
Extending an on-chip mesh network
off the chip

Joseph Richard Auricchio
jauricchio@cs.ucsd.edu

submitted in partial satisfaction of the requirements for the degree of Master of Science in
Computer Science

University of California San Diego

1 Dec 2011

v1.0

Table of Contents

Introduction 1

Background: The GreenDroid processor architecture 1

Project Overview 3

System Design 4

Outside the io_master 4

Inside the io_master 5

Discussion 6

Flow control 7

Encoding overhead 8

Physical layer independence 10

Implementation 11

Conclusion 11

Acknowledgements 12

References 12

Introduction
The UCSD Computer Architecture research group is preparing to fabricate a prototype of the

GreenDroid low-power processor architecture. GreenDroid is tiled architecture, with an on-chip mesh

network carrying all communication between processor cores, requests to I/O devices, and loads and

stores to main memory. In the prototype device, the on-chip network will not be connected to the device’s

I/O pins. All network messages heading to I/O devices must be multiplexed and carried over a single

narrow bus to their destination on a northbridge FPGA or a host PC.

We present the design and implementation of a hardware module which bridges the on-chip mesh

networks of two chips by transparently relaying messages over a genericized physical link. Viewed from

inside the chip, it appears that all network nodes are attached to the same network fabric. The processor,

main memory, and I/O devices communicate through on-chip network messages, unaware that they are on

separate physical dies. We call this an extended virtual on-chip network: extended across several chips,

virtual indicating the illusion of seamless connectivity1.

The extended virtual on-chip network preserves the GreenDroid programming model, in which

all devices are accessible solely through the network, while allowing devices to be implemented in

different technologies than the processor itself. I/O devices may be implemented in inexpensive,

reconfigurable FPGAs or emulated in software, rather than built into the expensive prototype chip.

Background: The GreenDroid processor architecture
For the past several process generations, processor architects have been challenged to improve

performance within fixed power budgets. As CMOS devices scale smaller each year, architects face the

utilization wall: the percentage of a chip which can actively switch drops exponentially with each

successive process generation [Venkatesh]. Every 18 months, Moore’s Law provides twice as many

transistors, but the power required to switch a transistor does not decrease. To use twice as many

transistors requires twice as much power. Most computer systems (including server, desktop, laptop, and

1

1 “Virtual” by analogy with virtual private networks: not for their value in enhancing network security, but
for the illusion they provide of remote devices sharing the same LAN.

mobile systems) must operate within fixed power budgets. Next year’s chip may bring twice as many

transistors, but it can only use half of them at full speed.

The UCSD Computer Architecture group’s GreenDroid processor architecture is an attempt to

tackle the utilization wall using specialized energy-reducing logic cores called conservation cores. The

GreenDroid processor targets the Android mobile operating system. The Android operating system is

analyzed and profiled to find blocks of code that consume significant amounts of runtime and hence

energy. These blocks are automatically synthesized into conservation cores. At runtime, when software

execution enters a targeted block of code, the CPU pauses and the conservation core runs. The

conservation core performs the needed computation very efficiently, without spending energy on

instruction cache, instruction fetch & decode, pipeline registers, bypassing, reordering, or any of the other

overheads in a general-purpose processor pipeline.

The GreenDroid chip is a collection of conservation cores and general-purpose CPU cores, tiled

in a two-dimensional tiled array. Figure 1 (borrowed from [Venkatesh]) shows the high-level structure of

a GreenDroid system. Architecturally, the GreenDroid chip is an evolution of the Raw processor

architecture [Taylor02]. It is a two-dimensional grid of computation tiles, connected by an on-chip mesh

network. Each tile contains a general-purpose processor core (used for code not mapped to conservation

cores), several conservation cores, an L1 data cache, and an on-chip network router. Memory and I/O

traffic are routed through the network until they reach the edge of the tile array, where they are routed off-

