
Energy Characterization of a Tiled Architecture Processor 
with On-Chip Networks 

Jason Sungtae Kim, Michael Bedford Taylor, Jason Miller, David Wentzlaff 
MIT Laboratory for Computer Science 

{jasonkim, mtaylor, jasonm, wentzlaf} @ cag.lcs.mit.edu 

ABSTRACT 

     Tiled architectures provide a paradigm for designers to turn 
silicon resources into processors with burgeoning quantities of 
programmable functional units and memories. The architecture has a 
dual responsibility: first, it must expose these resources in a way that is 
programmable. Second, it needs to manage the power associated with 
such resources. 

We present the power management facilities of the 16-tile Raw 
microprocessor. This design  selectively turns on and off 48 SRAM 
macros, 96 functional unit clusters, 32 fetch units, and over 250 
unique processor pipeline stages, all according to the needs of the 
computation and environment at hand.  

Categories and Subject Descriptors 
C.1.4 [Parallel Architectures]: Distributed Architectures 

General Terms 
Design, Measurement, Performance 

Keywords 
Raw Microprocessor, Tile, Power, Scalar Operand Network 

1. INTRODUCTION 
The rapid shrinking of VLSI feature sizes brings the promise of 

both increasing frequencies and larger numbers of general-purpose 
functional units for high-performance microprocessors. The harsh 
realities of interconnect delay and power consumption seriously 
challenge the ability of microprocessor designers to fulfill these 
promises.  A case in point is the Itanium 2 processor, which consumes 
130 Watts and sports a zero-cycle fully-bypassed 6-way issue integer 
execution core. Despite occupying less than two percent of the 
processor die, this execution core spends half of its critical path in the 
bypass paths between the ALUs.  

Current wide-issue processor designs rely on huge, global, 
centralized structures such as associative instruction windows, register 
renamers, heavily-ported register files, zero-cycle bypassed ALU 
clusters, and heavily-ported caches. As these structures scale up in size, 
internal interconnect delay becomes the dominant factor. This delay is 
due to increasing wire lengths, capacitive loads and effective logic 
levels. The desire to minimize delay keeps these structures centralized, 
and compounds the power distribution problem, because it clusters 
like-components together. This all but ensures that the high power 
consumption components will be situated near to each other. 
Moreover, architectural features required to extract parallelism from 

serial instruction streams require substantially more logic, resulting in 
reduced energy efficiency. 

Microprocessor designers have recently found that the 
exponentially rising thermal dissipation of high performance 
microprocessors has begun to affect these systems’ applicability even 
in non-mobile environments. High thermal dissipation precludes the 
manufacture of 1U rack-mount systems that contain early Itanium II or 
Pentium 4 processors.  Heat production also affects the cost of these 
systems: the price of an appropriate cooling solution increases 
drastically with rising microprocessor temperatures. These power 
concerns have lead the Pentium 4 architects to include a thermal 
monitor and a mechanism to stop the processor’s clock in order to 
prevent overheating [5]. 

If this trend continues, it appears as if all processors, whether 
high-performance or mobile, will soon need to be, in some sense of 
the term, “low-power.” 

2. TILED ARCHITECTURES  
Growing interest in scalable alternatives to current centralized 

microprocessor designs has led a number of architectural researchers 
to propose architectures that organize silicon resources in more 
effective ways. These distributed, general-purpose, parallel, 
architectures have the common theme that they are composed out of a 
number of tiles, i.e., replicated processing elements containing 
functional unit, memory, and sequencing resources. These tiles are 
interconnected by generalized on-chip point-to-point multi-hop 
interconnection networks, and are registered on input. Larger 
processors are created by stamping out more tiles. Because these 
networks pipeline the inherent delay of routing signals between remote 
functional units, there are no global wires, and these architectures can 
attain high frequencies. Furthermore, the inherent wire delay is 
exposed, so that intelligent algorithms (whether compile-time or run-
time) can distribute instructions across the remote tiles according to 
the sensitivity of the program to latency.   

Because these tiled architectures are designed to manage large 
quantities of compute resources, good energy management is 
paramount. Fortunately, tiled designs have many advantages. First, the 
decentralized nature of these processors allows them to be scaled 
without increasing the number of ports on their register files, caches, 
or bypass networks. This greatly reduces the logic overhead per 
functional unit. Second, these architectures reflect the parallelism 
inherent in VLSI structures and do not require complex logic to 
extract parallelism from sequential instruction streams. Third, tiled 
designs provide easy boundaries for powering down or clock-gating 
unused register files, ALUs, cache banks, or fetch bandwidth, 
according to the needs of the program. Fourth, tiled designs are very 
regular and distribute power needs evenly across the die to prevent 
hotspots. Finally, the only long wires are the network links, which are 
structured and regular and can be tuned for low power. [2][4] 

