
Kismet:  
Parallel Speedup Estimates 
for Serial Programs	


Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor 

Computer Science and Engineering 
University of California, San Diego 

1	




Questions in Parallel Software Engineering	


2	


I heard about these new-fangled multicore chips.  
How much faster will PowerPoint be with 128 cores?	


We wasted 3 months for 0.5% parallel speedup.  
Can’t we get parallel performance estimates earlier?	


How can I set the parallel performance goals 
for my intern, Asok?	


Dilbert asked me to achieve 128X speedup. 
How can I convince him it is impossible 
without changing the algorithm?	




Kismet Helps Answer These Questions	


3	


$> make CC=kismet-cc 

$> $(PROGRAM) $(INPUT) 

$> kismet –opteron -openmp 
Cores   1   2   4    8    16    32 
Speedup 1   2   3.8  3.8  3.8   3.8 
(est.)	


1. Produce instrumented binary  
with kismet-cc 

2. Perform parallelism profiling 
with a sample input 

3. Estimate speedup  
under given constraints 

Kismet automatically provides  
the estimated parallel speedup upperbound  
from serial source code. 

Kismet’s easy-to-use usage model	




Kismet Overview 

4	


Serial 
Source 
Code 

Parallelization 
Planner	


Kismet	


Sample 
Input	


Parallelization 
Constraints	


Speedup 
Estimates	


Parallelism 
Profile	


Hierarchical 
Critical Path 

Analysis	


Kismet extends critical path analysis to incorporate  
the constraints that affect real-world speedup.  

Find the best 
parallelization  
for the  
target machine 

Measure  
parallelism	




Outline 

  Introduction 
  Background: Critical Path Analysis 
  How Kismet Works 
  Experimental Results 
  Conclusion 

5	




The Promise of Critical Path Analysis (CPA) 

  Definition: program analysis that computes the 
longest dependence chain in the dynamic 
execution of a serial program 

  Typical Use: approximate the upperbound on 
parallel speedup without parallelizing the code 

  Assumes: an ideal execution environment 
–  All parallelism exploitable 
–  Unlimited cores 
–  Zero parallelization overhead 

6	




How Does CPA Compute Critical Path? 

la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


7	


store $4, $2(4)	


store $3, $2(8)	




1	


4	


node: dynamic instruction with latency	


How Does CPA Compute Critical Path? 

1	


la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


8	


store $4, $2(4)	


1	
store $3, $2(8)	
 1	




1	


4	


node: dynamic instruction with latency	


edge: dependence between instructions	


How Does CPA Compute Critical Path? 

1	


la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


9	


store $4, $2(4)	


1	
store $3, $2(8)	
 1	




1	


4	


work = 8 

node: dynamic instruction with latency	


edge: dependence between instructions	


work: serial execution time,  
           total sum of node weights	


How Does CPA Compute Critical Path? 

1	


la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


10	


store $4, $2(4)	


1	
store $3, $2(8)	
 1	




1	


4	


work = 8 

node: dynamic instruction with latency	


edge: dependence between instructions	


critical path length (cp):  
          minimum parallel execution time	


work: serial execution time,  
           total sum of node weights	


cp = 6 

How Does CPA Compute Critical Path? 

1	


la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


11	


store $4, $2(4)	


1	
store $3, $2(8)	
 1	




1	


4	


work = 8 

node: dynamic instruction with latency	


edge: dependence between instructions	


critical path length (cp):  
          minimum parallel execution time	


work: serial execution time,  
           total sum of node weights	


Total-Parallelism =	

work	


critical path length	


cp = 6 

How Does CPA Compute Critical Path? 

