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Abstract

Hierarchical critical path analysis is capable of lo-
calizing parallelism to varying granularities in a pro-
gram, but is computationally expensive. Conse-
quently, the memory and performance overheads are
major impediments towards mainstream acceptance
and usage.

This paper examines two techniques to allocate and
utilize memory more efficiently and compiler analy-
ses and optimizations targeted at improving the per-
formance of hierarchical critical path analysis. On
the presented benchmarks, these techniques improve
memory and performance overheads as high as 1.95x
and 1.62x and on average 1.27x and 1.29x respec-
tively.

1 Introduction

The shift to multicore processors has driven pro-
grammers to convert their serial programs to parallel
programs if they want to continue to observe per-
formance gains with the coming generations of pro-
cessors. However, programmers continue to struggle
with parallelizing programs for performance due to
the increased complexity and additional knowledge
required about the parallelization platform and sys-
tem. Consequently, we have developed tools to al-
leviate some of the burdens involved with paralleliz-
ing code. While the majority of parallelization tools
focus on code generation and runtime management,

programmers still rely on trial and error for paral-
lelism discovery and planning. We attempt to fill this
void by providing Kremlin [2] and Parkour [3] that
localize parallelism and give tight parallel speedup
upperbounds.

Both of these tools utilize a novel metric of self
parallelism and hierarchical critical path analysis
(HCPA) [2], an extension to critical path analysis [5]
that overcomes some problems; however, this analy-
sis is expensive computationally. Our initial imple-
mentation incurred execution time slowdown factors
around 366 x and memory overheads of 19x. In order
to make these tools feasible in practice, these over-
heads must be reduced since only tiny to small pro-
grams can be analyzed.

This paper focuses explaining the techniques used
to improve the performance and memory overheads
of HCPA and contributes following:

e This paper present a mechanism to reduce the
memory overhead incurred in the initial im-
plementation of HCPA and simplify the usage
model. The memory overheads involved in using
HCPA is prohibitively large to run any modest
program. This mechanism increases the range of
programs HCPA can analyze.

e This paper introduces compiler analyses and
optimizations to improve the performance of
HCPA. In order to be practical, HCPA should
add minimal performance overheads so that pro-
grams that already run too slowly on current ar-



chitectures can be profiled and analyzed in rea-
sonable time.

e This paper quantifies the memory savings and
performance improvements of each of these tech-
niques.

The remainder of this paper is organized as follows.
Section 2 provides background and the original tech-
nique used to calculate HCPA. Section 3 and Section
4 explain the optimizations made to reduce memory
and performance overheads respectively. Section 5
presents the results and evaluation of the presented
techniques. Finally, Section 6 concludes.

2 Hierarchical Critical Path

Analysis

In order to quantify parallelism within programs, pro-
grammers can use critical path analysis [5] or CPA.
CPA begins by identifying the longest chain of oper-
ations through a program as the critical path. The
critical path gives a lower bound on execution time
of the program since all other operations can be ex-
ecuted in parallel with the critical path. The length
of the critical path combined with work can also be
used to calculate the average amount of parallelism
in using the equation p = work/length,,.

CPA provides a generic platform that we can char-
acterize programs since it can produce these metrics
independently of parallelization platform, architec-
ture, programming language. Additionally, because
CPA bases its analysis on dependencies of the op-
erations, it outputs results that are invariant of the
serial expression of the program. That is, the results
do not change if independent sections of the program
are reordered.

CPA’s Shortcoming. Although CPA provides a
generic platform to characterize and quantify the par-
allelism within a program, it has a major drawback
when applying it to actually parallelizing a program.
Since programs tend to execute in phases as explained
in [8], the average parallelism metric provided by
CPA does not give the programmer insight about the

for (i=win..rows-win) {
for(j=win..cols-win) {
currLambda = lambdal[i]l[j];

for (k=0..nFeatures) {
if (features [2] [k] < currLambda) {

features [0] [k] = j;
features [1] [k] i;
features [2] [k] currLambda;

}
}r}

Figure 1: Localizing Parallelism. In the code snip-
pet from the feature-tracking benchmark of SDVBS,
only the inner loop iterating over k contains paral-
lelism. Traditional critical path analysis would report
that all loops contain parallelism since they contain
the innermost.

amount of parallelism exhibited by each portion of
their program. Additionally, since programs exhibit
a hierarchical structure due to function and loops,
CPA is unable to distinguish parallelism from nested
function calls and loops. To exemplify this limita-
tion, Figure 1 shows a code snippet from the feature-
tracking benchmark in the San Diego Vision Bench-
mark Suite [4]. In the code snippet, only the inner
most loop contains parallelism, but traditional CPA
would erroneously report that the outer loops also
contain parallelism since they contain the innermost
loop.

