
Energy Characterization of a Tiled Architecture Processor
with On-Chip Networks

Jason Sungtae Kim, Michael Bedford Taylor, Jason Miller, David Wentzlaff
MIT Laboratory for Computer Science

{jasonkim, mtaylor, jasonm, wentzlaf} @ cag.lcs.mit.edu

ABSTRACT

 Tiled architectures provide a paradigm for designers to turn
silicon resources into processors with burgeoning quantities of
programmable functional units and memories. The architecture has a
dual responsibility: first, it must expose these resources in a way that is
programmable. Second, it needs to manage the power associated with
such resources.

We present the power management facilities of the 16-tile Raw
microprocessor. This design selectively turns on and off 48 SRAM
macros, 96 functional unit clusters, 32 fetch units, and over 250
unique processor pipeline stages, all according to the needs of the
computation and environment at hand.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed Architectures

General Terms
Design, Measurement, Performance

Keywords
Raw Microprocessor, Tile, Power, Scalar Operand Network

1. INTRODUCTION
The rapid shrinking of VLSI feature sizes brings the promise of

both increasing frequencies and larger numbers of general-purpose
functional units for high-performance microprocessors. The harsh
realities of interconnect delay and power consumption seriously
challenge the ability of microprocessor designers to fulfill these
promises. A case in point is the Itanium 2 processor, which consumes
130 Watts and sports a zero-cycle fully-bypassed 6-way issue integer
execution core. Despite occupying less than two percent of the
processor die, this execution core spends half of its critical path in the
bypass paths between the ALUs.

Current wide-issue processor designs rely on huge, global,
centralized structures such as associative instruction windows, register
renamers, heavily-ported register files, zero-cycle bypassed ALU
clusters, and heavily-ported caches. As these structures scale up in size,
internal interconnect delay becomes the dominant factor. This delay is
due to increasing wire lengths, capacitive loads and effective logic
levels. The desire to minimize delay keeps these structures centralized,
and compounds the power distribution problem, because it clusters
like-components together. This all but ensures that the high power
consumption components will be situated near to each other.
Moreover, architectural features required to extract parallelism from

serial instruction streams require substantially more logic, resulting in
reduced energy efficiency.

Microprocessor designers have recently found that the
exponentially rising thermal dissipation of high performance
microprocessors has begun to affect these systems’ applicability even
in non-mobile environments. High thermal dissipation precludes the
manufacture of 1U rack-mount systems that contain early Itanium II or
Pentium 4 processors. Heat production also affects the cost of these
systems: the price of an appropriate cooling solution increases
drastically with rising microprocessor temperatures. These power
concerns have lead the Pentium 4 architects to include a thermal
monitor and a mechanism to stop the processor’s clock in order to
prevent overheating [5].

If this trend continues, it appears as if all processors, whether
high-performance or mobile, will soon need to be, in some sense of
the term, “low-power.”

2. TILED ARCHITECTURES
Growing interest in scalable alternatives to current centralized

microprocessor designs has led a number of architectural researchers
to propose architectures that organize silicon resources in more
effective ways. These distributed, general-purpose, parallel,
architectures have the common theme that they are composed out of a
number of tiles, i.e., replicated processing elements containing
functional unit, memory, and sequencing resources. These tiles are
interconnected by generalized on-chip point-to-point multi-hop
interconnection networks, and are registered on input. Larger
processors are created by stamping out more tiles. Because these
networks pipeline the inherent delay of routing signals between remote
functional units, there are no global wires, and these architectures can
attain high frequencies. Furthermore, the inherent wire delay is
exposed, so that intelligent algorithms (whether compile-time or run-
time) can distribute instructions across the remote tiles according to
the sensitivity of the program to latency.