2

D-CacheI-Cache

CPU

FPU

Tile

S
c
a
n
 C

h
a
in

 S
e
le

c
t

C-core

C-core

C-core

C-core

OCN

cond==0

ld

0

<

init

stValid==0

Control

Path

Cache

Interface

Scan

Chain

C-core

Data Path

Operations

st

ldValid==0

(a) (b) (c)

Figure 1. The high-level structure of a c-core-enabled system A c-core-enabled system (a) is made up of multiple individual tiles (b),
each of which contains multiple c-cores (c). Conservation cores communicate with the rest of the system through a coherent memory system
and a simple scan-chain-based interface. Different tiles may contain different c-cores. Not drawn to scale.

Without the corresponding supply voltage scaling, reduced tran-
sistor capacitances are the only remaining counterbalance to in-
creased transistor frequencies and increasing transistor counts.
Consequently, the net change in full chip, full frequency power
is rising as S2. This trend, combined with fixed power budgets,
indicates that the fraction of a chip that we can run at full speed,
or the utilization, is falling as 1/S2. Thus, the utilization wall is
getting exponentially worse, roughly by a factor of two, with each
process generation.

Experimental results To quantify the current impact of the uti-
lization wall, we synthesized, placed, and routed several circuits
using the Synopsys Design and IC Compilers. Table 2 summarizes
our findings. For each process, we used the corresponding TSMC
standard cell libraries to evaluate the power and area of a 300 mm2

chip filled with 64-bit operators to approximate active logic on a
microprocessor die. Each operator is a 64-bit adder with registered
inputs and outputs, which runs at its maximum frequency in that
process. In a 90 nm TSMC process, running a chip at full frequency
would require 455 W, which means that only 17.6% of the chip
could be used in an 80 W budget. In a 45 nm TSMC process, a
similar design would require 1225 W, resulting in just 6.5% uti-
lization at 80 W, a reduction of 2.6× attributable to the utilization
wall. The equations in Table 1 predicted a larger, 4× reduction. The
difference is due to process and standard cell tweaks implemented
between the 90 nm and 45 nm generations. Table 2 also extrapolates
to 32 nm based on ITRS data for 45 and 32 nm processes. Based on
ITRS data, for the 32 nm process, 2401 W would be required for a
full die at full frequency, resulting in just 3.3% utilization.

Process 90 nm TSMC 45 nm TSMC 32 nm ITRS

Frequency (GHz) 2.1 5.2 7.3
mm2 Per Op. .00724 .00164 .00082
Operators 41k 180k 360k
Full Chip Watts 455 1225 2401
Utilization at 80 W 17.6% 6.5% 3.3%

Table 2. Experiments quantifying the utilization wall Our ex-
periments used Synopsys CAD tools and TSMC standard cell li-
braries to evaluate the power and utilization of a 300 mm2 chip
filled with 64-bit adders, separated by registers, which is used to
approximate active logic in a processor.

Discussion The effects of the utilization wall are already indi-
rectly apparent in modern processors: Intel’s Nehalem provides a
“turbo mode” that powers off some cores in order to run others
at higher speeds. Another strong indication is that even though na-
tive transistor switching speeds have continued to double every two
process generations, processor frequencies have not increased sub-
stantially over the last 5 years. The emergence of three-dimensional
(3D) CMOS integration will exacerbate this problem by substan-
tially increasing device count without improving transistor energy
efficiency.

For scaling existing multicore processor designs, designers have
choices that span a variety of design points, but the best they can do
is exploit the factor of S (e.g., 1.4×) reduction in transistor switch-
ing energy that each generation brings. Regardless of whether de-
signers a) increase frequency by a factor of 1.4×, b) increase core
count by 1.4×, c) increase core count by 2×, and reduce frequency
by 1.4×, or d) some compromise of the three, the utilization wall
ensures transistor speeds and densities are rapidly out-pacing the
available power budget to switch them. Conservation cores are one
mechanism for addressing this issue: Specialized silicon can trade
area for energy efficiency and enable systems with higher through-
put.