Localizing Parallelism. In order to overcome the
limitations of CPA, we must be able to localize par-
allelism within a program. To accomplish this, we
extend CPA into hierarchical critical path analysis
(HCPA) [2]. We first divide the dynamic execution
of the program into regions that represent portions
of the execution of the program. We then continue to
subdivide these regions into smaller subregions such
that no sibling subregion overlaps and they are con-
tained within their parent region. All of these parent-
child relationships between the regions and their sub-
regions form a region tree hierarchy representing the
program at different granularities. Although alter-
native delineations of regions are possible, we choose



function calls and loops as regions because they form
a hierarchical structure and they produce profiling
information that corresponds to the static structure
of programs.

We then run CPA within the scope of each region
in the region tree to get its local critical path and
work. For operands that are used before the region
begins, we say the availability time of this operation
is immediate (i.e. time 0) because they were created
before that region’s start.

From these two pieces of information from every
region and the region tree, we are able to calculate
the approximate parallelism contained in every re-
gion. The average parallelism of a leaf region in the
tree is the work divided by the critical path length.
For the non-leaf regions, Kremlin and Parkour use
the metric of self parallelism [2] which quantifies the
amount of parallelism in a region excluding the paral-
lelism from their children. This novel metric enables
us localize parallelism within a region and to estimate
the speedup of parallelizing a region without having
also to parallelize its children.

2.1 Implementation

This section describes the original implementation of
HCPA.

Hierarchical Shadow Memory. Calculating the
critical path dynamically is already a daunting task
because any referenceable operation as the program
executes could grow into being part of the critical
path. Consequently, we must maintain these times-
tamps for every referenceable operation. In order to
track the timestamps, we implement shadow memory
similar to [7, 9].

We make two optimizations for allocating shadow
memory. We first analyze functions statically to
determine the amount of shadow memory needed
for local operations and allocate it at the begin-
ning of every dynamic instance. call. Static analysis
also enables perfect hashing into the table so access
is quicker than accessing non-local memory times-
tamps. The second optimization is that we evenly
divide the address space using a two level page ta-
ble and only allocate shadow memory as necessary

for dynamic operations. We use calls to malloc and
free to determine when we should allocate and free
shadow memory in our page tables.

When extending to HCPA, we also must keep
timestamps for every level of the hierarchy because
the critical paths between each of these levels do not
necessarily intersect. We store the timestamps of all
of the active regions for a particular operation in a
fixed-size array. Each index is associated with the
depth of an active region. For example, main would
occupy index 0 and all children of main would oc-
cupy index 1 and so on. The size of the arrays and
the number of depths is configurable during compile
time. This implementation enables for efficient reuse
of memory since we reuse the memory of the last
deallocated region for the new one.

Updating Timestamps. In order to perform up-
dates, we begin by transforming the code into SSA
format using LLVM][6] to eliminate any false depen-
dencies. We then perform our analysis on each func-
tion. We scan through the instructions in the func-
tion and allocate an entry in the shadow register ta-
ble for every operation. This entry will contain the
availability time of that operation as calculated at
runtime. After we allocate the space for all of our
operands, we start adding in calls to runtime library
functions to calculate the availability times of every
operation dynamically.

The general rule for setting the timestamp of an
operation is to take the maximum timestamp of all
of the input operands and the control dependence
and add the latency of the operation. We apply this
rule to all unary and binary operations except for
induction and reduction variables.

Induction and Reduction Variables. Induction
and reduction variables create easy-to-break depen-
dencies that are typically eliminated when paralleliz-
ing programs. As a result, we also model breaking
these dependencies. We identify induction variables
using LLVM’s static analysis passes. We classify vari-
ables that only have commutative operations applied
to themselves with other operations in loops as re-
duction variables. Instead of performing our normal



update rules for these timestamps, we set the times-
tamp for induction variables to the control depen-
dence time. Reduction variables are not fully im-
plemented, so we choose a loose upperbound of the
constant cost for these operation.