Because these tiled architectures are designed to manage large
quantities of compute resources, good energy management is
paramount. Fortunately, tiled designs have many advantages. First, the
decentralized nature of these processors allows them to be scaled
without increasing the number of ports on their register files, caches,
or bypass networks. This greatly reduces the logic overhead per
functional unit. Second, these architectures reflect the parallelism
inherent in VLSI structures and do not require complex logic to
extract parallelism from sequential instruction streams. Third, tiled
designs provide easy boundaries for powering down or clock-gating
unused register files, ALUs, cache banks, or fetch bandwidth,
according to the needs of the program. Fourth, tiled designs are very
regular and distribute power needs evenly across the die to prevent
hotspots. Finally, the only long wires are the network links, which are
structured and regular and can be tuned for low power. [2][4]

One such tiled architecture is the MIT Raw microprocessor,
which divides the silicon area of a chip into a two-dimensional mesh

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00.
424

of 16 programmable tiles and connects them through on-chip, point-
to-point networks. This processor demonstrates its allure through its
ability to issue 16 different FPU, integer, load, store, or branch
instructions each cycle. It also has 512 registers, and 2MB of
distributed L1 cache. All of these numbers are larger than those of the
Itanium II, which has a larger die. Other tiled designs include MIT’s
SCALE, UT Austin’s GRID, Wisconsin’s Multiscalar and ILDP, and
Stanford’s Smart Memories.

In this paper, we characterize the energy profile of the distributed
16-tile MIT Raw microprocessor. We start by describing Raw’s
architectural approach to power management for distributed
processing resources. We describe the limited steps we took in the
implementation of the processor to reduce power. We continue by
characterizing the actual Raw chip’s power usage according to the
resources used. This data would be useful in particular to other
architects who are interested in designing reduced-power distributed,
tiled architectures. Finally, along the way, we touch on some ideas on
how the power could be further reduced in the system.

3. THE RAW MICROPROCESSOR
The Raw microprocessor was fabricated using the 1.8V IBM SA-

27E 0.15um 6-level Cu ASIC process. The chip core runs at 420 MHz
at room temperature and nominal voltage, and reaches 500 MHz with
increased supply voltage. This compares favorably with IBM-
implemented PowerPCs in the same process.

Figure 1: Raw microprocessor die photo and tile diagram
 As shown in Figure 1, the 331 mm2 chip contains 16 tiles

arranged in a 4 by 4 mesh. The tiles are connected by four 32b point-
to-point, on-chip, pipelined, mesh interconnection networks: two static
and two dynamic. Each tile contains a single issue 8-stage in-order
MIPS-style processor (called the “compute processor”) that is coupled
via register-mapped ports to three routers -- two dynamic, and one
static. The tiles’ 3-stage dynamic routers collectively control the
dynamic, dimension-ordered, wormhole-routed on-chip
interconnection network. The tiles’ 5-stage static routers collectively
control the two static networks. Each static router sequences a 64b
instruction from an 8Kx64b instruction cache. Each instruction
specifies a branch and up to 13 simultaneous routes that are to be
performed on the static network. The static networks enable the output
of an ALU in one tile to be routed, in-order, to the input of an ALU in
a neighbor tile in just 3 cycles. The compute processor has a 4-stage
FPU, an 8Kx32b instruction cache, and a 2-way set-associative 8Kx32
data cache. Routes off the edges of the networks are multiplexed down
onto approximately 1080 pins. A more detailed description of the Raw
processor can be found in [1][3].

We did not intend to implement any power-saving features at all
in the processor, as the processor design fits very easily within the 80
W desktop-system power-envelope that IBM recommend for our
package. Despite this, we discovered that the tiling approach yielded a
very elegant method for power management, and as a result, we
decided that the minimal amount of effort required was well worth it.
The tiles discretize the silicon into easy-to-control regions; in this
implementation, one tile represents 1/16 of the power in the chip.
When we enter a phase of a computation that is very parallel, we
wake-up enough tiles to efficiently exploit the parallelism, then when
we return to a more serial phase that cannot benefit from the extra
parallelism, we can put the tiles back to sleep.

Our efforts to reduce power consumption in the Raw processor
focused around a “toggle-suppression” strategy: we ensure that wires
in the system do not toggle unless they are actually computing
something useful. The most important case to handle is when a tile’s
routers or compute processor stalls. In this case, the inputs to the
functional units or crossbars are frozen, and the memory clocks are
gated to prevent unnecessary pre-charging of the sense amplifiers.