3. Conservation cores: System overview

This section provides an overview of c-core-enabled systems. It de-
scribes the composition of a prototypical c-core system and the c-
core synthesis process. Then, it outlines our approach to compila-
tion and handling target application program changes.

3.1 Basic hardware architecture

A c-core-enabled system includes multiple c-cores embedded in
a multi- or many-core tiled array like the one in Figure 1(a).
Each tile of the array contains a general purpose processor (the
“CPU”), cache and interconnect resources, and a collection of
tightly-coupled c-cores. The c-cores target hot regions of specific
applications that represent significant fractions of the target sys-
tem’s workload. The CPU serves as a fallback for parts of applica-
tions that are not important enough to be supported by the c-cores
or that were not available at the time of the manufacture of the chip.

Within a tile (Figure 1(b)), the c-cores are tightly coupled to
the host CPU via a direct, multiplexed connection to the L1 cache,
and by a collection of scan chains that allow the CPU to read and

Figure 1. The high-level structure of a conservation-core-enabled system. A c-core-enabled system (a)
is made up of multiple individual tiles (b), each of which contains multiple c-cores (c). Conservation
cores communicate with the rest of the system through a coherent memory system and a simple scan-
chain-based interface. Different tiles may contain different c-cores.

chip to various I/O interfaces. Each link in the on-chip network is a full-duplex 32 bit wide channel.

Messages are sent as one or more 32-bit data words.

All communication, including IPC, device I/O, and main memory access, travels as messages on

the on-chip network. The main memory controller responds to read and write request messages.

Peripheral I/O devices also communicate with messages on the on-chip network. The on-chip network

serves roughly the same functions that PCI and HyperTransport/QuickPath do in modern PCs: they are

the fabric linking together all devices in the system, including the CPU.

Project Overview
The GreenDroid research group plans to fabricate a prototype in silicon, sharing the die and the

design effort with the UC Santa Cruz architecture group [Renau]. Research designs from both universities

will share common power, clock, test, and debug resources. A common ring bus will connect all designs

to each other and to I/O resources. The ring bus is called MURN (“Multi-University Research Network”).

The GreenDroid design has its own on-chip network design and its own I/O assumptions

(discussed above). In order for GreenDroid to fit into the common chip and interoperate with its

neighbors from Santa Cruz, its on-chip network must be adapted to run on the MURN bus. Each network

port around the edge of the GreenDroid tile array will be connected to a virtual channel. Traffic for all

virtual channels will be multiplexed over the MURN bus, as many TCP streams are multiplexed over an

Ethernet link. (See Figure 2).

Striving to be good computer scientists, when presented with a challenge, we attempt to

generalize our solution to cover all possible future challenges of that type [Munroe]. We have not simply

modified the GreenDroid on-chip network to run over the MURN bus. Instead, we have designed a

modular adaptor that can transport the GreenDroid network over any physical interface. This is our

contribution: A hardware module which connects to many GreenDroid on-chip network ports on one side,

and on the other connects to a MURN bus; traffic on the network ports will be carried over the MURN

bus to a matching remote module. We call this module the io_master2.

3

2 io_master: I/O = input/output; master as in bus master: a device which can both initiate and respond to bus
transactions. Also, in another sense, it is “in charge of” many I/O links.

System Design

Outside the io_master

The full GreenDroid system comprises the GreenDroid prototype chip, a “northbridge” FPGA,

and a host PC. Figure 3 is a diagram of the system.

The prototype chip will be fabricated in collaboration with researchers at UC Santa Cruz. It

contains several research designs from UCSC, the GreenDroid design from UCSD, and shared power,

clock, and I/O resources. The “northbridge” FPGA is so called because it serves approximately the

function of the northbridge chip in PC chipsets: it connects the CPU to main memory, some fast I/O

devices, and to a southbridge for slower I/O devices. In the GreenDroid system the FPGA connects to the

GreenDroid CPU, it contains a DRAM controller for main memory, it may contain a basic graphics

4

Figure 3: The complete GreenDroid prototype system comprises prototype chip including GreenDroid
design, northbridge FPGA including memory controller, and host PC.