Function Calls. For function arguments, we need
to communicate the availability times to our callees.
We add calls that will push the timestamps onto
our virtual emulation of the runtime stack. Upon
being called, callees will read the timestamps and
associate them in their own shadow register table.
However, callees may sometimes not find that their
argument timestamps are available in the case they
are called by uninstrmeneted code (e.g. start calling
main or library callbacks). In this case, we assume
that the timestamps of the arguments are available
at time zero or the control dependence timestamp.
We choose this implementation since uninstrmeneted
code tends to be library code which the programmer
cannot modify anyway and our function will only be
called once all the operands are available.

Similarly for return values, we insert a call to a
helper function that will set up a location to place
the return value’s timestamp before the call. The
callee needs to fill in the timestamp of the return
value. When the callee returns, we save the times-
tamp if available into the caller’s shadow register ta-
ble. If it is not available meaning we called an unin-
strumented function, we assign its timestamp to be
a fixed increment of the latest available argument.
For the benchmarks that we ran, we had all of the
sources except for the C standard runtime library, so
we only did not have timestamps for the return values
of these calls. Although this is not a completely accu-
rate solution, we find that it models library calls well
enough since they only can be called once they have
all their operands ready and the functions normally
called take a fixed amount of time.

Control Dependence. As part of calculating the
availability time for every operand, we must con-
sider control dependencies. For every basic block,
we identify if it has any control dependence and sub-
sequently, the timestamp of the control dependence

value. The availability time of any operand in the
block will be the maximum of any operand or times-
tamp of the control dependence plus the latency of
the operation.

However, control dependence cannot be completely
resolved statically in the case of function calls. All
of the operations in these calls are also control de-
pendent. To handle this case, we push the control
dependence timestamp onto a stack and all opera-
tions within the block consider the control depen-
dence timestamp from the top of the stack as a live-
in timestamp. We can skip checking the remainder
of the stack because the timestamps on the stack are
monotonically increasing. Upon reaching the end of
the basic block, we pop the control dependence times-
tamp off the stack.

¢ Instructions. Static single assignment uses ¢ in-
structions to choose between values. The ¢ instruc-
tion takes one value per incoming basic block and
chooses its value depending on how the block con-
taining the ¢ was reached during dynamic execution.
These ¢ instructions are used to implement condi-
tional and loop constructs.

Since ¢ instructions only choose between values,
they do not add to the critical path because they per-
form no work; however, their value is unknown un-
til their control dependences resolve. Consequently,
the timestamp of a ¢ instruction is the maximum
of the incoming value and its control dependences.
The control dependences for the ¢ instruction can be
found anywhere from the basic block containing the
¢ instruction and the immediate dominators of the
incoming values. Executing an immediate dominator
indicates us that a particular value is incoming, so
we need to add the control dependence that block.

In the case of loops, these immediate dominators of
the incoming blocks could be the block containing the
¢ instruction, so the incoming value’s condition may
not necessarily dominate the ¢ instruction. In these
cases, we add the condition as it becomes available.



3 Memory Reduction

The initial implementation of HCPA does not use
memory completely efficiently and has a time con-
suming and error prone usage model. The initial ver-
sion uses fixed-length arrays to store the timestamps
for each level of the region tree. The length of the
arrays are set during compilation and every dynamic
timestamp instance allocates an array of this length
in anticipation of the level being used, but if the level
is never used, the memory is wasted. This waste is a
serious problem since these timestamps for each level
typically consumes over 95% of the instrumented pro-
gram’s total memory footprint. This implementation
was chosen for ease of implementation and to reduce
performance overheads associated with memory allo-
cation.

Statically setting the maximal depth causes frus-
tration for users. Since the program can continue
to add levels dynamically, The maximal depth is un-
known at compile time. In the case that the dynamic
execution exceeds the maximal set level, the levels
that exceed the maximum are not be profiled and
our program produces no localized parallelism infor-
mation about these deeper regions. This limitation is
incredibly unfortunate for users since they only dis-
cover this void in their results after waiting hours for
their run to complete. Consequently, users would like
set a large maximal level depth, but this would result
in potentially exceeding their available memory.