Due to toggle-suppression, compute processors and routers
consume minimal non-clock power when they are blocked waiting for
messages on the network. Thus, in the serial phase of a computation,
unused tiles have only to read a value that is not yet available from the
network. This will cause a stall, and the pipeline will cease to toggle
until the input to the above-mentioned parallel phase is received from
the tile finishing the serial phase. The compute processor and routers
wake up instantaneously when the data word is available, and sleep
instantly when the next word is requested but is not available.

We also employed a toggle-suppression strategy for individual
functional units and memories. Functional units in each compute
processor were divided into six clusters. Each cluster’s input register is
individually enabled based on the needs of the instruction being issued.
Clock inputs to memories are gated whenever practical.

Another power-saving feature that we considered was the idea of
clock-gating at the tile level. Doing so would further reduce power for
inactive tiles. This would have required a separation of the clock nets
of the input FIFOs in the tiles, so that they could continue to receive
data even as the rest of the tile was asleep. The valid bits of these
FIFOs could be used to awaken the appropriate resources within the
tile when a word arrives. We decided to avoid the complexities of this
approach for the first version of the chip.

All told, we added a handful of control signals, multiplexers and
registers to the Verilog source. A minimal amount of effort enabled
the Raw microprocessor to selectively turn on and off 48 SRAM
macros, 96 functional unit clusters, 32 fetch units, and over 250
unique processor pipeline stages, all according to the needs of the
computation and environment at hand.

4. EXPERIMENTAL SETUP
The Raw motherboard could be easily mistaken for a PC motherboard;
it has PCI slots, DIMM slots, and other standard PC connectors. It
even fits in a PC case. The motherboard design separates out the
power supplies for various components of the board; in particular, the
chip core has a dedicated 1.8V current source, which allows us to
measure the current consumed by the core while it is executing
programs. The experimental data was collected with a core voltage of
1.8V, a core frequency of 100 MHz, and at room temperature. The
corresponding values at higher voltages and frequencies can be easily
calculated.

425

5. ENERGY CHARACTERIZATION
For this section, we used an ammeter connected to the Raw core
power supply in order to measure power usage. All numbers were
measured or derived from measurements. In all cases, we ran the
measured item in unrolled loops to get an average number over time.
We also replicated code across the tiles to increase the measurement
magnitude. In many cases, we tried to make graphs more interesting
by breaking aggregate numbers into constituent parts. This was
accomplished by running sub-components of the program with the
same data patterns. All in all, we found measurement at this level to be
an enjoyable but tricky problem.

5.1 Idle State
When the clock is grounded, the chip draws a leakage current of 28
mA and dissipates 45 mW. When the Raw microprocessor’s compute
processors and routers are all stalled, the core consumes 1,271 mA.
Using Synopsys CoverMeter, we verified that the only significant state
elements that transition in this mode are two increment-by-1 cycle
counters per tile and a single 77-bit serial shift register used for test
apparatus. With the power for this logic well under 20 mA, we
estimate that the measured number is no more than 2% off of the
actual current due to the clock. See Table 1.

Table 1: Idle Current & Power: Leakage and Clock, 1.8V
Leakage@ Room Temp 28 mA 45 mW
Clock @ 100 MHz 1,271 mA 2,288 mW

5.2 Maximum, Typical, and Low Power
We start our investigation by examining the average current of three
applications, as shown in Figure 2. The first application uses a single
Raw tile with an average instruction mix. Ignoring clock power, it
consumes a tiny fraction of the maximum power. This makes it clear
that implementing clock-gating at the tile level is highly desirable for
tiled architectures. The second application represents a typical highly-
parallel application, vpenta, running with 16-tiles, which attains a 13x
speedup over a single-tile version of the same application. Notice in
particular, how the tiled approach, ignoring the clock power, provides
a wide menu of power/performance points, even without modifying
voltage or frequency. The last application is a synthetic application,
created through experimentation, that maximizes power consumption.
It consists of three independent parallel parts, running on all 16 tiles.

