UNIVERSITY OF CALIFORNIA, SAN DIEGO

Genetic Compilation for Tiled Microprocessors

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science
in

Computer Science

Jin Seok Lee

Committee in charge:

Professor Michael B. Taylor, Chair
Professor Steven Swanson
Professor Yoav Freund

2007

The thesis of Jin Seok Lee is approved:

Chair

University of California, San Diego

2007

O W >

TABLE OF CONTENTS

SignaturePage ii
Tableof Contents v
Listof Figures Vi
Listof Tables. Vil
Acknowledgments IX
Abstract X
Introduction 1
A. Tiled architectures 2
B. Compilation for Tiled Architectures 5
C. Motivation 5
Compilationphases 9
A Input . . . L e 9
B. Homeassignment 12
C. Dataflowanalysis 14
D. Instructionassignment 14
E. Scalar operand assignment. 15
F. Stitchnodeinsertion 17
G. Routing instructiongeneration. 19

1. Optimization with ReDefScalars 19
H. Registerallocator 21
I. Assemblygeneration. 21
Evaluation 22
A. Experimental infrastructure oL 22
B. High-level Source code transformations 25
C. Speedup of the genetic algorithm 6 2

1. Performance improvementin more generations 33
Conclusion 38
Flow of instruction assignment 41
Stitchnodeinsertion 44
Routing instructiongeneration 46

D Handling object migrationincontrolflow
A. Allowing memory object migration
1. Aproblem
2. Remapfunction
B. Howtohandleit,

Bibliography

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:

Figure 2.7:

Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:
Figure 3.7:

Figure 3.8:

LIST OF FIGURES

Atiled architecture. Used with permission fiérof. Michael
Taylor. 3
The photograph of the silicon die of the 16-tilETNRaw
Tiled Microprocessor. The 16 tiles are clearly visible. dse

with permission from Prof. Michael Taylor. 4
Back-end passes of a compiler for tiled archites . . . 6
Back-end passes of a compiler for tiled archires . . . 10
An example of hardware description XML 11
An example of sourcecode 12

An example of incorrectness and incoherenceanem . 13
A space-time map of 8 tiles (cu : a slot for a corapoih

unit, su : a slot for a switchingunit) 16
Scalar assignment flow exampke, @) : def scalars, i,
c,e,f):usescalars) 18

Examples afithout ReDefScalarandwith ReDefScalars
((a on tile 0,e, g on tile 15) : def scalarsa(d, f on tile
15):usescalars), 20

Genetic Algorithm in memory placement of the pdar . 24
convolution pseudocode after high-level transformation (
width = width of inputA, height = height of inpuf, vc :

(width of kernelB)/2 , uc : (width of kerneB)/2)) 27
dot-product pseudocode after high-level transformation (width
: width of A, height : heighto®) 28

multi-layehaar pseudocode after high-level transforma-

tion (A : memory object inputN : length of the memory
objectL:layer) 29
Execution time fazonvolution with varying numbers of

tiles. The genetic algorithm runs for 100 generations with
populationsize 200. 30
Execution time fodot-product. The genetic algorithm

runs for 100 generations with population size 200. 31
Comparing the genetic algorithm and manualgpteant of

memory objects on 16 files f@onvolution 34
Execution time fdnaar. The genetic algorithm runs for

100 generations with population size 200. 35

Vi

Figure 3.9:

Figure 3.10:
Figure 3.11:

Figure A.1:
Figure A.2:

Figure B.1:

Figure C.1:

Figure D.1:
Figure D.2:
Figure D.3:
Figure D.4:
Figure D.5:
Figure D.6:

50 generations obnvolution on 16 tiles. The graph shows,
for each generation, where cycles are spent in the most fit
specimen in the population. Non-stalls are cycles spent
successfully executing instructions. Cache-stalls are cy
cles spent cache missing. Resource-stalls (which do not
occur in these programs) are cycles spent waiting for a
functional unit to become available. Bypass-stalls are cy-
cles spent waiting for a value to emerge from a local func-
tional unit. Mispredicted-stalls are stalls caused by binan
mispredictions. Interrupt-stalls (which do not occur here
are cycles lost because of interrupts. Send-stalls are cy-
cles spent waiting for a network output port to have free
buffer space. Finally, receive-stalls are cycles spent-wai
ing for an incoming value. Interestingly, of these, send-
stalls and receive-stalls are the stalls most optimized by
changing memory object placement. In contrast, cache-
stalls are relatively infrequent and thus do not constitute

significant enough factor in overall executiontime. 36
50 generations dbt-product on 16tiles 37
50 generations béar on16tiles 37
A framework for instruction assignment 42
A space-time map of 8 tiles (cu : a slot for a comapion

unit, su : a slot for a switchingunit) 43

A stitch node insertion exampkg @ : scalars in a live-in
listand a live-outlist) 45

An example of routing generatiom§ eg : an incoming
register of a switching unigut r eg : an outgoing register

of a switching unitWwest),E(east) : routing directionsa(

on tile 0,e) : def scalars,d on tile 1,b, c, d) : use scalars) 47

Inconsistent memory object description 49
The first migration in compile-time 52
The Second migration in compile-time. 52
The first migrationinrun-time 53
The Second migrationinrun-time 53
A migrationonSON 54

Vii

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

LIST OF TABLES

Genetic algorithm parameters (population=talver of
different genotypes per generation)
Tile locations of memory objects on 2 tiles in aeajgn
algorithm ofconvolution.
Tile locations of memory objects on 16 tiles in agje
algorithm ofconvolution.
Total execution cycles of an active tile and ae idé in a
CFGnodeohaar

viii

ACKNOWLEDGMENTS

First, | would like to thank to my research advisor Profed3ar Michael
Bedford Taylor whose perceptive criticism, insight inted architectures and willing
assistance helped me bring about successful research.|d aiso like to thank Dr.
Steven Swanson and Dr. Yoav Freund as my committee membksa thianks to my
office mates (Donghwan Jeon, Ikkjin Ahn and Hyojin Sung) feliping me understand
tiled architectures. In addition | am grateful for the hefpny friends at Onnuri.

Finally, thanks to my family and friends for encouraging me&ontinue my
studies in San Diego.

This work was supported by the Korea Science and EngineEongdation

Grant (KRF-2005-215-D00289).

ABSTRACT OF THE THESIS

Genetic Compilation for Tiled Microprocessors

by

Jin Seok Lee
Master of Science in Computer Science
University of California, San Diego, 2007

Professor Michael B. Taylor, Chair

Recent microprocessor designers have turned to large-peallelism and
multicore processors as the means of continuing Moore’s. LEled multicorepro-
cessors, one such class of multicore processors, offezragty low latency commu-
nication over an on-chip scalar operand network (SON). Altth academic projects
such as Raw and TRIPS have demonstrated that tiled mulficocessors are imple-
mentable, managing the complexity of optimizing compiliensthese distributed ar-
chitectures has become a serious issue. These compilersimuftaneously optimize
across a variety of inter-related NP-complete criteriarteo to generate optimized
code.

Generating custom compiler heuristics for these NP-cotegieoblems re-
quires high skill levels and is both time-consuming and primover-simplification of
the emerging factors that contribute to sub-optimal parappeedup. Furthermore, the
implementation effort of these heuristics makes it almagiassible to adjust them in
order to evaluate tradeoffs in tiled microprocessor design

This thesis presents a complete compiler backend thatatesgrarallel code
for tiled microprocessors. It addresses complexity issayeseparating the concerns
of correctness and optimization. The optimization compbnses standard machine
learning algorithms (genetic programming), while the eotness component ensures

that valid code is generated regardless of the input fronmthehine learning algo-

rithm. The evaluation measures the compiler’s ability toetthe placement of mem-
ory objects across tiles; in several cases it is able to parfdacement better than
a graduate student. Furthermore, it does this with no utatedsg, beyond what is

necessary to generate correct code, of the particularttargeitecture (Raw).

Xi

Introduction

Until recently, modern microprocessors have focused ookctate as the
means of exploiting improvements in silicon manufactuciug to Moore’s Law [13]
and CMOS scaling. This approach has come up against corypded scalability lim-
its, including those due to wire delay, power, and logic yelRecently, microprocessor
designers have turned to large-scale parallelism and coudtiprocessors, which inte-
grate many processors onto one silicon die, as the meansbheimg Moore’s Law.
These new multicore processors carry with them significaallenges in programmer
productivity, as they frequently require explicit manuatgllelization. One approach
to addressing this issue is to create architectures forhwtienpilers can automati-
cally generate codeTiled multicoreprocessors are a subclass of multicore proces-
sors which facilitate automatic compilation by providingremely low latency com-
munication over an on-chip scalar operand network (SON)128 RAW [17, 20],
Wavescalar [16] and TRIPS [4] are three examples of acad&ladt architectures.
Tiled architectures have integrated more simple and idehtiles into a chip to ad-
dress the limits. These projects have shown that tiled tactures have the ability to
run a variety of codes in parallel. In this chapter, we introglthe overall structure of
typical tiled architectures, the major concepts of compifer tiled architectures, and

finally the motivation for this thesis.