1	


la    $2, $ADDR	


load  $3, $2(0)	


addi  $4, $2, #4	


12	


store $4, $2(4)	


1	
store $3, $2(8)	
 1	


Total-Parallelism 
 = 1.33	




13	


All the work  
on the critical path	


Most work 
off the critical path	


Total-Parallelism	
Min 1.0	


Totally  
Serial	


……	
……	


Total-Parallelism Metric:  
Captures the Ideal Speedup of a Program 

Highly Parallel	




Why CPA is a Good Thing 

  Works on original, unmodified serial programs 

  Provides an approximate upperbound in speedup, 
after applying typical parallelization transformations 
–  e.g. loop interchange, loop fusion, index-set splitting, … 

  Output is invariant of serial expression of program 
–  Reordering of two independent statements does not 

change parallelism 

14	




A Brief History of CPA 

  Employed to Characterize Parallelism in Research 
–  COMET [Kumar ‘88]: Fortran statement level 
–  Paragraph [Austin ‘92]: Instruction level 
–  Limit studies for ILP-exploiting processors  

[Wall, Lam ‘92] 

  Not widely used in programmer-facing 
parallelization tools 

15	




Why isn’t CPA commonly used in 
programmer-facing tools?	


16	


Benchmark 

ep	

life	

is	

sp	


unstruct	

sha	


Measured 
Speedup  
(16 cores)	


15.0	

12.6	

4.4	

4.0	

3.1	

2.1	


Optimism 
Ratio 

648	

9228	


295503	

47482	


1112	

2.3	


Optimism 
Ratio	


CPA estimated speedups do not  
correlate with real-world speedups. 

CPA 
Estimated 
Speedup	


9722	

116278	


1300216	

189928	


3447	

4.8	




CPA Problem #1: 
Data-flow Style Execution Model Is Unrealistic 

void outer( ) 
{ 
   …. 
   middle(); 
} 

void middle( ) 
{ 
   …. 
   inner(); 
} 

void inner( ) 
{ 
   …. 
    parallel doall for-loop 
    reduction 
} 

Difficult to map this onto  
von Neumann machine and imperative programming language  

Time 

Invoke middle Invoke inner 



18	


Overhead	


Exploitability	
 What type of parallelism is supported by the target platform? 
  e.g. Thread Level (TLP), Data Level (DLP), Instruction Level (ILP)	


How many cores are available for parallelization? Resource 
Constraints	


Do overheads eclipse the benefit of the parallelism? 
   e.g. scheduling, communication, synchronization	


CPA Problem #2: 
Key Parallelization Constraints Are Ignored 



Outline 

  Introduction 
  Background: Critical Path Analysis 
  How Kismet Works 
  Experimental Results 
  Conclusion 

19	




Kismet Extends CPA  
to Provide Practical Speedup Estimates 

20	


Parallelization 
Planner	


Kismet	


Hierarchical 
Critical Path 
Analysis	


CPA	


Measure parallelism  
with a hierarchical  
region model 

Find the best  
parallelization  
strategy with target 
constraints 



Revisiting CPA Problem #1: 
Data-flow Style Execution Model Is Unrealistic 

void top( ) 
{ 
   …. 
   middle(); 
} 

void middle( ) 
{ 
   …. 
   inner(); 
} 

void inner( ) 
{ 
   …. 
    parallel doall for-loop 
    reduction 
} 

Time 



Hierarchical Critical Path Analysis (HCPA)	


  Step 1. Model a program execution with hierarchical regions 

  Step 2. Recursively apply CPA to each nested region 
  Step 3. Quantify self-parallelism 

loop i 

loop j loop k 

foo() bar1()	
 bar2() 

for (j=0 to 32) 

for  (i=0 to 4) 

for (k=0 to 2) 

foo (); 

bar1(); 

bar2(); 

22	

HCPA Step 1. Hierarchical Region Modeling 



HCPA Step 2: Recursively Apply CPA 

Total-Parallelism from  
inner()  
= ~7X 

Total-Parallelism from 
middle() and inner()  
= ~6X 

Total-Parallelism from  
outer(), middle(), and inner() 
= ~5X 

What is a region’s parallelism  
excluding the parallelism from its nested regions? 