26%

39%

15%

21%

0

1

2

3

4

5

6

7

typical
1-tile

typical
16-tile

typical
16-tile
w/o t.s.

worst
16-tile

worst
16-tile

w/o t.s.

cu
rr

en
t (

A
)

toggle-suppress savings
static network
dynamic network
compute
compute+network
clock

Figure 2: Average Current for Three Applications

The first part of the synthetic application executes load instructions in
an unrolled loop. It alternates between loading from an address with
offset 0xFFFC and an address with offset 0. These addresses contain
the values 0 and 0xffffFFFF. This is the most power-consuming
instruction sequence on the compute processor. The second part
routes alternating sequences of 0 and 0xffffFFFF across 128 network

links on the static network. This includes a total of 96 words routed
each cycle across the inter-tile 4 mm wires. Maximum power on the
dynamic networks is achieved by launching special 4-word “tail-
chasing messages” that route themselves indefinitely in a circle inside
the network. They consist of a header word and a data payload that
selectively inverts and un-inverts the header word to create maximal
toggles. This routes another 96 words over 4 mm inter-tile links each
cycle. Loop-back devices on the I/Os would enable another 28 words
per cycle of 4 mm routes.
The bars in the graph labeled “w/o t. s.” were computed using an
architectural feature that allows us to disable toggle-suppression. Thus,
the top portion of these bars represents the amount of current that our
design saves by employing toggle suppression. Interestingly, the
maximum power application without toggle suppression is floating-
point multiply intensive, rather than load intensive. This is because
without t.s., the load unit no longer needs a load instruction as an
excuse to burn data memory power.

5.3 Network Power
We continue our investigation by examining the energy cost of
communication over the two types of networks. Note that the graphs
do not include clock energy, and that N hops implies going through
N+1 routers. All transmitted sequences maximize toggle rate.

0
10
20
30
40
50
60
70
80
90

100
110

0 1 2 3 4 7 8 15 16 30 31
Message Payload Length

En
er

gy
 C

os
t (

nJ
)

compute processor

3 hop

1 hop

Figure 3: Energy Cost of Dynamic Network Messages

Dynamic network messages are sent as multi-word packets with a one
word header. There are three major components of the energy:
compute processor send/receive costs, a per-packet cost for routing,
and a per-word cost. Figure 3 graphs dynamic message energy by
varying the message length, and the number of hops that each message
travels. As messages get longer, the overhead of route initiation is
greatly amortized. Odd payloads are more power intensive because
they allow perfectly inverted messages.
The static router routes single-word packets. In this case, in addition to
any compute processor send/receive costs, a fixed cost (approximately
504 pJ, 90% due to instruction cache access) is paid for routing one to
thirteen values through the router on a given cycle, with an amortized
cost of 85 pJ per 32-bit maximal-toggle word that is routed. As shown
in Figure 4, the static network is more energy efficient than the
dynamic network for single-word messages because it does not have
the header overhead. However, for 31-word messages, the dynamic
network is almost twice as good. If message words need to be
delivered in a known order, advantage turns back to the static network;
dynamic network programs give up performance because they have to
execute code to de-multiplex messages. On a side note, the non-
compute power of the static network could be reduced by almost half
if the static router were modified to fetch more than one instruction at
a time.

426

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 4 8 12 16 20 24 28 32
Toggling Bits

En
er

gy
 C

os
t (

nJ
)

compute processor
3 hop
1 hop

Figure 4: Energy Cost Per Word For Static Messages

The “compute processor” cost in both graphs is for move instructions
to/from the register-mapped network ports on the source and receiver
tiles. These could be replaced with computation instructions doing
useful work (like an FPU instruction that reads from or writes to the
output network port) to reduce the overhead. Realizing that each word
transmitted on the network requires at least one instruction to generate
it and one instruction to receive it, this data suggests that instruction
energy will be larger than dynamic network transmit energy at least for
mesh sizes up to 128 nodes.