1.A Tiled architectures

Tiled architectures are designed to efficiently run programparallel across
a large silicon area. In order to exploit parallelism, tilgdhitectures are constructed
in a physically scalable and simple way. A tiled microprem<onsists of an array of
identical tiles (shown Figure 1.1). Each tile contains a pata portion and a network-
ing portion. The compute portion contains a compute pige{including ALU, and
FPU), an instruction cache, and a data cache. The commigmecamponents con-
tains programmable routers (also called switches) andar&twires that connect the
tile to its neighbors and off-chip. The tiles are connectgd bariety of point-to-point,
pipelined, on-chip networks which facilitates low-latgrmtommunication among tiles
and among tiles and off-chip devices, via the 1/O ports. Tasstruction provides
a variety of benefits for overcoming scalability limitateoim microprocessor design.
Figure 1.2 shows a die photograph of the MIT Raw micropramesghich contains 16
such tiles. The number of tiles is expected to double witthegneration of Moore’s
Law (e.g., 1024 tiles at the 22 nm process node).

One of the important features of tiled architectures is thay are naturally
suitable for exploiting Instruction Level Parallelism R).across multiple tiles, while a
monolithic superscalar processor requires complex haelvesources to do ILP. ILP
can be found and exploited automatically in sequential gnog written in C or C++.
The compiler, targeted specially for tiled architectupegallelizes the program across
the tiles. A separate instruction stream runs on each tile & own Program Counter
(PC). Although independent programs may run simultangoois|different tiles in
the same way they do on multicore processors, tiled micogssors also allow the
tiles to cooperate with their neighbors via static or dyramierconnection network.
After individual instructions are mapped into tiles, ead has to run instructions
assigned to the tile and also orchestrate instruction exgcwith neighboring tiles
via the interconnection networks, transporting scalaneslfrom producer tiles to the

appropriate consumer tiles. Such a scheme is call8dadar Operand Networkr

Networks

‘

i
Compute
Pipeline

R4 Tile
1/O Ports

Figure 1.1: A tiled architecture. Used with permission frBnof. Michael Taylor.

SON [18].

Tiled architectures keep hardware as concise and simplesssiybe in order
to provide better scalability for computation and on-chipmuory, in contrast to com-
plex modern super-scalar microprocessors. To efficierilizel these scalable arrays
of resources, intelligent compilers must be constructeartbestrate the mapping of
computations to architectural resources. As a result, rmapgcts of the basic under-
lying architecture associated with program execution arepietely exposed to com-
piler and runtime system. The compiler is responsible farggsng and scheduling
program instructions in order to exploit ILP. Program examuis almost completely
controlled by the compiler, and thus the performance of g depends on efficient
resource assignment. The correctness of program exedsitadso determined by the

compiler.

Figure 1.2: The photograph of the silicon die of the 16-tiléTMRaw Tiled Micro-
processor. The 16 tiles are clearly visible. Used with pssion from Prof. Michael
Taylor.

1.B Compilation for Tiled Architectures

As discussed in the previous section, the hardware steictutiled archi-
tectures is much simpler than traditional single-core wa$eie microprocessors. It
ensures high clock rates and the availability of many exenutesources on-chip.
Instead of employing complex hardware on a chip, tiled npooeessors rely on com-
pilation techniques which attempt to assign elements irsthece code to hardware
resources through the Instruction Set Architecture (ISBgtiaction. Researchers at
MIT created a compiler for tiled architecture named RawC@3[20]. However, this
compiler is tightly coupled to the Raw tiled microprocess®o handle the class of
more general tiled architectures, we implemented a generapiler to compile a sin-
gle stream program into multiple streams and exploited IbRled architecture.

In lieu of supporting complex run-time hardware, the compglays a dom-
inant role in determining a static path of program executiocompile-time with af-
fordable algorithms. Most resources used in a program’siwgian are controlled by a
sequence of phases (passeyin a back-end of a compiler. This paper is devoted to
describing the design, implementation and performancéebtck-end of the com-
piler. The overall back-end flow of the compiler is descrilreéFigure 2.1. We shall

examine the phases in Chapter 2 in more detail.

1.C Motivation

Central to this thesis are two ideas: first, a new method adraming com-
pilers so that the concerns of correctness and optimizateseparated, reducing the
complexity of compiler implementation; and second, theliappon of brute-force
machine learning algorithms to replace the costly and wor@suming construction
of heuristic optimization functions for compilers for saglicated distributed archi-
tectures. To explore these ideas, we construct a completebd compiler for next

generation tiled architectures, and measure the benefgggyiag machine learning

Home
assignment

Data flow
analysis

Instruction
assignment

Scalar operand

assignment

Stitch node

msertion

Routing

generation

Register
allocation

Assembly
generation

Figure 1.3: Back-end passes of a compiler for tiled archires

techniques (genetic algorithms [8]) to optimize memoryeabplacement, which has
significant downstream effects on compiled code performanc

This new backend infrastructure is designed to target tmengéd class of
tiled architectures, and to support new emerging tileditectures. Until now, tiled
architectures have been examined and implemented mostlyademia. Compilers
for those architectures have targeted specific architestand even specific proto-
types. As a result, targeting new tiled architecture tylprcaill require an almost
from-scratch rewrite of the existing compilers, tuned wigw heuristics to address
particular issues of the individual architecture. Compileiters have to spend much
of their time and energy in re-implementing new infrastaues, delaying work on
new compiler algorithms and new architectural featuresthéninterests of reducing
this effort, we propose a general compiler infrastructordifedarchitecture.

A compiler for a tiled architecture has to find approximasido a cascade
of NP-hard problems in order to generate optimized code. fillemdevelopers must
often struggle to manage the complexity of finding and im@etimg efficient approx-
imation algorithms. Although our compiler addresses mdrth@® standard phases of
tiled architecture compilation, to keep the scope of thesth maintainable, we will
focus on the compiler’s ability to find efficient memory olieplacements, which is
central to the exploitation of parallelism in ILP codes. §hoth demonstrates the fea-
sibility of our machine-learning approach, but also exgetigk current state of the art
in tiled compiler research. Most of the extant researcHexl @rchitecture compilation
tends to center around instruction placement and sched[dd 12]. Up until now,
few have attempted to address the issue of memory placemdiigd architectures.
The issue of memory placement is challenging because itltsineously affects how
much memory parallelism is available in the applicationjlevlat the same time, it
heavily influences the ability of the architecture to plac&imemory instructions in
ways that reduce network latency and congestion.

The remainder of the thesis is organized as follows: Chaptesents the

overview of the compiler design and implementation. In Gaaf, we evaluate the
compiler in the context of using genetic algorithms to ofeEnmemory placement.
Finally, we conclude the discussion in Chapter 4, and oegnthe issue of memory

object migration in Appendix D.

Compilation phases

The compiler is organized as a series of compilation phasemépping
programs to a set of tiled resources as efficiently as passité focus on the back-end
of the compiler, as the back-end component changes the nnest tived architectures
are targeted. This chapter explains in detail how each pimadee compiler works
and how it ensures the correctness of programs. Figure avisstihe overall compiler
flow.

Shaded circles indicate subproblems, which are often NB;liiaat need to
be solved. To simplify the effort of constructing the comepilwe separated the imple-
mentation of code correctness and optimization. In the ¥ession of the compiler,
the optimization functions were implemented with simpliésd@ therandomfunction.
This method of implementation helped us verify that the gateel code was correct
regardless of the input of the machine learning optimizaetimctions. Later, we em-

ployed simple heuristics and/or machine learning for tloggamization functions.

2.A Input

The inputs for the compiler are Hardware Description XML &udirce Code
XML. Hardware description XML is used to describe the hardweonfiguration for

the target tiled architecture. The compiler assigns ressuand generates code based

Home
assignment

Data flow
analysis

Instruction
assignment

Scalar operand

assignment

Stitch node

msertion

Routing

generation

Register
allocation

Assembly
generation

Figure 2.1: Back-end passes of a compiler for tiled archires

10

11

<root>
<RegisterNum>32</RegisterNum>
<TileLoc>0</TileLoc>
<TileLoc>1</TileLoc>
<Latency>
<LD>2</LD>
<ST>1</ST>
<ADD>1</ADD>
₁
<MUL>12</MUL>
<DIV>35</DIV>
<FADD>2</FADD>
<FSUB>2</FSUB>
<FMUL>4</FMUL>
<FDIV>12</FDIV>
</Latency>
</root>

Figure 2.2: An example of hardware description XML

on the characteristics of the XML. Figure 2.2 shows an exarnphardware descrip-
tion XML for the Raw microprocessor.

The other input file for the compiler is the source code XML.filde front-
end of the compiler translates program source code writtelATLAB, C or C++
into this XML format. The XML represents a control flow gragbHG) of the source
code. It can include many control flow graph nodes, and ea¢h @¥ele identifies the
locations of its successor and predecessor nodes. The gragkure is provided by
the front-end of the compiler through control flow analysis.

While most instructions in a CFG are similar to typical asbmninstruc-
tions, some high-level operations are defined in the Intdrate Representation (IR).
As this compiler has been designed for general tiled arctite, some features related
to specific target machines are abstracted out through thed® IR instructions are
recognizable in the IR translation phase of the compileif-r@¢urn, func and inargs.

The representation of each IR is listed below.

1. def IR allocates space for memory objects in a stack. The “silhent indef

decides the number of bytes to be allocated.

2. return IR returns a scalar value to a caller by default. It is als@dblreturn

12

<root>
<CFG>
<CFGNode>

<NodeID>0</NodelD>

<Succl1>0_0</Succl>

<InstructionNode>
<Label>foo</Label>

</InstructionNode>

<InstructionNode>
<OPCode>def</OPCode>
<Scalarl>a0</Scalarl>
<Non_Scalar>8</Non_Scalar>
<Non_Scalar>8</Non_Scalar>

</InstructionNode>

<InstructionNode>
<OPCode>def</OPCode>
<Scalarl>al</Scalarl>
<Non_Scalar>8</Non_Scalar>
<Non_Scalar>8</Non_Scalar>

</InstructionNode>

Figure 2.3: An example of source code

multiple values, using a stack.