To improve the memory efficiency and usage
model, we change our fixed-size arrays into dynamic
length arrays that reallocate themselves lazily. Only
upon trying to write to a particular timestamp, we
allocate memory for the levels required. Using this
method, timestamps that do not require the maximal
depth avoid wasting space. This new implementation
also eases the usage model because it eliminates one
parameter the user needs to tune.

Although this technique could potentially cause a
call to realloc after every operation, we find that
this does not happen in practice and its performance
quantified in Section 5.

4 Static Optimizations

The initial implementation of HCPA calculates the
dynamic timestamp for all operations; however, all
of these timestamp updates are not required and re-
sult in extra performance overheads. Since we cal-
culated the timestamps for every SSA operation, the
timestamps are typically only used once in the next
operation.

We can make three large improvements over this
original implementation. First, We can partially eval-
uate some of the timestamp calculation statically so
we perform them once during compilation instead of
many times during the dynamic execution of the pro-
gram.

To explain the second and third improvements, we
draw from liveness analysis terminology. We define
the live-out timestamps as the timestamps used exter-
nally by others. We also define the live-in timestamps
as the timestamps calculated by others for us.

We then can optimize our calculations by only cal-
culating the dynamic timestamps for only live-out
timestamps. This optimization vastly reduces the
number of updates we need to accomplish since we
do not need to perform the updates for the numerous
intermediate SSA operations.

Third, we can statically produce one update rule
per live-out timestamp as a function of the live-in
timestamps it depends upon. To produce these func-
tions, we repeat the following for each live-out value
as determined by traditional liveness analysis.

We begin by transforming the original update
rule for timestamp ¢; which is the maximum of the
operands plus the latency of the operation [; by dis-
tributing the addition within the max function:

ti = max(to, ..,tn) + lz
= max(to 4+ Ly tn + lz)

We then recursively apply the update rules to its
operand timestamps tg, .., tp:

= max(max(too + ZQ, cey tOn + lo) + li, )



Again, we distribute the latencies within the max and
use constant folding to eliminate an addition:

= max(max(too + lg, .., ton + 1), --)

Finally, we flatten the nested max functions into a
single one:

= max(too + U .- ton + lf, )

After performing these transformations, the only
remaining timestamps inside the max function will
be the live-in timestamps because we cannot recurse
to identify their timestamps statically.

This method also must respect control dependen-
cies. Upon recursing on to each operand, we also look
if the operation is control dependent. If it is, we add
the control dependence timestamp into the aggrega-
tion of timestamps plus the latency of the current op-
eration. This method of adding control dependence
works except for operations that their control depen-
dence is unknown statically. For these operations, we
still build our stack of the control dependence times-
tamps and we root all live-in timestamps with the
maximum of their timestamp or the timestamp of
the last control dependence. Since we only add and
take the maximum of the timestamps, control depen-
dences will be respected because the final timestamp
will be equal to or greater than the operands’ times-
tamps.

In addition to respecting control dependences, we
also must obey region boundaries. We cannot recurse
past these boundaries because regions only calculate
the localized critical path. Recursing beyond them
will incorrectly include a portion of the critical path
of their parent. Consequently, increasing the types
of delineation between regions will decrease the ef-
fectiveness of this method. We find that the current
demarcations of regions provides a balance between
granularities and performance.

Areas for Improvement. The proposed algo-
rithm for improving the performance can be improved
further. Since the algorithm produces update rules
for each live-out timestamp as a function of all of
the live-in timestamp it requires, the algorithm can

actually worsen performance with redundant calcula-
tions. Although it is not yet implemented, the perfor-
mance overhead can be avoided if certain intermedi-
ate timestamps are dynamically calculated and saved.
The intermediate timestamps that should be calcu-
lated dynamically are the ones that writing and sub-
sequently, reading the intermediate timestamp mul-
tiple times costs less than repeatedly reading all the
dependencies and calculating the live-in timestamps.
These costs depend on memory system and compu-
tation overheads.

5 Results

In this section, we present the results of the memory
and performance optimizations and evaluate their ef-
ficiency.

5.1 Experimental Setup

We use the initial implementation of HCPA used
in Kremlin and Parkour as our baseline comparison
of these techniques since they were built on top of
it. We heavily optimized the baseline implementa-
tion by hand customizing each function, accessing
memory sequentially instead of randomly, increasing
cache reuse, and even using our custom function in-
liner. We run all eight programs in the NAS Parallel
Benchmarks (NPB) [1] using the class S inputs. For
gathering memory statistics, we run using each of
the benchmarks through massif counting page refer-
ences as memory use. For gathering timing results,
we run each benchmark multiple times on idle nodes
multiple times and take the minimum observed time.