5.4 Power for SHA and vpenta
To get a better sense of the power profile of the processor, we selected
a pair of applications for in-depth study. We examined “SHA”, an
implementation of the inner kernel of the secure hash algorithm, and
“vpenta”, a kernel from Spec92’s nasa7 benchmark. These
applications were automatically parallelized using RawCC[6], the
Raw compiler. These benchmarks were placed in a loop to increase
the running time. SHA has little parallelism, and does not benefit
significantly when running on more than four tiles. Vpenta, on the
other hand, achieves 13.2x speedup on 16 tiles. Figure 5 shows the
speedups versus execution on a single tile. Vpenta.small is a version of
vpenta with a reduced data set, so as to reduce cache misses to a tiny
fraction.

1.0
1.8

3.2

5.5

10.4

1.0
1.8

3.6

6.7

1.2 1.4
2.4 2.4

2.9

13.2

0

2

4

6

8

10

12

14

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

vpenta.small vpenta sha

N
or

m
al

iz
ed

 S
pe

ed
up

Figure 5: Speedup versus 1 tile

Unlike the previous examples, these are all actual benchmarks. We
discovered that it was quite difficult to break the aggregate power into
components while maintaining assurances of accuracy. Despite this,
we were able to use the toggle-suppression disable mechanism to gain
insight into the power consumption due to the memories. We also ran
cycle-accurate simulations that counted 0-1 transitions on the
networks in order to estimate the data-dependent network power,
which ended up being very small. See Figure 6.

1.27

1.47

1.67

1.87

2.07

2.27

2.47

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

vpenta.small vpenta sha

cu
rr

en
t (

A
)

Rest
Network
Static Icache
Dcache
Icache

Figure 6: Average Current by Application

As Figure 6 shows, cache misses did not greatly alter power
consumption for vpenta. In this graph, the current drawn is largely
proportional to the amount of parallelism that the compiler is able to
find. Vpenta has more parallelism, and puts the extra tiles to good use,
and thus draws more current. SHA, on the other hand, beyond four
tiles, draws little additional current. This is because the idle tiles stall
and toggle-suppress, resulting in small power consumption.

0

50

100

150

200

250

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
vpenta.small vpenta sha

To
ta

l E
ne

rg
y

(J
)

clock
compute

Figure 7: Energy w/ Hypothetical Tile-level Clock-gating

Adding tile-level clock gating to the processor would change this
behavior, however. With such gating, the compiler chooses the
number of tiles to dedicate to a program phase, so that the unused tiles
can be clock-gated to save clock power. As Figure 7 shows, if clock-
gating were incorporated, SHA’s energy consumption would rise
quickly as the number of un-clock-gated-but-idle tiles increases.
Vpenta, on the other hand, makes good use of extra processing
resources, with little extra energy, even with increasing clock power.

6. CONCLUSION
In this paper, we presented preliminary ideas on how power can be
managed in a tiled architecture. In addition, we presented an analysis
of a tiled microprocessor implementation, the Raw microprocessor,
which isolates inactive components on a cycle-by-cycle basis. We
found that tiling simplifies power management, even in a large chip
with hundreds of functional unit clusters and memories.
[1] Michael Taylor et al. The Raw Microprocessor. IEEE Micro, Apr 2002.
[2] R. Ho, K. Mai, M. Horowitz. Efficient On-Chip Global Interconnects.

IEEE Symposium on VLSI Circuits, June 2003.
[3] Michael Taylor et al. Scalar Operand Networks: On-chip Interconnect for

ILP in Partitioned Architectures. Proc. HPCA , Feb 2003.
[4] H. Wang, et al. Power Model for Routers. IEEE Micro, Jan 2003.
[5] Gunther, et al. Managing the Impact of Increasing Microprocessor Power

Consumption. Intel Technology Journal. 1Q2001.
[6] Walter Lee, et al. Space-Time Scheduling of Instruction-Level Parallelism

on a Raw Machine. Proc. ASPLOS, 1998.

427