3. funclIR calls a function. It has a target address of the functiahthe argument

list.

4. inargsIR represents an argument list of a function.

2.B Home assignment

Home assignmerassigns tile locations to memory objects. Thame tile
refers to a single tile location in which a memory objectdesi If we assume the
most general case, that the target tiled architecture isecaoherent, the memory
object in each procedure must belong to a specified tilect#liehome tile[10]. Oth-
erwise, the correctness of a program is compromised. Invéhrson of the compiler,
home assignments persist throughout the lifetime of thgnara. Load andst or e
instructions that access a particular memory object aigraess$ to the same home tile

as the corresponding memory object.

13

In a single stream In multiple stream
Tile O Tile 1
STORE A g
STORE A
— (O
LOAD A LOAD A
E— Data Dependency

Figure 2.4: An example of incorrectness and incoherenceanem

Home assignment is necessary to handle problems of in¢oessand in-
coherence. The term ‘incorrectness’ refers to memory ¢bjaadl oad or st or e
instructions, which are not properly synchronized. Thenténcoherence’ refers to
the case where a tile’s instruction stream accesses adaitefversions of data even
when synchronization is correct. Let's take a look at inectmess in Figure 2.4.

A single stream code is transformed into multiple streamsuttph this com-
piler. In Figure 2.4, tile 0 executesst or e on A and tile 1 carries out Aoad on
the sam@éA as tile 0. Because each tile in a tiled architecture is onbgdty coupled
with the others during execution, tile 0 may exeduted Abefore tile 1 executes the
st ore A, which results in incorrect behavior.

In other words, a tile does not know if an instruction with degent scalars
on another tile has or will produce the corresponding vatwesot.

Tiled architectures with incoherent memory systems alseoblems of
‘inconsistency’. Suppose the order of execution is coilireEigure 2.4. In some cases,
Tile 1 may not see the correct value from tile O at all timesdose of the effects of

caching. IfA on tile O is not written back to memory before the executiorthef

14

| oad ontile 1,A on tile 1 is from out-of-date memory, and is not equivalenti@A
manipulated byst or e Aon tile 0. Therefore, the compiler supports the concept of
“Home” to tackle cache-incoherence in a back-end of the ¢lemp

To verify the correctness of the compiler implementatios, initially used
therandomfunction in performing home assignment. Memory objectsenassigned
to arbitrary tiles. As long as instructions such asad andst or e follow the rule that
the instructions and referenced memory objects in themmatesisame tile, a program
is guaranteed to execute correctly. This is becdwsed andst or e instructions in
other tiles do not manipulate those memory objects, anddansot create coherency
or synchronization issues.

For optimization of assigning memory objects, we have ii@eted home
assignment using a genetic algorithm. It generates fagémuéable codes as genera-

tions elapse. The efficacy of the algorithm is evaluated aptér 3 in detalil.

2.C Data flow analysis

In this phase, we construct conventional ‘def-use’ chaljsiithin a CFG
node. This analysis identifies the data dependency redtipa that exist between in-
structions that define scalars and instructions that use.tlée dependency informa-
tion becomes a basis of instruction assignment, scalagrasgint and the generation

of instructions is described in the following sections.

2.D Instruction assignment

This phase assigns each instruction within a CFG node toafgpile and
is quite important to quality of performance. If they areigsed in an inefficient
way, data dependency between instructions across tilesrgies redundant routing
instructions.

To ensure correctness, the first version of the compileriliedt irchitecture

15

assigned instructions across tiles in conjunction witaredomfunction. To demon-
strate the correctness of this phase, we should show thatrdatportation in a single
tile and in multi tile is done correctly. First, if data degiemcy exists between two in-
structions within a tile, ‘def-chain’ is used as a method#émsfer correct data. Second,
if data dependency exists across tiles, routing instrostére responsible for transport-
ing correct data. Therefore, this phase ensures that assigris executed correctly
whichever method is used.

For optimizing the execution of this phase, heuristics [{14] or machine
learning algorithms [5], [9], [15] assign instructions innapile-time. We have de-
veloped an instruction assignment algorithm based on WhAgsign and Schedule
(UAS) [14], which was originally created for Very Long Ingttion Word (VLIW)
machine. The main idea of this algorithm is to assign anddidieenstructions simul-
taneously.

Though our compiler bears aresemblance to UAS in the asgjgmd schedul-
ing functions, the compiler has different features sucmssconnection network type,
a space-time map and instruction assignment for tiled erctuires.

The first difference is that the compiler for tiled architgets regards the
network as a point-to-point network while UAS considerstieévork as inter-cluster
buses. Secondly, the compiler makes different space-timue. nBefore instruction
assignment, the compiler builds one two-dimensional sgiave map (Figure 2.5). A
row refers to one machine cycle on each tile, incrementioghftop to bottom. A
column represents a tile with two slots - one for a computatinit and the other for
a switching unit. Third, the compiler assigns tile locaida instructions. A detailed

scheme of instruction assignment is explained in appendix A

2.E Scalar operand assignment

In this phase, the compiler decides where scalar valuesiirean list and

a live-out list are located in a CFG node. In a monolithic mpocessor, each CFG

16

Pid Space ~
s (tiles) ~N

0 1 2 3 4 5 6 7

1 cufsu | cufsu|culsu|cufsu |cufsu|culsu|Cujsu(cufsu

Time 2 |culu |culsu | culu [cufu |culsu [culsu [cuu |culsu
(cycles)

3 cujsu [culsu|culsu|cufsu culsu|cujsu | Cujsu |cufsu

4 cufsu |cufsu|culsu|Cufsu |cufsu|culsu|cujsu(cufsu

Figure 2.5: A space-time map of 8 tiles (cu : a slot for a corapan unit, su : a slot
for a switching unit)

node has a live-in list and a live-out list only for scalarstiled architectures, scalars
as well as their locations are assigned to a live-in list deaand a live-out list because
scalars in the two live lists are distributed across tilesfatilitate this phase, we have
built three sub-phases callethking a live-in list and a live-out list of each CFG node
assigning locations and registers to scalars in a live-8t nd a live-out list of each

CFG nodeandassigning scalar locations of instructions in each CFG node

. Making a live-in list and a live-out list of each CFG node In this phase, the
compiler runs a fixed-point algorithm [1], which continuesfind scalars in a

live-in list and a live-out list until there is no change iro#e lists.

Figure 2.6, (b) shows an example of making a live-in list atigleaout list from

the following instructioradd a, b, c andadd d, e, f on 2 tiles.

. Assigning locations and registers to scalars in a live-indit and a live-out list
of each CFG node The compiler assigns tile locations and virtual registers

scalars in a live-in list and a live-out list. Figure 2.6, @@picts an example

17

of assigning tile locations and virtual registers to scalara live-in list and a

live-out list on 2 tiles.

. Assigning locations and registers to scalars of instructies in each CFG node
This phase assigns virtual registers and tile locationc#édass of instructions.
The information is based on the routing instructions thathlaeen generated.
Receiving instructions recognize the register values lilage been transferred.
(d) of Figure 2.6 shows an example of assigning tile locatiemd virtual registers

to scalars in every instruction within a CFG node on 2 tiles.

To ensure correctness, we applied taedomfunction in scalar operand
assignment. The function causes two problems - scalar gist@mcy within a CFG
node and scalar inconsistency between CFG nodes. (d) ofe=&y6 shows two scalar
inconsistency cases within a CFG node (live-in to instargdiand instruction to live-
out). These problems are addressed by generating roustrg@tions between them.
Scalar inconsistency between CFG nodes are handlsttblinodes. The concept of
Stitchnode is discussed in 2.F.

To optimize scalar operand assignment, we used a simpléstietio assign
the scalar operands. To create a live-in list, scalars ifivteen list copy the locations
and register values of similarsescalars which is first appeared in a CFG node. To
create a live-out list, scalars in a live-out list copy lacas and register values of same
def scalars which last appeared in a CFG node. If the CFG nodersnésmvedef or
usescalars for live lists, the scalars retrieve tile locatiowl @aegister values from the

closest CFG node.

2.F Stitch node insertion

A Stitchnode ensures consistency between two adjacent nodes. & som
cases, a live-out list of a predecessor node and a livetimflia successor node do

not match. Therefore, inconsistency occurs between twelists in tile locations

Tile 0
add a,b,c

Tile 1
add d,e,f

(a) initial memory placement

fle

Live-in: b,c,e,f

Tile 0
add a,b,c

Tile 1
add d,e,f

18

(b) Making a live-in list and a live-out list of each CFG node

¥

| Live-in : b(1,$13), c(0,$14), e(1,$10), f(1,$16) ’(

type: scalar(tile, register)

Tile 0 Tile 1
add a,b,c add d,e,f

Live-out : a(1,$12), b(0,$15) |é/
(c) Assigning locations and registers to scalars ii i live-in list and a live-out list of g CFG node
Live-in : b(1,$13), c(0,$14), e(1,$10), f(1,$16) |</ /

Tile 0 Tile 1
add a(0,$16), b(0,$17),c(0,$18) add d(1,$14),e(1,$15)4(1,$19)

Live-out : a(1,$12), b(0,$15) |</

(d) Assigning locations and registers to scalar of instructions in each CFG node

Figure 2.6: Scalar assignment flow exampke, @) : def scalars,lf, c, e, f) : use
scalars)

19

of scalars. The compiler deals with such a conflict, ustitgh nodes. This phase
handles possible mismatches of scalar operand assigniirteprocedure is decided
mechanically and is not greatly related to optimization.p&pdix B shows how to

insert a stitch node.

