the increasing transistor budgets, this chapter presents Qasics, spe-

cialized co-processors that can support multiple general-purpose computations and

can provide significant energy efficiency compared to a general-purpose processor.

This chapter also presents the toolchain that designs these Qasics by leveraging

the insight that similar code patterns exist within and across applications. Given a

target application set and an area budget, the toolchain varies the computational

power of these Qasics such that a significant fraction of the execution is supported

in hardware without exceeding the area budget. The results show that designing

just four Qasics can support operator functions of multiple commonly used data

structures and moreover, these Qasics provide 13.5× more energy efficiency than

our general-purpose processor. On a more diverse workload, our approach reduces

the required number of specialized cores by over 50% and occupies 23% less area

compared to fully-specialized circuits while providing ASIC-like energy efficiency

(within 1.27X on average).

Specialization has emerged as an effective approach to combat the dark sil-

icon phenomenon and enable Moore’s Law-style system performance scaling with-

out exceeding the power budget. Qasics enable a system designer to provide this

specialization in a scalable manner because a relatively few of them, combined,

can support a significant fraction of the execution of an application domain in

hardware.
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Chapter 6

Related Work

This thesis seeks to address the power wall phenomenon by designing mas-

sively heterogeneous architectures. To provide this heterogeneity in a scalable man-

ner for a wide range of general-purpose domains, this thesis proposes techniques

for automatically designing configurable and flexible specialized cores targeting

irregular integer codes. This section presents a detailed discussion of the prior

approaches for designing heterogeneous architectures as well as prior techniques

for automatically designing specialized cores.

6.1 Heterogeneous Architectures

Heterogeneous architectures allow a computation model that takes advan-

tage of technology regimes where only a portion of the chip can be fully used at a

time. The idea is that these chips are composed of “specialists” which can max-

imize the computation that can be performed given a fixed energy budget but a

relatively large area.

This section provides a two-dimensional taxonomy for heterogeneous multi-

processors based on their architectural and microarchitectural heterogeneity. A

four letter mnemonic, aAmM, identifies each processor class where a is the number

of instruction sets or programming models the processor supports and m is the

number of microarchitectures present. In this taxonomy, “*” denotes “more than

one.”
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1A1M These are conventional, homogeneous chip multi-processors. They are com-

mercially available and have received extensive attention from research and indus-

try. Their uniformity prevents them from addressing the utilization wall.

1A*M Recent work on single-ISA, heterogeneous multiprocessors demonstrates

that 1A*M machines can provide both power savings [KFJ+03, GRSW04] and per-

formance improvements [KTR+04, KTJ06]. In these systems, all the cores in a

processor support the same ISA but these cores differ from each other in terms of

the energy-performance tradeoff they provide. These processors realize their bene-

fits by exploiting the fact that different applications and even different phases of the

same application have different characteristics. They differ in how performance-

critical they are, how CPU intensive or memory bound they are, and also, how

much exploitable parallelism they contain. By ably exploiting these differences,

these single-ISA heterogeneous machines provide some relief from the utilization

wall by varying the types of cores in use at any one time.

However, the use of a single ISA limits the level of heterogeneity they can

exploit. This is because supporting the same ISA requires all the cores in a pro-

cessor to perform, beyond the arithmetic operations and data manipulations that

an application requires, additional transformations and state maintenance. This

introduces significant “overheads” even for the most efficient of the processor de-

signs, making them few orders-of-magnitude less efficient than fully-specialized

logic [HQW+10]. This thesis seeks to design processors with much greater degree

of heterogeneity, where the specialized cores can potentially provide ASIC-like effi-

ciency by avoiding fetch, decode, and register file access for individual instructions.

*A1M Researchers have proposed several multi-ISA, single micro-architecture pro-

cessors [HW97, DGB+03, MPJ+00, HW97, YMHB00, RS94, CBC+05]. Smart

Memories [MPJ+00] is an array of configurable tiles that can emulate a range of

different architectures. However, supporting multiple styles of computation comes

at a cost. For instance, Smart Memories can emulate a CMP and a streaming

processor, but running time increases by between 10% and 80% relative to actual

implementations of the same designs [MPJ+00]. Similarly, Transmeta [DGB+03]
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focuses on decoupling the underlying hardware ISA from the external ISA that is

visible to the users and proposes several optimizations to reduce the overheads of

this translation from external to internal ISA. In the current regime, the area bud-

get is less of a concern than power budget, and hence it might be more profitable

to provide hardware support for the different styles of computations to ensure that

each class of computation executes as efficiently as possible. However, much can

be learnt from these prior approaches going forward. The approaches presented

in these prior proposals can be adapted and extended by the future heterogeneous

architectures in order to present an uniform, easy-to-program abstraction to the

programmer.