One such tiled architecture is the MIT Raw microprocessor, 
which divides the silicon area of a chip into a two-dimensional mesh 
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of 16 programmable tiles and connects them through on-chip, point-
to-point networks. This processor demonstrates its allure through its 
ability to issue 16 different FPU, integer, load, store, or branch 
instructions each cycle. It also has 512 registers, and 2MB of 
distributed L1 cache. All of these numbers are larger than those of the 
Itanium II, which has a larger die. Other tiled designs include MIT’s 
SCALE, UT Austin’s GRID, Wisconsin’s Multiscalar and ILDP, and 
Stanford’s Smart Memories.  

In this paper, we characterize the energy profile of the distributed 
16-tile MIT Raw microprocessor. We start by describing Raw’s 
architectural approach to power management for distributed 
processing resources. We describe the limited steps we took in the 
implementation of the processor to reduce power. We continue by 
characterizing the actual Raw chip’s power usage according to the 
resources used. This data would be useful in particular to other 
architects who are interested in designing reduced-power distributed, 
tiled architectures. Finally, along the way, we touch on some ideas on 
how the power could be further reduced in the system. 

3. THE RAW MICROPROCESSOR 
The Raw microprocessor was fabricated using the 1.8V IBM SA-

27E 0.15um 6-level Cu ASIC process. The chip core runs at 420 MHz 
at room temperature and nominal voltage, and reaches 500 MHz with 
increased supply voltage. This compares favorably with IBM-
implemented PowerPCs in the same process. 

 
Figure 1: Raw microprocessor die photo and tile diagram 
 As shown in Figure 1, the 331 mm2 chip contains 16 tiles 

arranged in a 4 by 4 mesh. The tiles are connected by four 32b point-
to-point, on-chip, pipelined, mesh interconnection networks: two static 
and two dynamic. Each tile contains a single issue 8-stage in-order 
MIPS-style processor (called the “compute processor”) that is coupled 
via register-mapped ports to three routers -- two dynamic, and one 
static. The tiles’ 3-stage dynamic routers collectively control the 
dynamic, dimension-ordered, wormhole-routed on-chip 
interconnection network. The tiles’ 5-stage static routers collectively 
control the two static networks. Each static router sequences a 64b 
instruction from an 8Kx64b instruction cache. Each instruction 
specifies a branch and up to 13 simultaneous routes that are to be 
performed on the static network. The static networks enable the output 
of an ALU in one tile to be routed, in-order, to the input of an ALU in 
a neighbor tile in just 3 cycles. The compute processor has a 4-stage 
FPU, an 8Kx32b instruction cache, and a 2-way set-associative 8Kx32 
data cache. Routes off the edges of the networks are multiplexed down 
onto approximately 1080 pins. A more detailed description of the Raw 
processor can be found in [1][3]. 

We did not intend to implement any power-saving features at all 
in the processor, as the processor design fits very easily within the 80 
W desktop-system power-envelope that IBM recommend for our 
package. Despite this, we discovered that the tiling approach yielded a 
very elegant method for power management, and as a result, we 
decided that the minimal amount of effort required was well worth it. 
The tiles discretize the silicon into easy-to-control regions; in this 
implementation, one tile represents 1/16 of the power in the chip. 
When we enter a phase of a computation that is very parallel, we 
wake-up enough tiles to efficiently exploit the parallelism, then when 
we return to a more serial phase that cannot benefit from the extra 
parallelism, we can put the tiles back to sleep.  

Our efforts to reduce power consumption in the Raw processor 
focused around a “toggle-suppression” strategy: we ensure that wires 
in the system do not toggle unless they are actually computing 
something useful. The most important case to handle is when a tile’s 
routers or compute processor stalls. In this case, the inputs to the 
functional units or crossbars are frozen, and the memory clocks are 
gated to prevent unnecessary pre-charging of the sense amplifiers.  

Due to toggle-suppression, compute processors and routers 
consume minimal non-clock power when they are blocked waiting for 
messages on the network. Thus, in the serial phase of a computation, 
unused tiles have only to read a value that is not yet available from the 
network. This will cause a stall, and the pipeline will cease to toggle 
until the input to the above-mentioned parallel phase is received from 
the tile finishing the serial phase. The compute processor and routers 
wake up instantaneously when the data word is available, and sleep 
instantly when the next word is requested but is not available. 

We also employed a toggle-suppression strategy for individual 
functional units and memories. Functional units in each compute 
processor were divided into six clusters. Each cluster’s input register is 
individually enabled based on the needs of the instruction being issued. 
Clock inputs to memories are gated whenever practical.  