2.G Routing instruction generation

Based on ‘def-use’ chains, data dependency between twoatisins across
tiles is constructed. If the data dependency is across titeging instructions are
explicitly generated to transfer a scalar from one instomgtwhich produces a output,
to another instruction, which consumes an input throughedsional order routing [6].

Appendix C shows how to generate routing instructions.

2.G.1 Optimization with ReDefScalars

Previous data analysis for routing generation was constuwith an as-
sumption that only one tile remained alive. This type of gsigl results in network
overhead on multi tiles. The analysis could cause redunciadgs to spread over on-
chip networks. Consider Figure 2.7. Tile O produeeis add and tile 15 consumes
it in instructionssub andmul . According to routing generation, routing instructions
should be created for each scalar on tile 15.

This type of data analysis ignores nelefs in routing generation although
scalars routed over networks become ra®is on destination tilesReDefScalarss
able to those make those scalar values into dets if no other instructions exist to
define the scalar values between two instructions.

The compiler createReDefScalardor each tile. It contains scalar values
and virtual registers. Whenever a scalar is routed to ardsgin tile in a CFG node,
the tile writes a routed scalar and a virtual registeReDefScalar®f a tile. If the

scalar is re-defined in other tiles, the scalar is deletd&®ebefScalarsOtherwise, the

20

tile 0 tile 15
add a,b,c
sub e,d,a
e I
routing scalar “a” mul g.f,a

\ =

routing scalar “a”

Without ‘“ReDefScalars”

e 0 tile 15
add a,b,c
\ sube,d,a
_//v Using the same “a”
. —. on tile 15
routing scalar “a mul g,f,a

With “ReDefScalars”

Figure 2.7: Examples afithout ReDefScalarandwith ReDefScalar§(a on tile 0,e,
g ontile 15) : def scalarsa(d, f ontile 15) : use scalars)

21

scalar survives ilReDefScalarsIf the scalar irReDefScalarsf a tile exists, the scalar
is reused in the tile without routing generation. In a cake 8.7, 8 cycles are saved,

avoiding routing generation between tile 0 and tile 15.

2.H Reqister allocator

So far, all registers employed in every instruction arewattregisters or spe-
cial registers such as the stack pointer or return addrgsstee In register allocation,
the compiler replaces virtual registers with real machegisters. To facilitate this
process, we have adapted a standard coloring method used fior multiple tiles.

The standard coloring method is different from a coloringhmod in two ways.

1. Each tile owns its own register allocator as a slave. Alsimgaster register
allocator supervises whole register allocators in evéey fThe master allocator
forces register allocators to run until all register alli@mas are not necessary

anymore.

2. Stitch nodes are excluded in register allocation. Altrungtions institch nodes
comprise routing instructions in which registers are defimea switching unit

and physically allocated in advance.

2.1 Assembly generation

The last phase of the compiler enables the analysis of aesgtgdam code
and the creation of assembly ‘.S’ files for multiple streantS’. files incorporate two
assembly code sections (one for a computation unit and enfitha switching unit).
The instructions on a single stream are stored into eacHileS’ based on their tile
locations. Instructions for computation units are moved tection of computation
codes of the “.S’ files and instructions regarding to the cwitinit are placed in a

section of switch codes.

Evaluation

The evaluation section of this thesis uses the complete tbemipfrastruc-
ture, described in Chapter 2, to go from an XML descriptiotth&f program to final
object code for the Raw tiled microprocessor. In order toavathe scope of inquiry,
we focus on the evaluation of automatic genetic-algorittamed memory placement.
First, we present how experimental infrastructure is omgth Second, we evaluate
the effectiveness of using a genetic algorithm to autorallyiperform memory place-

ment.

3.A Experimental infrastructure

We implemented memory placement using a genetic algorithigure 3.1
shows the execution flow of memory placement in genetic dlyaor First, it obtains
a list of all memory objects in the source code. Then, it camég the parameters that
control the genetic algorithm: the number of generatidmessize of the population, the
crossover rate and the mutation rate. After that, it creatasitial random population
in which each memory object has been assigned a random tikveru To evaluate
the efficiency of the members population (in this experimtd tile assignment of all
memory objects), a fitness value is generated through theureraent of the actual

execution time. The genetic algorithm selects parent chemmes which survive to

22

23

in next generation. Crossover and mutation are applieda@é#nents. Finally, a new
generation is created with parental crossover and mutattorontinues to compare
fitness values and to select the best chromosome until irgesethe last generation.

A crucial factor in producing good object code from genelgpathm is the
accuracy of the fitness function. The more precise the fithesgtion, the more likely
a genetic algorithm is able to discover solutions that ojzénthe many factors that
contribute to performance. We employed the Raw cycle-atewgimulator (which is
accurate to the exact cycle for over 250,000 lines of tes¢xwdconjunction with the
actual generated code and a sample data set in order to tevileditness of a gen-
erated program. This approach has two advantages over c@ingiler estimates of
program run-time. First, it does not burden the compileitexmwith the task of deter-
mining an appropriate algorithm for estimating executiometon a given algorithm.
Understanding the first-, second-, and third- order effettster-related program pa-
rameters is a challenging task requiring not only high leeékkill but also substantial
experience with a particular architecture. Relying on tid@sp level of understanding
would impact our ability to quickly build compilers for newetd architectures in or-
der to explore the design space of tiled architectures. f@gagsing actual execution
times reflects the most accurate possible estimate of rentirhis allows the genetic
algorithm to take advantage of — or avoid — unexpected padace anomalies that
result from the interaction of different factors in a pragrée.g., register pressure,
scheduling, and cache size).

Although this compiler is created to target the class of ganded archi-
tectures, for accurate results, it remains to optimize fepecific machine. For this
purpose, we choose the MIT Raw Tiled Microprocessor, forclwla detailed cycle-
accurate simulator exists. Evaluation of benchmarks ifop®ed on a cycle-accurate
simulator of the Raw machine. The compiler is made cogniafinnly the most ba-
sic hardware characteristics (instruction types, numlib¢ites) of the Raw machine

through the use of an XML description.

Gather
memory objects

'

Configure
genetic parameters

A

Create
random population

'

Evaluate fitness
(Obtain execution time)

'

Select
parent chromosome

'

Crossover &
Mutation

'

Convergence

End of generation?

yes

Best Source Code
Generation

Figure 3.1: Genetic Algorithm in memory placement of the pder

24

25

3.B High-level Source code transformations

The benchmarks we evaluate arenvolution, dot-product andhaar. A
front-end part of this compiler analyzes input code and fimssnory objects and
scalars which are able to be parallelized. The compilertwars memory objects
into a number of memory objects that is on the same order asumder of tiles that
is to be used to accelerate the program. Scalars, whichatautnditional branches,
are also duplicated over all tiles.

Convolution is a discrete mathematical function which expresses theiamo
of overlap of on&ker nel when it passes one matx Figure 3.2 shows how memory
objects and scalars are transformed through a front-erafdmpiler inconvolution.
Input memory objech is broken down into 16 memory objects. The compiler divides
its width and height by 4. Each tile accesses the memory bbyemanipulated width
and height. A scalasumis also duplicated because it will be store in duplicatzd
All control scalars such as width, height, uc and vc are cepdid all tiles to eliminate
transporting those scalars over tiles.

Dot-product takes two vector memory objects and multiplies each element
with the same index in the two vectors (i.e., an elementweszor multiplication). It
returns the sum of these multiplied elements. Figure 3.@/slibat the compiler front
end applies almost the same strategy as it doeddtproduct. The input memory
objectsA andB are distributed across tiles. The scadaimis also replicated Dot-
product returns the sum before the control is handed over to a callee.

Haar works by transforming an array of values into an array of agerand
differences-from-the-average. Figure 3.4 showsltdesr in this experiment is multi-
layerHaar. First, a code runs the firstaar computation with original memory object
input. Then, a front half of the first input becomes an inputrfext level of theHaar
computation. The program continues tiear filtering until the layer number is one.
Through the code transformation, the compiler partitidres input object foHaar

into 16 memory objects, just like for the other algorithmewda A recursive call is

26

Table 3.1: Genetic algorithm parameters (population=tnaler of different geno-
types per generation)

size of generations 100
size of populations 200
crossover rate | 90%
mutation rate | 10%

transformed into 4 iterations in a single function.

3.C Speedup of the genetic algorithm

In order to evaluate our automatic memory placement algyoritve evalu-
ate the benefit of a manually determined memory placementhvavenly distributes
memory objects across tiles. The reasoning is that, if mgrobjects are evenly dis-
tributed over all tiles, this results in high levels of memeparallelism, and at least in
theory, the best performance is gained with fully paratkdi memory objects. We
measure how much the genetic algorithm improves perforsyacempared to the
manual memory placement. Parameters used from the gelggiglam are described
in Table 3.1.