HCPA: Introducing Self-Parallelism	


24	


a[i] = a[i] + 1; 
b[i] = b[i] -1;	


for (i=0 to 100) { 

} 

for (i=0 to 100) { 

} 

a[i] = a[i] + 1; 
b[i] = b[i] -1;	
 2X	
 100X	
200X	


Total-Parallelism 
(from CPA)	


Self-Parallelism 
(from HCPA)	


  Represents a region’s ideal speedup 
  Differentiates a parent’s parallelism from its 

children’s 
  Analogous to self-time in serial profilers 



HCPA Step 3: Quantifying Self-Parallelism	


25	


for (i=0 to 100) { 

} 

a[i] = a[i] + 1; 
b[i] = b[i] -1;	


for (i=0 to 100) { 

} 

a[i] = a[i] + 1; 
b[i] = b[i] -1;	


a[i] = a[i] + 1; 
b[i] = b[i] -1;	


for (i=0 to 100) { 

} 

Self-Parallelism(Parent)	
 Total-Parallelism(Parent) 	
 Total-Parallelism(Children)	


Generalized Self-Parallelism Equation 



Self-Parallelism:  
Localizing Parallelism to a Region 

Self-P (inner) = ~7.0 X 

Self-P (middle) = ~1.0 X 

Self-P (outer) = ~1.0 X 



Classifying Parallelism Type 

27	


Leaf Region?	


ILP	


Loop Region?	


P Bit == 1?	


TLP	


DOACROSS	


DOALL	


yes	


no	


no	


yes	


yes	


no	


See our paper for details… 



Why HCPA is an Even Better Thing 

  HCPA:  

– Keeps all the desirable properties of CPA 

– Localizes parallelism to a region via the  
self-parallelism metric and hierarchical region 
modeling 

– Facilitates the classification of parallelism 

– Enables more realistic modeling of parallel 
execution  (see next slides) 28	




Outline 

  Introduction 
  Background: Critical Path Analysis 
  How Kismet Works 

  HCPA 
  Parallelization Planner 

  Experimental Results 
  Conclusion 

29	




30	


Overhead	


Exploitability	
 What type of parallelism is supported by the target platform? 
  e.g. Thread Level (TLP), Data Level (DLP), Instruction Level (ILP)	


How many cores are available for parallelization? Resource 
Constraints	


Do overheads eclipse the benefit of the parallelism? 
   e.g. scheduling, communication, synchronization	


Revisiting CPA Problem #2: 
Key Parallelization Constraints Are Ignored 



Parallelization Planner Overview 

31	


core count 
exploitability 

overhead  
… 

Parallel  
Execution Time  

Model 

Planning  
Algorithm 

Parallel 
Speedup 

Upperbound	


Goal: Find the speedup upperbound based on  
          the HCPA results and parallelization constraints. 

Target-dependent  
parallelization planner 

region structure 
self-parallelism 

HCPA profile 

Constraints 



A sample core allocation process 

Planning Algorithm:  
Allocates Cores with Key Constraints	


for (j=0 to 32) 

for  (i=0 to 4) 

for (k=0 to 2) 

foo (); 

bar1(); 

bar2(); 

32	


loop i 
self-p=4.0	


loop j 
self-p=32.0	


loop k 
self-p=1.5	


foo() 
self-p=1.5	


bar1() 
self-p=2.0	


bar2() 
self-p=5.0	


loop j	


Exploitability	


Core Count	


Self-Parallelism	
 The allocated core count should not exceed ceil [self-p]. 

If a region’s parallelism is not exploitable,  
do not parallelize the region. 

The product of allocated cores from the root to a leaf   
should not exceed the total available core count. 



Planning Algorithm: 
Finding the Best Core Allocation 

core: 4X	


core: 8X	
 core: 1X	


Plan A  Plan B  Plan C  

core: 2X	


core: 4X	
 core: 4X	


core: 2X	


core: 16X	
 core: 16X	


Highest Speedup	


33	


Core allocation plans for 32 cores	


How can we evaluate the execution time  
for a specific core allocation? 

Estimate the execution time for each plan and  
pick the one with the highest speedup. 



Parallel Execution Time Model: 
A Bottom-up Approach	


loop i 
speedup=4.0	


R is a non-leaf region	


R is a leaf region	


  Bottom-up evaluation with each region’s estimated speedup 
and parallelization overhead O(R) 

loop j 
speedup=4.0	


loop k 
speedup=1.0	


foo() 
speedup=1.0	


bar1() 
speedup=1.0	


bar2() 
speedup=1.0	


ptime 
(loop j) 

ptime 
(loop k) 

ptime(loop i) 



More Details in the Paper 
  How do we reduce the log file size of HCPA  

by orders of magnitude? 