Another power-saving feature that we considered was the idea of 
clock-gating at the tile level. Doing so would further reduce power for 
inactive tiles. This would have required a separation of the clock nets 
of the input FIFOs in the tiles, so that they could continue to receive 
data even as the rest of the tile was asleep. The valid bits of these 
FIFOs could be used to awaken the appropriate resources within the 
tile when a word arrives. We decided to avoid the complexities of this 
approach for the first version of the chip. 

All told, we added a handful of control signals, multiplexers and 
registers to the Verilog source. A minimal amount of effort enabled 
the Raw microprocessor to selectively turn on and off 48 SRAM 
macros, 96 functional unit clusters, 32 fetch units, and over 250 
unique processor pipeline stages, all according to the needs of the 
computation and environment at hand. 

4. EXPERIMENTAL SETUP 
The Raw motherboard could be easily mistaken for a PC motherboard; 
it has PCI slots, DIMM slots, and other standard PC connectors. It 
even fits in a PC case. The motherboard design separates out the 
power supplies for various components of the board; in particular, the 
chip core has a dedicated 1.8V current source, which allows us to 
measure the current consumed by the core while it is executing 
programs.  The experimental data was collected with a core voltage of 
1.8V, a core frequency of 100 MHz, and at room temperature. The 
corresponding values at higher voltages and frequencies can be easily 
calculated. 
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5. ENERGY CHARACTERIZATION 
For this section, we used an ammeter connected to the Raw core 
power supply in order to measure power usage. All numbers were 
measured or derived from measurements. In all cases, we ran the 
measured item in unrolled loops to get an average number over time. 
We also replicated code across the tiles to increase the measurement 
magnitude. In many cases, we tried to make graphs more interesting 
by breaking aggregate numbers into constituent parts. This was 
accomplished by running sub-components of the program with the 
same data patterns. All in all, we found measurement at this level to be 
an enjoyable but tricky problem. 

5.1 Idle State 
When the clock is grounded, the chip draws a leakage current of 28 
mA and dissipates 45 mW. When the Raw microprocessor’s compute 
processors and routers are all stalled, the core consumes 1,271 mA. 
Using Synopsys CoverMeter, we verified that the only significant state 
elements that transition in this mode are two increment-by-1 cycle 
counters per tile and a single 77-bit serial shift register used for test 
apparatus. With the power for this logic well under 20 mA,  we 
estimate that the measured number is no more than 2% off of the 
actual current due to the clock. See Table 1. 

Table 1: Idle Current & Power: Leakage and Clock, 1.8V 
Leakage@ Room Temp 28 mA 45 mW 
Clock    @ 100 MHz 1,271 mA 2,288 mW 

 

5.2 Maximum, Typical, and Low Power 
We start our investigation by examining the average current of three 
applications, as shown in Figure 2. The first application uses a single 
Raw tile with an average instruction mix. Ignoring clock power, it 
consumes a tiny fraction of the maximum power. This makes it clear 
that implementing clock-gating at the tile level is highly desirable for 
tiled architectures. The second application represents a typical highly-
parallel application, vpenta, running with 16-tiles, which attains a 13x 
speedup over a single-tile version of the same application. Notice in 
particular, how the tiled approach, ignoring the clock power, provides 
a wide menu of power/performance points, even without modifying 
voltage or frequency. The last application is a synthetic application, 
created through experimentation, that maximizes power consumption. 
It consists of three independent parallel parts, running on all 16 tiles. 
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Figure 2: Average Current for Three Applications 

The first part of the synthetic application executes load instructions in 
an unrolled loop. It alternates between loading from an address with 
offset 0xFFFC and an address with offset 0. These addresses contain 
the values 0 and 0xffffFFFF. This is the most power-consuming 
instruction sequence on the compute processor.  The second part 
routes alternating sequences of 0 and 0xffffFFFF across 128 network 

links on the static network. This includes a total of 96 words routed 
each cycle across the inter-tile 4 mm wires. Maximum power on the 
dynamic networks is achieved by launching special 4-word “tail-
chasing messages” that route themselves indefinitely in a circle inside 
the network. They consist of a header word and a data payload that 
selectively inverts and un-inverts the header word to create maximal 
toggles.  This routes another 96 words over 4 mm inter-tile links each 
cycle. Loop-back devices on the I/Os would enable another 28 words 
per cycle of 4 mm routes. 
The bars in the graph labeled “w/o t. s.” were computed using an 
architectural feature that allows us to disable toggle-suppression. Thus, 
the top portion of these bars represents the amount of current that our 
design saves by employing toggle suppression. Interestingly, the 
maximum power application without toggle suppression is floating-
point multiply intensive, rather than load intensive. This is because 
without t.s., the load unit no longer needs a load instruction as an 
excuse to burn data memory power. 