Chimaera [YMHB00], GARP [HW97], Tartan [MCC+06], and the work

in [CBC+05] augment a general-purpose processor with reconfigurable logic to

provide extensible ISAs. Tensilica’s Xtensa [WKMR01] is an extensible processor

that the system designer can extend with custom instructions and datapath units.

Chimaera [YMHB00] and the work in [CBC+05] extends a general-purpose proces-

sor pipeline with configurable functional units. These configurable functional units

execute the commonly occurring acyclic computation patterns that can be success-

fully mapped onto them. In this manner, these approaches improve the pipeline

performance. However, since these approaches focus on short data computations

(10s of cycles at best), they need the processor pipeline to remain active. This

thesis focuses on computations that take hundreds of cycles or more, and switches

off the processor pipeline (clock gating or power gating) when the computation is

running on the specialized cores. This approach significantly reduces the number

of transistors that need to be active in order to execute applications.

GARP [HW97] and Tartan [MCC+06] extends a general-purpose proces-

sor with reconfigurable fabric. These approaches seeks to support much of an

application execution on the reconfigurable logic and uses the general-purpose

processor only for control-intensive codes and for programming constructs that

are not supported on the reconfigurable fabric. These approaches also re-architect

the reconfigurable logic to improve its performance. This is because tradition-

ally the reconfigurable fabric tends to execute at much slower frequencies than a
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general-purpose processor, and hence, they cannot provide the same performance

as general-purpose processors for applications with limited parallelism. These prior

proposals differ significantly from the work presented in this thesis, both in their

approach as well as the challenges they address. While the previous work fo-

cused on specializing reconfigurable logic, this thesis focuses on providing targeted

flexibility and configurability in fully-specialized logic. The reconfigurable logic

is typically an order-of-magnitude less energy-efficient than fully-specialized logic,

limiting the energy benefits these approaches can realize. On the other hand, their

approach retains greater amount of flexibility post-fabrication compared to our ap-

proach. There is much that these prior approaches as well as the work presented

in this thesis can learn from each other. Moreover, the future heterogeneous pro-

cessors can benefit from exploiting both the approaches when trying to tradeoff

between reconfigurability and efficiency for different styles of computations.

*A*M Multi-ISA, multi-microarchitecture machines are the most aggressively het-

erogeneous multiprocessors, and they raise the most serious challenges. A range

of commercial *A*M processors and research prototypes are available or have been

proposed. These include Sony’s Cell [Kah05], IRAM [PAC+97], and the hard-

ware used in [WCC+07]. These machines augment a general purpose core with

vector co-processors to accelerate multimedia applications. In addition to the

hardware design challenges, these aggressively heterogeneous multiprocessors also

introduce challenges on the programmability front. To address some of these chal-

lenges, EXOCHI [WCC+07] and Merge [LCWM08] provide general frameworks for

programming heterogeneous systems. However, these approaches provide hetero-

geneity targeting few specific application domains such as computer graphics and

SIMD computations. Also, these approaches rely on the programmer to maxi-

mally utilize the underlying hardware by writing heterogeneity aware programs.

Arsenal system in general, and this thesis in particular focuses on designing het-

erogeneous systems that provide benefits for general purpose computing. The goal

is to increase efficiency and performance for the vast majority of commonly used

programs.

In addition to these heterogeneous designs, a vast number of specialized
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processors have been proposed. Specialized designs exist for applications and do-

mains such as cryptography [WWA01], network protocols [Wil04], network se-

curity [TS05], signal processing [ECF96, GSM+99], vector processing [ADK+04,

DLD+03], physical simulation [Age], and computer graphics [nVi, ATI, OLG+05].

Recent years have seen on-chip integration of an increasing number of these fixed

function units [HZH+11, Gwe10]. This thesis seeks to extend and accelerate this

trend by automating the design of specialized processors as well as their integration

with a general-purpose processor. The next section discusses the prior proposals

on designing specialized co-processors.

6.2 Automatically-designed Specialized Cores

As explained previously, dark silicon is the portion of a chip that is under-

clocked and under-utilized because of power concerns. This thesis utilizes the dark

silicon to build specialized cores. The fraction of dark silicon is increasing with

each technology generation and hence, can be utilized to support an increasing

number of functionalities in hardware. For example, based on the c-core’s area

requirements, many 100s to 1000s of them can fit within one-quarter to one-eighth

of a 400mm2 die. However, it is not scalable to design these large number of

specialized cores by hand. This section discusses the prior work on automatically

designing specialized cores and compares their approach as well as their design

goals to the work presented in this thesis.