Host PC

"Northbridge" FPGAGreenDroid Chip

DRAM, Storage, & Peripherals

FPGA
IO_Master

MURN
Controller

MURN
Controller

DRAM
Controller

Peripheral
Controllers

GreenDroid
IO_Master

GreenDroid
IO_MasterMURN

Figure 2: The io_master multiplexes many GreenDroid on-chip network ports onto any physical layer. At
the other end of the physical link, a counterpart remote io_master demultiplexes data back to on-chip
network ports. Each port is unidirectional, but the io_master carries both sending and receiving ports.

 io_master

GreenDroid on-chip
network ports

any physical layer

remote
io_master

012301230123012301230123

0xAA 0xBB 0xCC 0xDD 0xEE

0xAA5566BB 0xCC7788DD

0xFFFC0020 0xFFFC0024

01230123012301230123

0xAA 0xBB 0xCC 0xDD

0xAA5566BB 0xCC7788DD

0xFFFC0020 0xFFFC0024

port 0

port 1

port 2

port 3

adapter, and it connects to the host PC. The host PC controls GreenDroid: it loads programs into the chip,

starts them, and monitors their progress. The host PC also provides several emulated I/O devices, and

performs filesystem requests for the GreenDroid programs. (That is, when a GreenDroid program reads

and writes files, it’s actually reading and writing the host PC’s files. This allows us to run complex test

programs on the GreenDroid prototype without the burden of first porting an entire operating system).

The GreenDroid design is only one module of several in the research prototype chip. It does not

have direct access to the chip’s I/O pins. It can communicate over the MURN ring bus to the other

research designs and to some sort of off-chip interface.

The MURN bus will be responsible for communicating between chip and FPGA. We presume

there will be an IP core or ready-to-use source code for the FPGA.

Inside the io_master

The io_master comprises many submodules. We will discuss them in the order an outbound

message would pass through them.

Arbitrator: Many ports connect to the io_master. If several ports try to send a message at the

same time, the arbitrator chooses a winner. The policy is round-robin. The arbitrator is also responsible

for counting credits for flow control: it will not accept a message until the destination has buffer space

available to accept the message. See the discussion of flow control below.

Encoder: The message is encoded into a “packet”. Each packet contains the data message and the

port number it was sent from. Some packets are used for flow control (see the discussion below).

Serializer: The packet is sliced into several “frames”. The size of each “frame” is a property of

the physical layer. Ethernet and RS-232 use 8-bit frames. MURN is expected to use 72-bit frames. A

packet may span frames, and one frame may contain the end of one packet and the beginning of the next.

Physical layer transmitter: The frames are transmitted on the physical layer.

Physical layer receiver: The frames are received from the physical layer by a remote io_master.

Flow control FIFO: There is a large FIFO (first-in first-out queue) which buffers all incoming

frames. If the deserializer and decoder are running slowly and cannot accept new data, the flow control

FIFO will fill. Some physical layers do not perform hop-by-hop flow control, so if the deserializer cannot

5

accept new data, the physical layer may simply drop a frame. Ethernet, especially, works this way. In the

GreenDroid on-chip network, drops are not permitted. The flow control FIFO is sized to ensure it can

accept bursts up to the maximum number of credits (see discussion of flow control, below) across all

ports, so that the io_master will always accept data from the physical layer, and hence avoid drops.

Deserializer: Data from several frames is concatenated. Enough frames are buffered to sum to a

maximum-length packet. When requested by the decoder, a packet is dequeued from the deserializer.