Convolution uses two matrixe& (64x64),C(64x64) and &ker nel (4x4).
Figure 3.7 shows the interesting result that, donvolution, an unevenly-distributed
memory object layout created by the genetic algorithm capestorm the evenly-
distributed manual placement.onvolution has no relationship between matrixes. In
Figure 3.2 convolution betweemA andker nel is stored insum After aker nel is
applied toA, thesumis written inC. Therefore, evenly distributed manual placement
has no effect on this evaluation. A result of evaluation aejgseon location of each
scalarsumwhich sumsconvolution values from matrixA and delivers it to matrix

C. The genetic algorithm has no problem with assigning menobjgcts at random.

27

A[O...width][0...height]
C[O0...width][0...height]
for x:=0 to x<width do
for y:=0 to y<height do
sum: =0
for v:=-vc to v<=vc do
for u:=-uc to u<=uc do
sum += A[x+v][y+u] * kernel[v+vc][u+uc]

¥

A_0[0...width/4][0...height/4] = A[O...width/4][0...height/4]
A_1[0...width/4][0...height/4] = A[width/4...width*2/4][0...height/4]

C[x][y]:=sum

A_15[0...width/4][0...height/4] = Alwidth*3/4...width][height*3/4...height]

C_0[0...width/4][0...height/4

] = C[O...width/4][0...height/4]
C_1[0...width/4][0...height/4]

Clwidth/4...width*2/4][0...height/4]

C_15[0...width/4][0...height/4] = C[width*3/4...width][height*3/4...height]

for x:=0 to x<width/4 do
for y:= 0 to y<height /4 do
sum_0:=0; sum_1:=0; sum_2:=0; ... sum_14=0; sum_15=0
for v:=-vc to v<=vc do
for u:=-uc to u<=uc do
sum _0:=sum_0 +A_O[x+v][y+u] * kernel[v+vc][u+uc]
sum _1:=sum_1 +A_1[x+v][y+u] * kernel[v+vc]u+uc]
sum _2:=sum_2 +A_2[x+v][y+u] * kernellv+vc]lu+uc]
sum _3:=sum_3 + A_3[x+v][y+u] * kernel[v+vc][u+uc]
sum _4:=sum_4 + A_4[x+v][y+u] * kernel[v+vc]u+uc]
sum _5:=sum_5 + A_5[x+v][y+u] * kernel[v+vc][u+uc]
sum _6:=sum_6 + A_6B[x+v][y+u] * kernel[v+vc][u+uc]
sum _7:=sum_7 + A_T7[x+v][y+u] * kernel[v+vc]u+uc]
sum _8:=sum_8 + A_8[x+v][y+u] * kernel[v+vc][u+uc]
sum _9:=sum_9 + A_9[x+v][y+u] * kernel[v+vc]u+uc]
sum _10:=sum_10 + A_10[x+v][y+u] * kernel[v+vc][u+uc]
sum _11:=sum_11 + A_11[x+v][y+u] * kernel[v+vc]lu+uc]
sum _12:=sum_12 + A_12[x+v][y+u] * kernel[v+vc][u+uc]
sum _13:=sum_13 + A_13[x+v][y+u] * kernel[v+vc][u+uc]
sum _14:= sum_14 + A_14[x+v][y+u] * kernel[v+vc]lu+uc]
sum _15:=sum_15 + A_15[x+Vv][y+u] * kernel[v+vc][u+uc]
C_O[x][y]:=sum_0; C_1[x][y]:=sum_1; ... C_14[x][y]:=sum_14; C_15[x][y]:=sum_15

Figure 3.2:convolution pseudocode after high-level transformation (width = width
of inputA, height = height of inpud, vc : (width of kerneB)/2 , uc : (width of kernel
B)/2))

28

AJ[O...width][0...height]
B[O...width][0...height]
sum:=0
for i:=0 to width do
for j:=0 to height do
sum:=sum+A[i,jl*Bli,j]

¥

A_0[0...width/4][0...height/4] = A[O...width/4][0...height/4]
A_1[0...width/4][0...height/4] = Alwidth/4...width*2/4][0...height/4]

return sum

A_15[0...width/4][0...height/4] = Alwidth*3/4...width][height*3/4...height]

B_0[0...width/4][0...height/4]
B_1[0...width/4][0...height/4]

BIO...width/4][0...height/4]
Blwidth/4...width*2/4][0...height/4]

B_15[0...width/4][0...height/4] = B[width*3/4...width][height*3/4...height]
sum_0:=0; sum_1:=0 ; sum_2:=0; ... sum_14=0; sum_15=0

for i:=0 to width/4 do
for j:=0 to height/4 do
sum_0:=sum_0
sum_1:=sum_1
sum_2:=sum_2

+ A_O[i,j] * B_OIij]
+ A_1[Lj] ™ B_1[i,j]
+ A_2[ij] * B_2i]
sum_3:=sum_3 + A_3[l,j] * B_3Ji,j]
sum_4:=sum_4 + A _4[ij] * B_4[i,j]
sum_5:=sum_5 + A_5][l,jl * B_5Ii,j]
sum_6:=sum_6 + A_6][ij] * B_6]i,j]
sum_7:=sum_7 + A_7[L,j] * B_7[i,j]

sum_8:=sum_8 + A_8][i,j] * B_8]i,]

sum_9:=sum_9 + A_9[l,jl * B_9Ji,]

sum_10=sum_10 + A_10[i,j] * B_10[i,j]
sum_11:=sum_11 + A_11[L,j] * B_11[i,j]
sum_12:=sum_12 + A_12[i,j] * B_12[i,j]
sum_13:=sum_13 + A_13[l,j] * B_13][i,j]
sum_14:=sum_14 + A_14[i,j] * B_14[i,]
sum_15:=sum_15 + A_15]i,j] * B_15]i,]

return sum_0+sum_1+....+sum_15

Figure 3.3:dot-product pseudocode after high-level transformation (width : wiath
A, height : height ofA)

A[0....width]

haar_filter(A, N, L)

w=N/2

for i:=0 to w-1 do
ATi=A[2i]+A[2i-1]
Ali+w]=A[2i]+A[2i-1]

A=A

if L-1>0
haar_filter(A, N/2, L-1)

29

A_0[0...width/16] = A[0...width/16]
A_1[0...width/16] = A[width/16...width*2/16]

A_15[0...width/16] = A[width*15/16...width]
w:=N/2

fori:=0 to w-1 do
A_O[il:=A_0[2i]] + A_O0[2i-1]
A _O[i+w]:=A_1[2i] + A_1[2i-1]
A _1[il:=A_2[2i]] + A_2[2i-1]
A _1[i+w]:=A_3[2i] + A_3[2i-1]
A 2[il:=A_4[2i] + A _4[2i-1]
A_2[i+w]:=A_5[2i] + A _5[2i-1]

A_7li= A_14[2i] + A_14[2i-1]
A_7[i+w]:=A_14[2i] + A_14[2i-1]

A_8[il:= A_0[2i] - A_0[2i-1]
A_8[i+w]:=A_1[2i] + A_1[2i-1]
A_9[il:= A_2[2i] - A_2[2i-1]
A_9[i+w]:=A_3[2i] + A_3[2i-1]
A_10[i]:= A_4[2i] - A_4[2i-1]
A_10[i+w]:=A_5[2i] + A 5[2i-1]

A_15[:i]:= A_14[2i] - A_14[2i-1]
A_15[i+w]:=A_15[2i] + A_15[2i-1]

for i:=0 to w-1 do
A _O[i]:=A_0[2i] + A _0[2i-1]
A _O[i+w]:=A_1[2i]] + A_1[2i-1]

A_3[i]::= A_B[2i] + A _6[2i-1]
A_3[i+w]:=A_7[2i] + A_7[2i-1]

A_4[il:= A_0[2i] - A_0[2i-1]
A_A[i+w]:=A_1[2i] + A_1[2i-1]

A_7[i]::= A_6[2i] - A _6[2i-1]
A_7[i+w]:=A_7[2i] + A_7[2i-1]

for i:=0 to w-1 do
A _O[i]:=A_0[2i] + A_0[2i-1]
A_O[i+w]:=A_1[2i] + A_1[2i-1]
A 1[i:=A_2[2i] + A _2[2i-1]
A_1[i+w]:=A_3[2i]] + A_3[2i-1]

A_2[i:= A 0[2i] - A_0[2i-1]
A_2[i+w]:=A_1[2i] + A_1[2i-1]
A_3[il:= A_2[2i] - A_2[2i-1]

A_3[i+w]:=A_3[2i] + A_3[2i-1]

fori:=0 to w-1 do
A_0O[i]:==A_0[2i] + A_0[2i-1]
A _O[i+w]:=A_1[2i]] + A_1[2i-1]

A_1[il:= A_0[2i] - A_0[2i-1]
A_1[i+w]:=A_1[2i] + A_1[2i-1]

Figure 3.4: multi-layehaar pseudocode after high-level transformatién fnemory
object input,N: length of the memory objedt, : layer)

30

70000
60000 -
50000 -
40000 -
30000 -
20000 -
10000

cycles

B manual

M genetic

1 2 4 8 16
of tiles

Figure 3.5: Execution time faronvolution with varying numbers of tiles. The genetic
algorithm runs for 100 generations with population size.200

From the analysis atonvolution assembly code, the manual placement results in se-
rialized routing instructions, which cause low performané object codes. According
to the Raw profiler the version generated via manual placespands 30,870 cycles
while the version generated by the genetic algorithm spentis21,107 on a part of
serialized routing generation. Figure 3.7 illustrates mo@mory objects are arranged
on 16 tiles. From this figure, we speculate that if the totaé sf memory objects
assigned to a tile is significantly less than the data cad®e gie load imbalance due
to uneven distribution of memory objects is less importaantthe resulting impact on
other instructions’ and operands’ placement, schedulimprauting.