The prior work in automatically designing specialized cores has primarily

focused on regular loops with predictable control-flow and memory access pat-

terns [CHM08, FKDM09, YGBT09]. VEAL [CHM08] seeks to accelerate inner

loops by designing loop-accelerators that exploit the available parallelism in these

loops. These loop-accelerators are best suited for computation intensive loops in

media and signal processor domains. While VEAL focused on designing loop-

accelerators that can be widely used, the work presented in [FKDM09, YGBT09]

focus on customizing these loop-accelerators to more closely fit the applications

they target. Yehia et al. [YGBT09] demonstrate techniques for automatically
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designing compound circuits that can support multiple regular loops. Fan et

al. [FKDM09] seek to design loop-accelerators that target inner loops of a partic-

ular application and contain limited programmability to ensure that they remain

useful across application versions.

However, these previous approaches have limited applicability in general-

purpose domain because the control-flow and memory access patterns tends to be

less predictable in these applications [CHM08]. This thesis focuses on supporting

a much wider range of applications by being parallelism agnostic and executing

the memory operations in the program order. While this enables our approach to

be more widely applicable than the previous work, it also limits the performance

benefits that can be attained. There is much scope for the work presented in this

thesis to be extended using the optimizations presented in these prior proposals to

achieve much greater performance efficiency.

Many industrial high-level synthesis tools exist, such as AutoESL’s AutoPi-

lot [Aut], Cadence’s C-to-Silicon Compiler [C-t], and Synopsys’ Synphony [Syn]

(Coussy and Morawiec survey recent advances in this area [CM08]). These tools

seek to provide significant performance improvements compared to a general-

purpose core by inferring parallel execution from serial code. However, as a result,

these tools suffer from the same limitations that parallelizing compiler suffer from,

namely the difficulties of analyzing pointers in free-form code, extracting mem-

ory parallelism, and extracting and formulating efficient parallel schedules for the

operations in critical loops. To address the parallelization challenges, these tools

either limit the input language (for example, no pointers, no dynamic memory

allocation, or no goto) or rely on user-transformed code or pragmas for guiding

the tool in generating hardware that provides good speedups.

The work presented in this thesis has different underlying goals compared

to these tools. This thesis seeks to reduce the energy requirement for a wide range

of commonly used programs. The focus is on covering a significant fraction of

the system execution in hardware rather than providing speedups for certain class

of applications. To this end, this thesis focuses on improving the flexibility and

computational power of fully-specialized logic to make them a suitable candidate
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for general-purpose applications. Moreover, the focus is on near complete automa-

tion since this work seeks to cover a large fraction of a system’s workload, and it

would significantly stretch the development time if manual input or intervention

is required to design these specialized cores.



Chapter 7

Summary

This thesis addresses the various challenges involved in making specializa-

tion a viable approach to optimize general purpose computing. To address these

challenges, it proposes mechanisms to provide flexibility and generality in the

application-specific circuits, significantly enhancing their longevity and enabling

them to support multiple computations with similar data/control flow. Firstly,

this thesis proposes Patchable Conservation Cores, flexible application-specific cir-

cuits that are capable of adapting to changes in the applications they target. In

addition, this thesis presents the related software tools to appropriately modify

the application code/binary to allow them to offload computations onto the patch-

able c-cores at runtime. The results show that these c-cores improve the energy

efficiency by up to 16× compared to a general-purpose processor and are able to

support their target applications for 10 years on average.

Next, this thesis demonstrates that these patchable c-cores are effective at

covering significant fraction of a system’s execution while staying within a modest

area budget. For this study, the thesis focuses on the Android software stack and

designs a mobile application processor containing c-cores that target the hotspots

in the Android system. The results showed that these c-cores provide significant

energy efficiency across a wide range of commonly used Android applications while

staying within modest area budgets.

To further improve the system execution coverage that the specialized cores

provide, this thesis proposes Qasics, specialized co-processors capable of executing

113
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multiple general-purpose computations. These specialized cores exploit the similar

code patterns present within and across applications to reduce redundancy across

specialized cores as well as improve their computational power. The results show

that Qasics reduce the required number of specialized cores by over 50% and

the required area by over 23% compared to c-cores without compromising on the

computations that are supported in hardware.

Power budget has become a first-order design constraint and will continue

to shape the processor design field. In this regime, area becomes the relatively

cheaper resource compared to the power budget, making it feasible to trade area

to achieve energy-per-computation. This thesis proposes techniques to perform

this area-energy tradeoff in a manner that is scalable and effective at providing

benefits for general purpose computing. Our methodology ensures that, as dark

silicon increases, so does the fraction of the system execution that is supported by

specialized cores, enabling the system performance to scale with increases in the

transistor count while staying within the power budget.
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