Decoder: The decoder examines the frames buffered in the deserializer and attempts to recognize

valid packets. When enough data has arrived to form a full packet, the decoder asks the deserializer to

dequeue the entire packet. If packets vary in length (see discussion of encoding overhead below), the

decoder is responsible for identifying the length of the packet. The decoder pulls the message data and

port number out of the packet.

Receiver Buffers/Demultiplexer: The received packet data is buffered in a FIFO for its

destination port. These buffers allow some ports to run slowly without delaying packets for other ports.

Large buffers allow many messages to be in flight between sender and receiver, which can improve link

utilization and throughput. (See the discussion of flow control below.)

Synchronizer: When the link between two io_masters becomes active, they perform a

synchronization process. At the end of the synchronization process, the first bit of the first valid packet

will be in the first bit position of the deserializer, ready for the decoder to decode it. During

synchronization, each io_master transmits repeating patterns onto the physical layer, and detects and locks

onto the patterns transmitted by the other.

Discussion
During the development and testing of the io_master, we met many challenges and made design

decisions to overcome them. We will discuss three challenges: flow control across the link; maximizing

performance by minimizing encoding overhead; and independence from any specific physical layer.

6

Flow control

GreenDroid’s on-chip networks use credit-based flow control. The receiving side of a link has a

buffer for incoming messages. The sending side has a counter of how many buffer slots (credits) are

available. Each time the sender sends a message, it decrements its credit counter; when the counter

reaches 0, the sender stops sending and waits. Each time the receiver accepts a message from the buffer, it

replies to the sender, incrementing the credit counter. This method of flow control is simple to implement,

makes efficient use of buffer space, and if round-trip time is known, permits full utilization of the link

[Taylor05]. Credits and buffers allow many messages to be in flight from sender to receiver, which makes

good use of the link. If the receiver stops processing messages, they will queue up in the buffer without

being dropped. The sender stops sending data just as the buffer fills. When the receiver begins processing

messages again, it drains the buffer at high speed. As the buffer empties, credits are returned to the sender,

which begins sending again. Since the number of credits needed is based on the round-trip time, credit-

based flow control is most useful for links with known, fixed round-trip times.

In the extended virtual network, both data messages and returned credits are sent as packets. Our

initial io_master implementation uses a virtual credit return channel, using an unallocated port number.

Credit return packets are a bit vector with three3 bits per port, counting how many credits are now

available to the sender on each port. Credit return packets are generated by the demultiplexer (which

aggregates credits returned from the receiving ports) and processed by the arbitrator (which counts credits

available to send).

A naive implementation would send a large number of credit return messages: in the worst case,

one credit return message per data message, for overhead of 50%! We would like to decrease this

overhead. Our first improvement is to return several credits in each message: each port returns up to 7

credits (expressed in 3 bits). This decreases credit return overhead to 12.5%. For very high-throughput

links, we would like to decrease overhead even further. Our proposed second improvement is credit

decimation: each bit in the credit return packet indicates the return of many credits. The decimation

7

3 Adjustable at design time.

factor4 is a design-time parameter describing how many credits are returned: the bit value is multiplied by

2^(decimation factor). For example, at a decimation factor of 4, each credit return message may indicate

between 0 and 7*16 = 112 credits (3 bits encodes up to 7; credits are returned 2^4 = 16 at a time). Due to

the loss of precision, credit decimation will waste some space in the receive buffer: up to 1 *

2^(decimation factor) entries may be underutilized. We consider it a good tradeoff to exchange precious

link bandwidth for relatively cheap die area.

Encoding overhead

The io_master multiplexes many types of network traffic onto a variety of physical layers. Since

the GreenDroid processor accesses its main DRAM memory over the on-chip network, cache line reads

and writes will be carried over the io_master. Software performance is extremely sensitive to main

memory latency. We wish to maximize memory performance, even over very slow physical layers. In

order to maximize performance (maximize throughput and minimize latency), we will attempt to

minimize the overhead of packet encoding.