In dot-product, (sum = A[] - B[]), on two tiles and four tiles, the perfor-
mance of the genetic algorithm is better than the manuakpiaat by about 2,300
cycles and about 800 cycles respectively. This result istdw@erelationship between
a memory objec€(16x16), which is only seen in assembly code and stores the result
from dot-product of A(16x16) andB(16x16). According to instruction scheduling, a
location of a scalar and a location of related memory objexhat guaranteed to be in

the same tile. On two tiles, locations of a series of half @ll@s €un) are different

31

25000

20000

15000 -

cycles

® manual

10000 -

M genetic

5000 -

1 2 4 8 16
of tiles

Figure 3.6: Execution time fatot-product. The genetic algorithm runs for 100 gen-
erations with population size 200.

from locations of the memory objects)(when the compiler uses a manual placement.
It generates serialized routing instructions at the end GF& node. Consequently,
the routing instructions becomes a severe bottleneckgepting other tiles from ad-
vancing to next CFG node. On the other hand, the geneticitddlgorandomly assigns
memory objects and avoids continuous serialized routimgigion.

Contrary to previous results, an intuitive manual schem® tifes and 16
tiles performs better than the genetic algorithDot-product shows the best perfor-
mance when all memory objects related to computation belorgame tile (in this
case,A andB in same tile). Even though the genetic algorithm preventslseed
routing instructions, it can not prevent the communicateerhead between mem-
ory objects fordot-product computation. As more tiles are includeddot-product,
memory objects are more dispersed over tiles in the gengicitom. We pay atten-
tion to a low probability of memory objects with the same tdeations because the
genetic algorithm distributes memory objects at randonhblé&a3.2 and 3.3 present
how far memory objects are assigned among memory objectte tRat on 2 tiles,

13 sets ofA andB are in same tile while only 2 sets éfandB are in same tile on

32

| [0]1]2[3[4][5]6]7[8]9]10]11]12][13|14]|15]
al1]1]1]1]o]O0JO0J1]1[1]0[O0]1]1]1]1
bj[oJo[1]1|0[0|01[1]1]0[O0]1]0]1]1
clojo[oJ1]o]ojof1]0J1[0[0]1]0]O0]O

Table 3.2: Tile locations of memory objects on 2 tiles in aggenalgorithm ofcon-
volution

[JO[1[2[3[4]5]6]7][8][9][10[11[12]13]14]15]
al7] 7|6 |3]9]14] 11|81][12]7[12]14] 1|13
b[8] 4 |15]13[9[11]14| 5 15| 1 (10| 5 [13| 7| 6] 2
c|8|11|15|13[5[11]| 2 1411|113 [0 [11[11] 6| 9

Table 3.3: Tile locations of memory objects on 16 tiles in agj& algorithm ofcon-
volution

16 tiles. ON 16 tiles, Routing overhead between memory é¢bjeauses a decline in
performance to computé|[] - B]].

After transformationHaar includes only one matrix (16 distributed objects,
A0..A15). The result indicates that the genetic algorithm is bettan manual place-
ment on 2 tiles, 4 tiles and 8 tiles. In the first phaséasdr, all input objects are used.
However, in the second phaselwdar only half of the memory objectAQ..A7) are
used in one CFG node while the rest of memory objes8s.A15) are used in another
CFG nodeHaar continues until it has no memory objects as input. Manuaigatzent
keeps half of the tiles idle in the CFG node in finstar. Manual placement keeps only
guarter of the tiles active in the CFG node in sechadr. In the end, a tile with AO is
overloaded because itis utilized in every iteratiomar. From the control flow strat-
egy of this compiler, we note that in a given CFG node, tilehWitle scheduled work
must wait for tiles that have more assigned work. This makesggenetic algorithm

more suitable fohaar because idle memory objects and active memory objects can

33

idle (cycle) | active (cycle)
2 tiles 128 4224
4 tiles 128 3264
8 tiles 128 2488
16 tiles 128 1997

Table 3.4: Total execution cycles of an active tile and am tdé in a CFG node of
haar

be placed in same tile within the CFG node. On 16 tiles, maplaglement produces
better qualified codes, because the impact of the imbalandieninished as the work
becomes more spread out. Thus, as memory objects are wdlisttjlihe idle time is
also reduced. Table 3.4 shows that the execution time gagebatidle tiles and active

tiles keeps shrinking as the number of tiles increasémar.

3.C.1 Performance improvement in more generations

Figure 3.9, 3.10 and 3.11 indicate that as generationseldips genetic
algorithm produces faster executable codes. To help ugan#ie performance im-
provement, three tables shows that overall speedups depestion the reduction
of receive-stalls. We observe how many gains are obtaineddh case. After 100
generations on 16 tiles, receive-stalls change from 4,26lks from 3,496 cycles in
dot-product. They decrease from 21,667 cycles to 16,934 cycle®pnvolution and
from 3,081 cycles to 2,875 cyclesliaar. As a result, the genetic algorithm makes ex-
ecutable codes that observe relatively less communicatiernead between memory

objects.

34

Tile 0 , Tile 1 | Tile2 | Tile 3 |
""" A5 A3 Y Y
C1 C5 ca A9
| Tile4 | Tile5 | Tied |Tle7 i a6
Al13
C13 All A7
Cc3
Cc7
Tile 8 | Tile9 | AO | Tile 10 : Tile 11 :
Al15
Al C12
Cc2
C6
Hle 12 a12 Hle 13 10 e 14 1p2 e 15 4 @
C11 C8 A4
c10
C15 Ci4 Cc9
Genetic
Tile 0 | Tile 1 | Tile2 | Tile 3 |
""" A0 T AL A2 [T A3
Cco C1 C2 Cc3
Tile 4 | Tile 5 | Tile 6 | Tile 7 |
""" A4 T AS A6 .Y/
c4 C5 Ccé6 Cc7
Tile 8 | Tile9 | | Tile 10 : Tile 11 :
A8 A9 Al10 All
c8 c9 Cc10 Cl1
tile 12 : tile 13 l | tile 14 : tile 15 :
_____ Al2 TTTTTA13 TTTTTA14 TTTTTALS
C12 C13 Cl14 C15
Manual

Figure 3.7: Comparing the genetic algorithm and manualgphent of memory objects
on 16 files forconvolution

35

45000
40000 -
35000
30000
25000
20000
15000
10000
5000

cycles

M manual

M genetic

1 2 4 8 16
of tiles

Figure 3.8: Execution time fdnaar. The genetic algorithm runs for 100 generations
with population size 200.

36

30000
25000 + -~
receive-stalls
scooc AN URRRANURURANURURARNURRRAUURRRAUUURRAUURRRANNTNE interrupt-stalls
4 mispredicted-stalls
©
> bypass-stalls
& wsoo0 HHHHHHHHHHHHHHHHHHHHHHHHHH e
H imem-stalls
M send-stalls
10000 +———————— ===~ mmmm
resource-stalls
M cache-stalls
5000 -+ HHHH AR T
II””IIIIIIIIII”IIIIIIIIII||II|I|II|II|II|II o
O T|T|1|!!TT11!TT\\!!TT\\!!TT\!!TT\!!!T\\\!TT\\!TT\\

1 3 5 7 9 1113151719 2123 2527 29 31 33 35 37 39 41 43 45 47 49

of generations

Figure 3.9: 50 generations ebnvolution on 16 tiles. The graph shows, for each
generation, where cycles are spent in the most fit specimémeipopulation. Non-
stalls are cycles spent successfully executing instrasti€ache-stalls are cycles spent
cache missing. Resource-stalls (which do not occur in tipegsgrams) are cycles
spent waiting for a functional unit to become available. 8gg stalls are cycles spent
waiting for a value to emerge from a local functional unit. sigiiedicted-stalls are
stalls caused by branch mispredictions. Interrupt-stallich do not occur here) are
cycles lost because of interrupts. Send-stalls are cyglestsvaiting for a network
output port to have free buffer space. Finally, receivéisstae cycles spent waiting
for an incoming value. Interestingly, of these, send-stalid receive-stalls are the
stalls most optimized by changing memory object placemardontrast, cache-stalls
are relatively infrequent and thus do not constitute a §icamt enough factor in overall
execution time.

cycles

cycles

7000

6000

5000

4000

3000

2000

1000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

37

receive-stalls
W interrupt-stalls
777 = mispredicted-stalls
m bypass-stalls
® imem-stalls
M send-stalls
M resource-stalls
M cache-stalls

M non-stalls

LI N s O O O S O B O O N D O S S R B B |

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

of generations

Figure 3.10: 50 generations dbt-product on 16 tiles

receive-stalls
W interrupt-stalls

,,, H mispredicted-stalls

M bypass-stalls

H imem-stalls

M send-stalls

M resource-stalls

M cache-stalls

M non-stalls

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

of generations

Figure 3.11: 50 generations bhar on 16 tiles

Conclusion

In the field of computer architecture, the trend has becometégrate ex-
ponentially more tiles into a single chip. Although single performance is largely
dictated by microarchitecture, fast multi-tile perfornsarcan only be achieved through
the use of a robust compiler and runtime infrastructure.hls thesis, we have pro-
posed a methodology for constructing this infrastructure.