5.3 Network Power 
We continue our investigation by examining the energy cost of 
communication over the two types of networks. Note that the graphs 
do not include clock energy, and that N hops implies going through 
N+1 routers. All transmitted sequences maximize toggle rate.  
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Figure 3: Energy Cost of Dynamic Network Messages 

Dynamic network messages are sent as multi-word packets with a one 
word header. There are three major components of the energy: 
compute processor send/receive costs, a per-packet cost for routing, 
and a per-word cost. Figure 3 graphs dynamic message energy by 
varying the message length, and the number of hops that each message 
travels. As messages get longer, the overhead of  route initiation is 
greatly amortized. Odd payloads are more power intensive because 
they allow perfectly inverted messages.   
The static router routes single-word packets. In this case, in addition to 
any compute processor send/receive costs, a fixed cost (approximately 
504 pJ, 90% due to instruction cache access) is paid for routing one to 
thirteen values through the router on a given cycle, with an amortized 
cost of 85 pJ per 32-bit maximal-toggle word that is routed. As shown 
in Figure 4, the static network is more energy efficient than the 
dynamic network for single-word messages because it does not have 
the header overhead. However, for 31-word messages, the dynamic 
network is almost twice as good. If message words need to be 
delivered in a known order, advantage turns back to the static network;  
dynamic network programs give up performance because they have to 
execute code to de-multiplex messages. On a side note, the non-
compute power of the static network could be reduced by almost half 
if the static router were modified to fetch more than one instruction at 
a time. 
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Figure 4: Energy Cost Per Word For Static Messages 

The “compute processor” cost in both graphs is for move instructions 
to/from the register-mapped network ports on the source and receiver 
tiles. These could be replaced with computation instructions doing 
useful work (like an FPU instruction that reads from or writes to the 
output network port) to reduce the overhead. Realizing that each word 
transmitted on the network requires at least one instruction to generate 
it and one instruction to receive it, this data suggests that instruction 
energy will be larger than dynamic network transmit energy at least for 
mesh sizes up to 128 nodes. 

5.4 Power for SHA and vpenta 
To get a better sense of the power profile of the processor, we selected 
a pair of applications for in-depth study. We examined “SHA”, an 
implementation of the inner kernel of the secure hash algorithm, and 
“vpenta”, a kernel from Spec92’s nasa7 benchmark. These 
applications were automatically parallelized using RawCC[6], the 
Raw compiler. These benchmarks were placed in a loop to increase 
the running time. SHA has little parallelism, and does not benefit 
significantly when running on more than four tiles. Vpenta, on the 
other hand, achieves 13.2x speedup on 16 tiles. Figure 5 shows the 
speedups versus execution on a single tile. Vpenta.small is a version of 
vpenta with a reduced data set, so as to reduce cache misses to a tiny 
fraction. 
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Figure 5: Speedup versus 1 tile 

Unlike the previous examples, these are all actual benchmarks. We 
discovered that it was quite difficult to break the aggregate power into 
components while maintaining assurances of accuracy. Despite this, 
we were able to use the toggle-suppression disable mechanism to gain 
insight into the power consumption due to the memories. We also ran 
cycle-accurate simulations that counted 0-1 transitions on the 
networks in order to estimate the data-dependent network power, 
which ended up being very small.  See Figure 6. 
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Figure 6: Average Current by Application 

As Figure 6 shows, cache misses did not greatly alter power 
consumption for vpenta. In this graph, the current drawn is largely 
proportional to the amount of parallelism that the compiler is able to 
find. Vpenta has more parallelism, and puts the extra tiles to good use, 
and thus draws more current. SHA, on the other hand, beyond four 
tiles, draws little additional current. This is because the idle tiles stall 
and toggle-suppress, resulting in small power consumption. 
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Figure 7: Energy w/ Hypothetical Tile-level Clock-gating 

Adding tile-level clock gating to the processor would change this 
behavior, however. With such gating, the compiler chooses the 
number of tiles to dedicate to a program phase, so that the unused tiles 
can be clock-gated to save clock power. As Figure 7 shows, if clock-
gating were incorporated, SHA’s energy consumption would rise 
quickly as the number of un-clock-gated-but-idle tiles increases. 
Vpenta, on the other hand, makes good use of extra processing 
resources, with little extra energy, even with increasing clock power. 

6. CONCLUSION  
In this paper, we presented preliminary ideas on how power can be 
managed in a tiled architecture. In addition, we presented an analysis 
of a tiled microprocessor implementation, the Raw microprocessor, 
which isolates inactive components on a cycle-by-cycle basis. We 
found that tiling simplifies power management, even in a large chip 
with hundreds of functional unit clusters and memories. 
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