5.2 Memory Reduction

In order to aggressively tune the baseline implemen-
tation, we performed the memory measurements us-
ing the minimal fixed array size required by the
benchmark. Figure 2 shows the memory savings by
allocating memory on demand. The amount of mem-
ory saved varies from benchmark due to their dy-
namic behavior. Benchmarks that tend to perform
all of their operations near the maximal levels do not



Bench | Fixed (MB) | Lazy (MB) | Savings
bt 81.43 59.21 1.38

cg 160.40 82.37 1.95

ep 46.21 26.15 1.77

ft 641.50 493.40 1.30

is 46.72 24.19 1.93

lu 20.08 13.28 1.51

mg 642.10 592.20 1.08

sp 26.49 19.75 1.34
mean 1.27

Figure 2: Lazy Memory Allocation Savings.
Fixed shows the amount of memory used for each
benchmark in NPB using the baseline implementa-
tion and Lazy shows the memory used when allocat-
ing on demand. In all cases, lazily allocating memory
reduces memory overheads.

benefit much from this technique since they all stay
close to the fixed array size. Benchmarks that vary
the number of active regions through their execu-
tion greatly benefit more from this technique because
many of the timestamps do not require the largest al-
location.

Figure 3 shows the effect of lazily allocating mem-
ory as needed on execution time. The performance
impact is minimal in all cases since reallocations oc-
cur infrequently. For all of the benchmarks except
bt, reallocations occur in less than 1% of the up-
dates. bt incurs the worst slowdown of only 1.16x
as it performs reallocations on 4.3% of its updates.
Surprisingly, ep, is and lu actually observe speedup
after making reducing memory. This is likely due to
improved caching effects since lazily allocating mem-
ory removes the wasted space between the timestamp
vectors. Consequently, cache lines can be filled with
useful data instead of the unused padding.

5.3 Static Optimizations

Figure 4 shows the effects of partial evaluation, only
calculating live-out timestamps and folding times-
tamp update rules into one. The variance in perfor-
mance is likely to be caused by the size of basic blocks
and the number of live-in timestamps. The optimiza-

1.16x

1.07x

05x 1 '03X0.96X 0.98x 1.00x 1.01x 1.02x

Slowdown
L

bt cg ep ft is lu
Benchmarks

mg sp mean

Figure 3: Lazy Allocation Slowdown. Lazily al-
locating memory for the vector timestamps hardly
affects performance on all of the NPB programs. Sur-
prisingly, some of the benchmarks observe marginal
speedup.

tions perform better with longer basic blocks since in-
termediate values do not need to be calculated during
every dynamic execution. Greater number of live-in
timestamps degrades performance since it increases
the number of live-in timestamps needed to be ex-
amined at runtime. All benchmarks observe speedup
that demonstrates that the optimization causes less
additional redundant work than operations saved.
Additionally, the reported performance numbers are
lower than expected since the dynamic timestamp
calculations of the statically optimized version is not
as heavily optimized as the baseline implementation.

6 Conclusion

HCPA appears to be a promising technique to localize
parallelism and provide speedup upper bounds, but
still needs to have minimal memory and computa-
tional overheads to be successful in practice. This pa-
per presents two techniques to reduce these overheads
and quantifies their results. The results demonstrate
that the techniques can reduce memory and perfor-



Bench | Baseline(s) | Optimized(s) | Speedup
bt 393.376 340.527 1.16

cg 186.773 164.624 1.13
ep 949.825 587.188 1.62

ft 623.854 612.386 1.02

is 5.072 3.327 1.52

lu 110.489 75.121 1.47
mg 30.185 25.997 1.16
Sp 172.123 138.393 1.24
mean 1.29

Figure 4: Static Optimization Performance.

Baseline and optimized show the execution time in
seconds for each of the given benchmarks. Static opti-
mizations improves performance over all benchmarks
and still has room for further optimizations.

mance overheads on average by 1.27x and 1.29x on
the presented benchmarks. Nevertheless, the imple-
mentation containing the optimizations still has room
for improvement and hopefully will be useful in prac-
tice.
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