  What is the impact of exploitability  
in speedup estimation? 

  How do we predict superlinear speedup? 

  And many others… 

35	




Outline 

  Introduction 
  Background: Critical Path Analysis 
  How Kismet Works 
  Experimental Results 
  Conclusion 

36	




Platform	


Processor	
 8 * Quad Core  
AMD Opteron 8380 16-core MIT Raw	


Parallelization 
Method	
 OpenMP (Manual)	
 RawCC (Automatic)	


Exploitable 
Parallelism	


Loop-Level Parallelism 
(LLP)	


Instruction-Level Parallelism  
(ILP)	


Synchronization 
Overhead	


High 
( > 10,000 cycles)	


Low  
( < 100 cycles)	


Methodology	

  Compare estimated and measured speedup 
  To show Kismet’s wide applicability,  

we targeted two very different platforms 

Raw	
Multicore	


37	




Speedup Upperbound Predictions: 
NAS Parallel Benchmarks	


38	




Speedup Upperbound Predictions: 
NAS Parallel Benchmarks	


39	


Predicting Superlinear Speedup 

Without Cache Model With Cache Model 



Speedup Upperbound Predictions: 
Low-Parallelism SpecInt Benchmarks  

40	




Conclusion	


41	


Kismet provides parallel speedup upperbound  
from serial source code. 

HCPA profiles self-parallelism using a hierarchical  
region model and the parallelization planner finds  
the best parallelization strategy. 

Kismet will be available for public download  
in the first quarter of 2012.	


We demonstrated Kismet’s ability to accurately  
estimate parallel speedup on two different platforms.	




*** 
42	




Self-Parallelism for  
Three Common Loop Types	


DOACROSS DOALL 

CP 

CP 

CP 

… 

CP 

CP 

CP 

… 

(N/2) * CP CP 

Self- 
Parallelism 

Loop Type 

Loop’s 
Critical Path 
Length 
(cp) 

N * CP 

(N/2) * CP 
= 2.0 

N * CP 

CP 
= N 

43	


Work N * CP N * CP 

CP CP CP … 

Serial 

N * CP 

N * CP 

N * CP 
= 1.0 

N * CP 



Raw Platform:  
Target Instruction-Level Parallelism 

  Exploits ILP in each basic block  
by executing instructions on multiple cores 

  Leverages a low-latency inter-core network  
to enable fine-grained parallelization 

  Employs loop unrolling to increase ILP in a basic block 

44	


RawCC 



Adapting Kismet to Raw	


  Constraints to filter unprofitable patterns 
–  Target only leaf regions as they capture ILP 
–  Like RawCC, Kismet performs loop unrolling to 

increase ILP, possibly bringing superlinear 
speedup 

  Greedy Planning Algorithm 
–  Greedy algorithm works well as leaf regions 

will run independent of each other 
–  Parallelization overhead limits the optimal  

core count for each region 

45	


ILP	

Non-ILP	


A 

B C 

D E	
 F 



Speedup Upperbound Predictions:  
Raw Benchmarks 

46	




Multicore Platform:  
Target Loop-Level Parallelism	


  Models OpenMP parallelization 
focusing on loop-level parallelism 

  Disallows nested parallelization 
due to excessive synchronization 
overhead via shared memory 

  Models cache effect to incorporate  
increased cache size from multiple 
cores 

47	




Adapting Kismet to Multicore 

48	
Solution (A) = {A:32} or {C:8, D:32}	


Parallelize Descendants	
Parallelize the Parent	


  Constraints to filter unprofitable OpenMP usage   
–  Target only loop-level parallelism 
–  Disallow nested parallelization 

  Bottom-up Dynamic Programming 
–  Parallelize either parent region or a set of descendants 
–  Save the best parallelization for a region R in Solution(R) 

A 

B C 

D E	
 F 

A 

B C 

D E	
 F 

Parallelize	

 Don’t Parallelize	




Impact of Memory System 	


  Gather cache miss ratios for different cache sizes 
  Log load / store counts for each region 
  Integrate memory access time in time model 

49	




50	