All packets must be encoded to travel over the physical link. At minimum, the receiver must

recover the port number and message data. The trivial encoding thus uses 36 bits: 32 bits for data identity

encoded + 4 bits for port number5, for 12.5% overhead.

Table 1: Trivial data packet encoding for 0xDEADBEEF sent by port 8

port number (4 bits) data (32 bits)

1000 110111101010110110111110111011111

 Credit return packets use a bit vector of 3 bits per port to return up to 7 credits per port.

Credit return packets are differentiated from data packets by using a reserved channel number. Each credit

return packet is nearly as big as a data packet. Overhead depends on how frequently return packets are

sent and how many credits they return—see the previous section in flow control.

8

4 It should rightly be called the “decimation exponent”, but we consider this to be a less euphonious term.

5 This is calculated at design time based on how many ports are actually connected to the io_master. We anticipate
the prototype chip will need 12 ports, therefore 4 bits for port number.

Table 2: Simple credit return packet encoding for (0, 1, 0, 3, 0, 0, 3, 0, 1, 0) credits on ports
(0, ... 9). Port number 11, in this example, is allocated to the credit return virtual channel.

port number (4 bits) credits (3*10=30 bits)

1011 000 001 000 011 000 000 011 000 001 000

If there are credits to return from many channels at the same time, the bit vector is an efficient

representation. However, if only one or a few channels are in use, most of the bits will be wasted as

zeroes. A proposed alternative encoding for credit return packets includes a port number and count of

credits to return on that port. This can reduce the packet size to 11 bits, a reduction of 67%.

Table 3: More efficient credit return packet encoding for 3 credits on port 6

port number (4 bits) credits (3 bits) credit port number (4 bits)

1110 011 1010

Finally, we have designed a dense encoding that can even save the bits allocated to port number.

This encoding uses the first several bits as a packet type code, with more common packet types encoded

in fewer bits, in the spirit of Huffman coding. To avoid sending port numbers, this encoding uses channel

prediction, which we believe to be a novel contribution6. Both sender and receiver implement a channel

predictor, a small logic block akin to a standard processor’s branch predictor. The channel predictors learn

the stream of channels that are currently in use, and make a prediction for the channel of the next

message. The two predictors are identical and run in lockstep with each packet, so they will always make

the same prediction. If the sender’s predictor correctly predicts the channel number of the next packet to

be sent, the channel number will not be encoded into the packet. The receiver, seeing this, uses its

(identical) prediction to route the packet. Channel numbers are only sent on mispredictions. Even a very

low prediction rate will save some bits: at pure chance, 1/N correct predictions will save log(N)/N bits per

packet. In practice we anticipate much higher prediction rates, as the predictor adapts to which channels

are heavily used and which are inactive.

9

6 Credit for channel prediction goes to Professor Taylor, not to this author.

Table 4: Length-optimized encoding.

prefix suffix credit? data? new c chan? new d chan? length

00 whitespace 2

01 32b data Y 34

10 32b data Y 34

1100 4b chan, 32b data Y Y Y 40

1101 4b chan, 4b chan, 32b data Y Y Y Y 44

1100 4b chan Y Y 8

111100 none Y 6

 We have designed the io_master’s encoder and decoder to be self-contained modules.

Only the encoder and decoder module know the details of packet formats; the other modules either deal

with a stream of encoded bits, or with the unencoded credit counts, port numbers, and message data. This

decreases the design effort to try novel encodings and evaluate their performance. We anticipate the final

implementation of the io_master will be able to switch at runtime between several encodings, as traffic

flow varies.

Physical layer independence

We have designed the io_master to function independently of the physical layer it runs over.