This thesis presents a complete compiler backend thatatesgrarallel code
for tiled microprocessors. It addresses complexity issayeseparating the concerns
of correctness and optimization. The optimization compbnses standard machine
learning algorithms (genetic programming), while the eotness component ensures
that valid code is generated regardless of the input fronmthehine learning algo-
rithm. The evaluation measures the compiler’s ability toetthe placement of mem-
ory objects across tiles; in several cases it is able to parfdacement better than
a graduate student. Furthermore, it does this with no utatedsg, beyond what is
necessary to generate correct code, of the particularttargeitecture (Raw).

Our compiler for tiled architectures includes several plsasin theXML
parserphase, the compiler inputs two files and constructs the CB@hgIR transla-
tion deals with instructions which depend on the hardware cheniatics in the tiled

architecture. Imhome assignmedll of memory objects are assigned to specific home

38

39

tile. In scalar data analysisdata dependency lists are createdinstruction assign-
ment all instructions have tile locations based on modified UASscalar location
assignmenttile locations are allotted scalars in instructions, Himdists and live-out
lists of a CFG node. Istitch node insertionthe compiler adds stitch nodes to force
two adjacent CFG nodes to become consistent in live-in &st$ live-out lists. In
routing instruction generatiorthe compiler creates routing instructions, transporting
scalars between tiles. hagister allocationa graph-coloring of the compiler replaces
virtual registers with real ones. Finally, the compiler gexies codes executable on
every tile.

To evaluate the genetic algorithm for memory placement, isedvaluated a
manual placement in which memory objects are evenly digiibacross tiles. Then,
we evaluated the use of a genetic algorithm in three bendtsri@nvolution, dot
product and haar). To obtain fithess values, we used execution time on a cycle-
accurate simulator as the fitness function in order to atteire precise time measure-
ments than heuristic in-compiler time approximations. We generations elapse, the
genetic algorithm converges with execution times that Bygecto the execution time
of manual placement or better. Results of three benchmbadwgssbetter performance
in most cases. We observe that as the generation progregsnpence is improved
on most of tiles. Indot, a genetic algorithm shows improved performance on 2 tiles
(19%) and 4 tiles (13%). lronvolution, a genetic algorithm always shows better
performance (35%—41%) than manual placement. On 16 tilestperforms manual
placement by 41%. lhaar, the genetic algorithm outperforms manual placement by
15% on 2 tiles and 16% on 4 tiles.

For future work, the idea of using machine learning in the piben to re-
move complexity could be further explored in the contexttbeo NP-hard problems in
tiled architecture compilation such as scalar assignniestruction scheduling, rout-
ing generation and register allocation. Also, comparigonexisting algorithms to

determine the net benefit in terms of complexity and qualityesults could be evalu-

40

ated. A last interesting topic is to understand the impactsoig compile-time fitness
evaluation functions. This could potentially reduce thedirequired to evaluate a

candidate program in the genetic algorithm.

Appendix A

Flow of instruction assignment

Figure A.1 depicts how to assign instructions across aktih compile-
time. We sort all instructions by ready-time (ready-timérse to the time when an
instruction is capable of occupying a computation unit)rstia list of data-ready
instructions is formed.

Second, if the compiler acknowledges that a ready instindtias no data
dependency with any other instructions, the compiler @dle instruction in best slot
among empty slots. A best slot refers to the location a plduerevan instruction can
stay as close to center of tile configuration as possiblevdids the worst distance
from every other dependent tiles. It results in the acquoisibf convincing average
network latency from any tile. In Figure A.2, a ready-instian will be placed into
tile 5 in cycle time 1.

Third, if only one scalar in an instruction is dependent oothar instruction,
the compiler attempts to find the earliest empty slot in threesapace column as an
instruction with the scalar. It places a dependent instvaéh the empty slot.

Fourth, if both scalars in an instruction rely on scalarstimeo instructions,

the following different approach is adopted.

1. The compiler compares the ready time of two instructiawesipcing scalar val-

ues and selects an instruction having a late ready time.sérig a dependent

41

42

While (Unprocessed instructions exist)

data dependency?

Assign and schedule it
on any earlist slot

yes Assign and schedule it
on the same slot
only one scalar . .
as a dependent instruction
with late ready time
yes l
Assign and schedule it
on the same slot Assign and schedule
as a dependent instruction route instructions

Figure A.1: A framework for instruction assignment

43

Pid Space ~
s (tiles) ~N

0 1 2 3 4 5 6 7

1 cufsu | cufsu|culsu|cufsu |cufsu|culsu|Cujsu(cufsu

Time 2 |culu |culsu | culu [cufu |culsu [culsu [cuu |culsu
(cycles)

3 cujsu [culsu|culsu|cufsu culsu|cujsu | Cujsu |cufsu

4 cufsu |cufsu|culsu|Cufsu |cufsu|culsu|cujsu(cufsu

Figure A.2: A space-time map of 8 tiles (cu : a slot for a comafiah unit, su : a slot
for a switching unit)

instruction in the same tile where the instruction was etext.uThe gap between

routing time and time waiting for a late ready instructiorghitibe compromised.

2. After routing instructions are generated in a map on dsimral order routing

algorithm [6], they are inserted into slots of a map.

We have modeled a switch which holds only one switch insima¢ctvithout
incoming buffers and outgoing buffers. If one switchingtinstion enters a slot in
advance, any other instructions which attempt to enter libtevall be pushed into
the next-cycle slot. It results in switching units changidle status. Nevertheless,
the current compiler supports this feature because it esncorrect execution and

prevents a deadlock in interconnection networks.

Appendix B

Stitch node Iinsertion

In a CFG graph, two adjacent basic nodes, which are in the samteol
path, always have to remain consistent with a live-in lisaafuccessor node and a
live-out list of a predecessor node to ensure generationréct routing instructions.
However, in some cases, this premise might be broken. laésad look at Figure B.1.

In a loop, a live-in list of CFG node 2 should be equivalent tve-out list
of CFG node 1 with respect to scalar locations and virtuaktegs. Also, a live-out
list of CFG node 3 should be identical to live-in lists of CFGde 2. (a) of Figure B.1
illustrates that the two conditions are contracted. To eslslithis problem, a stitch
node is inserted between CFG node 2 and CFG node 3 ((b) ofdfgya)). This stitch
node contains routing instructions which transport scadduies between CFG nodes,
that have different ideal scalar locations. A live-in li§ostitch node is copied from a
live-out list of a predecessor of a stitch node. Converseliye-out list of a stitch node
is obtained from a live-in list of a successor of a stitch ndéi®m the live-in list and
the live-out list, the stitch node generates routing irgtams. As a result, consistency

between CFG nodes is ensured throggtthnodes.

44

Node 1 Node 1
Live-out : Live-out :
a(1,$13), b(2,512) a(1,$13), b(2,512)
Live-in :
. a(1,$13), b(2,512)
Stitch
node
o Live-out :
Ive-in: 0’ 2 , b 2' 3
a(0,$12), b(2,513) 3(0,512), b(2,513)
Node 2 »
Live-out :
a(2,$15), b(3,510) Live-in:
a(0,$12), b(2,513)
Node 2
T Live-out :
Ive-in : 2' 3 b 3’ 0
a(2,$15), b(3,510) 2(2,515), b(3,510)
Node 3
LiveOout :
a(0,$12), b(2,$13) Live-in :
a(2,515), b(3,510)
Node 3
LiveOout :
a(0,512), b(2,513)

45

(a) before stitch node insertion (b) after stitch node insertion

Figure B.1: A stitch node insertion exampée b : scalars in a live-in list and a live-out
list)

Appendix C

Routing instruction generation

Figure C.1 portrays how routing instructions are generagagopose that a
scalara of nul on tile 3 is dependent on scalarof codeadd on tile Onul is aware
of the location from whicla has been retrieved, based on previous scalar assignment.
Scalara is transferred to a switch. On behalf of the computation,uh#& switch on
tile O sends the value to another switch via an interconaectetwork. In the end, a
switch on tile 3 receives the value and delivers it to a comfpar unit.

Routing generation occurs in four regions within a CFG nodlik routing

generation must be carried out through one of four processes
1. Some scalar values are transported from live-in list®ttsaming instructions.
2. Some scalar values travel from producing instructiort®ttsuming instructions.
3. Some scalar values are transferred from producing ictgdns to live-out lists.

4. The remaining of scalar values have to be sent from livesis to live-out lists.

All routing instructions created in this phase reside onihim a CFG node.
Inter-CFG routing instructions are eliminated through asistent live-in list and live-

out list of scalar assignment asttchnodes.

46

a7

Tile 0 Tile 3
add &b,\c IiuLe,a,d
~ —

~ //

—_—— _——

Tile O Tile 1 Tile 2 Tile 3
add a,b,c mul e,a,d
move outreg,a move a,infeg
route E,outreg route E,W route E,W route inreg, W
\ ~ PN A

A path of a routed scalar

Figure C.1: An example of routing generatiamg¢ eg : an incoming register of a
switching unit,out r eg : an outgoing register of a switching uni{west),E(east) :
routing directions,d on tile 0,e) : def scalars,q on tile 1,b, c, d) : use scalars)

Appendix D

Handling object migration in control

flow

We have examined phases of the compiler in Chapter 2, andsshe iof
memory object placement in Chapter 3. In previous compikies “home” location
of a memory object was fixed throughout the lifetime of thegoaon. In the compiler
described in this thesis, we allow memory objects to migb&tsveen function calls,
which can allow for greater scalability in the parallelipat of large applications. If
memory object migration is allowed, the issues of cache oy and memory de-
pendencies can arise. This section briefly overviews thetisal that we employ in
the compiler’s runtime in order to address this issue. Tlst gbthis migration is ac-
counted for in the genetic algorithm. However, due to tinngtitions, we were not
able to thoroughly analyze the results, and so we describbdkic approach in this

appendix.

D.A Allowing memory object migration

The compiler has assigned every memory object to eventaste locations
in memory placement phase. The program with a CFG works tigtry with assigned

memory objects. If a CFG has functions inside, functionscalla CFG node may

48

49

Foo

Tile O Tile 1
A]\3C]/)EF

Boo
Tile ¢/ |, Tie 1
AD |YBTC

Figure D.1: Inconsistent memory object description

trigger a migration problem with respect to memory objects.

D.A.1 A problem

Suppose that functiorRoo (caller) callsBoo (callee)(It could be libraries
outside or a function iffo0) and some memory objects are passed as arguments. Tile
locations of memory objects in a caller might not be identicanes of arguments in
a callee. They might have different descriptions about mgruzations, contradict-
ing consistent memory locations in memory placement. Imeancoherent system,
which this compiler assumes, incorrect data in memory nbghh use across function
calls.

In Figure D.1, locations oB, C andD on Foo should be the same &oo
across function calls due to interprocedual analysis of orgmlacement. However,
function calls put this principle in chaos. Through severalysis, the compiler as-
signs memory objects in a callee to tiles, which is differeain tiles of a caller for

better performance.

50

D.A.2 Remap function

To tackle this inconsistency, we propose a function caléedap It func-
tions to make memory objects remain in consistent statuB in@ across function
calls. The process is calledhoming We have defined 3 data structures to implement
remapping. These are only interfaces to help compiler vgrite implementemap
codes.

We also created new data structuressioome They facilitate the process of
ehome They are called Memory Object Description (MOD), Runtimerwbry Object
Description (RMOD) and architecture features (AF).

MOD includes elements below which are used mainly for anglpgompile-

time.

e Memory object name: a scalar name in “def” IR or “inargs” IR

¢ Tile number of Memory object : a statically assigned tile location of a memory

object
RMOD is defined for analysis in run-time. Elements are a®¥adl.

e Memory object size: a size of a memory object which should be consistent

across functions
e Starting address of memory object. an address where “Rehome” begins.
Last, AF defines attributes of tiled architecture.
e Instruction latency : instruction latency
e Architecture cache type: cache-coherent type or cache-incoherent type

e SON Type: atype of SON on tiled architecture

51

D.B How to handle it

In this section, we suggest some ways to deal with this pnebM/e limit
ourselves in implementing “Remap” only if callees are iesedCFG. In library calls
outside, we do not know the memory locations of callees. &foee, if a caller has
memory objects as arguments, all of memory objects are flustte memory with-
out intervention of the compiler. As for static strategitbgere are three manners to
deal with these problems - Migration in Compile-Time, Migpa in Run-Time and
Migration on SON. There are pros and cons in each way.

First, Migration in Compile-Timas to make them consistent on cache level
in compile-time. This is convenient and fast in compiler lempentation. There is
no need to add management codes in a source. Instead, teimaatastes time in
flushing cache lines with same address repeatedly. Sedtigdation in Run-Time
is to make them consistent on cache level in run-time. Thesleenore implementa-
tion of compiler writer, even though execution-time may astér than former. Last,
Migration on SONleverages SON to migrate memory objects in register lewaeinA

terconnection network.

¢ Migration in compile-time
This handles memory object migration in compile-time. lgufe D.2, all of
memory objects as arguments in a callee are flushed into nyemeardless
of residing on cache. This benefits simple implementatiorcéonpiler writers.
However, repeating redundant cache flushing is irresestidMe have adopted this

scheme in current compiler.
In Figure D.3, all of memory objects on data cache are flushiedmemory. If a
size of cache is much smaller than memory objects in tilés pinght show better
performance

e Migration in run-time

This addresses memory object migration in rum-time. It seedre complicated

Caller Callee
Tile 1 Tile 2 Tile 1 Tile 2
ABC DEF AD BC
S~ \
~NO~ \
NSO~
S~ \
S~ \\
~_~
~ \:A .

Flush cache lines

Retrieve memory objects

Figure D.2: The first migration in compile-time

Caller

Tile 1 Tile 2

ABC DEF

Data Data Callee

Cache Cache Tile 1 Tile 2
AD BC

Flush cache lines

Retrieve memory objects

Figure D.3: The Second migration in compile-time

52

53

Caller
Tile 1 Tile 2
ABC DEF
Updated Updated Callee
Data D/m Tile 1 Tile 2
N P AD BC
N /

—————— Flush cache lines

Retrieve memory objects

Figure D.4: The first migration in run-time

Caller Callee
Tile 1 Tile 2 Tile 1 Tile 2
ABC DEF AD BC
S~ \
~NO~ \
NSO~
S~ \
S~ \\
~_~
~ \:‘ .

—————— Flush cache lines

Retrieve memory objects

Figure D.5: The Second migration in run-time

analysis and attaches additional assembly codes forirealanalysis. Yet, the
size of memory objects to be flushed is much smaller than ndstimFigure D.2

and Figure D.3.

In Figure D.4, only cache lines with address, which must ceftbkanges in mem-
ory, are flushed into memory. Cache lines are not flushed ietoony if memory
objects with the address is only read by instructions or noéssed by other in-

structions.

In Figure D.5, only addresses with dirty data are flushed imémnory. Control

registers in tiled architecture enables the compiler tcnaskedge if data in a

54

Caller
Tile 1 Tile 2
ABC DEF

Callee
Tile 1 Tile 2

Transport memory objects

Figure D.6: A migration on SON

cache line is dirty or not. It totally depends on hardwareratiristics of tiled

architecture.

e Migration on SON

The compiler runs migration via SON. This only manipulategister values on
a chip, not accessing memory. If a size of memory objects titusbed is quite
small, this would be faster than flushing cache lines of mgnobjects one by

one.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. UllmanCompilers: principles, techniques, and
tools Addison-Wesley Longman Publishing Co., Inc., Boston, NUSA, 1986.

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps:olhiler-Managed
Memory System for Raw MachinetSCA '00: Proceedings of the International
Symposium on Computer Architectu2€00.

[3] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Commp8apport for
Scalable and Efficient Memory SystemdEEE Transactions on Computing
50(11):1234-1247, 2001.

[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. Kahn, C. Lin, C. R.
Moore, J. Burrill, R. G. McDonald, W. Yoder, and the TRIPS ffeaScaling to
the end of silicon with edge architectur&ésomputey 37(7):44-55, 2004.

[5] J. Cavazos, J. Eliot, and B. Moss. Inducing heuristiadgoide whether to sched-
ule. SIGPLAN Not.39(6):183—-194, 2004.

[6] W. J. Dally and C. L. Seitz. Deadlock-free message raummultiprocessor in-
terconnection network$EEE Transactions on Computing6(5):547-553, 1987.

[7] L. George and A. W. Appel. Iterated register coalescimg?OPL '96: Proceed-
ings of the Symposium on Principles of Programming Langsiqgges 208-218,
1996.

[8] J. H. Holland. Adaptation in natural and artificial systemaMIT Press, Cam-
bridge, MA, USA, 1992.

[9] F. Kri and M. Feeley. Genetic instruction scheduling aedister allocation.
In QEST ’'04: Proceedings of the The Quantitative EvaluatioBydtems, First
International Conference on (QEST'Q4)ages 76—83, Washington, DC, USA,
2004. IEEE Computer Society.

[10] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V.Kaar and S. Ama-
rasinghe. Space-time scheduling of instruction-leveajpalism on a raw ma-
chine. Architectural Support for Programming Languages and OpeaaSys-
tems 32(5):46-57, 1998.

55

56

[11] R. Leupers. Instruction scheduling for clustered vtlaps. InPACT '00: Pro-
ceedings of the 2000 International Conference on Parallehfectures and
Compilation Techniquegage 291, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[12] M. Mercaldi, S. Swanson, A. Petersen, A. Putham, A. Saimy M. Oskin, and
S. J. Eggers. Instruction scheduling for a tiled dataflovinigéecture. SIGARCH
Comput. Archit. News34(5):141-150, 2006.

[13] G. E. Moore. Cramming more components onto integraitedi¢s. pages 56-59,
2000.

[14] E. Ozer, S. Banerjia, and T. M. Conte. Unified assign and scleeduhew ap-
proach to scheduling for clustered register file microdedtures. InMICRO
'98: Proceedings of the International Symposium on Micobétecture pages
308-315, 1998.

[15] D. Puppin. Adapting convergent scheduling using maetearning. InrPPoPP
'03: Proceedings of the ninth ACM SIGPLAN symposium on Hylas and prac-
tice of parallel programmingpage 1, New York, NY, USA, 2003. ACM Press.

[16] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. B#oalar. IlMICRO
'03: Proceedings of the International Symposium on Micabétecture 2003.

[17] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,.B5reenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Senéskshnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The Récroproces-
sor: A Computation Fabric for Software Circuits and Genéhatpose Programs.
In IEEE Micro, March-April 2002.

[18] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. &c@perand Net-
works: On-Chip Interconnect for ILP in Partitioned Arcluteres. INHPCA '03:
Proceedings of the International Symposium on High-Pentoice Computer Ar-
chitecture 2003.

[19] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. &c@perand Net-
works. InlIEEE Transactions on Parallel and Distributed Systepages 145—
162, February 2005.

[20] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Le¥. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, andgar&al. Baring
It All to Software: Raw Machines.IEEE Computer pages 86—93, September
1997.