There is a very simple, general interface between io_master and physical layer; any link that can present

this interface can carry GreenDroid on-chip network traffic. The io_master sees the physical layer as a

channel of “words” of fixed bit width that are conveyed to the remote io_master as they were sent,

without reordering or loss. Words are fixed in size for a particular physical layer, but different physical

layers may have different word sizes. RS-232 serial (UART) uses 8-bit words. Our initial gigabit Ethernet

implementation uses 8-bit words written into 64-byte frames. We anticipate that MURN will transmit 72-

bit words.

10

Implementation
We have implemented the io_master in SystemVerilog HDL and merged it into the GreenDroid

source code. GreenDroid was synthesized for a Xilinx Virtex-5 FPGA. During development, we also

tested the io_master in Synopsys VCS simulation.

On the host PC, we have written a software io_master module in C++ and merged it into the

GreenDroid test infrastructure, which was largely inherited from the Raw processor.

We have tested the io_master with several test programs, including MCF and VPR from the

SpecCPU benchmark suite, and Autocorrelation, Cjpeg, and Viterbi from EEMBC. These programs are

copied from the host to the GreenDroid’s instruction memory (over the gigabit Ethernet io_master), then

they perform file and console I/O (again over the io_master), and load and store cache lines from a

software-emulated main memory device (also over the io_master), then finally return their results to the

host (over the io_master). The programs run to completion and produce correct results.

Conclusion
The utilization wall demands processor architects to design novel microarchitectures to continue

improving performance and power consumption. However, practical concerns when fabricating prototype

chips can impose design constraints. The GreenDroid processor was designed to send all I/O and memory

traffic over an on-chip mesh network to I/O controllers placed around the perimeter of the tile array.

When the GreenDroid prototype chip is fabricated, it will not have direct access to the chip’s I/O pins, but

must route all its I/O over a relatively narrow ring bus. To connect the GreenDroid processor to a

northbridge FPGA and a host PC requires a hardware component that can transport on-chip network

messages over a different physical layer. We present the design and implementation of such a hardware

component: the GreenDroid io_master. The io_master tunnels many on-chip network ports over RS-232,

Ethernet, MURN ring bus, or another physical layer, and presents the abstraction of a single seamless

mesh. By extending the on-chip network across dies, we may implement I/O devices and test software in

convenient FPGA and PC environments, while preserving the GreenDroid programming model.

11

Acknowledgements
I wish to thank the following people for their assistance with, accommodations made for, and/or

contributions to this work: Professor Michael Taylor, Alex Amirnovin, D J Capelis, Nathan Goulding-
Hotta, Keaton Mowery, Jack Sampson, Jon Schifman, Beth Scott, and Qiaoshi Zheng. I further extend my
deepest thanks to all who have supported me during graduate school: my parents Rick and Amy and my
sister Jessie, Teresa Mao, Scott Perry, Rushi Chakrabarti, Paul Knight, Ava Pierce, Ben Morris, Lauren
Brown-Cornell, Michelle Olofson, and many more too numerous to name.

References
[Goulding-Hotta] N. Goulding-Hotta, et al. “GreenDroid: Exploring the next evolution in
smartphone application processors”. Communications Magazine, IEEE 49(4):112-119, Apr 2011.

[Munroe] R. Munroe. “The General Problem”. XKCD, Nov 2011. [http://xkcd.com/974/]

[Renau] J. Renau. “Computer Architecture @ UCSC: The MASC Group”. Slides presented in CMPS/
CMPE 200, Fall 2011. [http://classes.soe.ucsc.edu/cmps200/Fall11/facpresent/jose.pdf]

[Taylor02] M. Taylor et al. ‘‘The Raw Microprocessor: A Computational Fabric for Software Circuits
and General Purpose Programs”. IEEE Micro, vol. 22, no. 2, 2002.

[Taylor05] M. Taylor. “The Raw Prototype Design Document, v5.02”. MIT Dept. EECS, Dec 2005.

[Venkatesh] G. Venkatesh, et al. “Conservation Cores: Reducing the Energy of Mature
Computations”. ASPLOS (ACM), Mar 2010.

12

