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ABSTRACT
The bypass paths and multiported register �les in micropro-
cessors serve as an implicit interconnect to communicate
operand values among pipeline stages and multiple ALUs.
Previous superscalar designs implemented this interconnect
using centralized structures that do not scale with increasing
ILP demands. In search of scalability, recent microproces-
sor designs in industry and academia exhibit a trend towards
distributed resources such as partitioned register �les, banked
caches, multiple independent compute pipelines, and even
multiple program counters. Some of these partitioned mi-
croprocessor designs have begun to implement bypassing and
operand transport using point-to-point interconnects rather
than centralized networks. We call interconnects optimized
for scalar data transport, whether centralized or distributed,
scalar operand networks. Although these networks share
many of the challenges of multiprocessor networks such as
scalability and deadlock avoidance, they have many unique
requirements, including ultra-low latencies (a few cycles ver-
sus tens of cycles) and ultra-fast operation-operand matching.
This paper discusses the unique properties of scalar operand
networks, examines alternative ways of implementing them,
and describes in detail the implementation of one such net-
work in the Raw microprocessor. The paper analyzes the per-
formance of these networks for ILP workloads and the sensi-
tivity of overall ILP performance to network properties.

1. INTRODUCTION
Today's wide-issue microprocessor designers are �nding it

increasingly diÆcult to convert burgeoning silicon resources
into usable, general-purpose functional units. The problem
is not so much that the area of microprocessor structures is
growing out of control; after all, Moore's law's exponential
growth is easily able to outpace a mere quadratic growth in
area. Rather, it is the delay of the interconnect inside the pro-
cessor blocks that has become unmanageable [1, 16]. Thus,
although we can build almost arbitrarily wide-issue proces-
sors, clocking them at high frequencies will become increas-
ingly diÆcult. A case in point is the Itanium 2 processor,
which sports a zero-cycle fully-bypassed 6-way issue integer
execution core. Despite occupying less than two percent of
the processor die, this unit spends half of its critical path in
the bypass paths between the ALUs [14].
More generally, the pervasive use of global, centralized

structures in these contemporary processor designs constrains
not just the frequency-scalability of functional unit bypass-
ing, but of many of the components of the processor that are
involved in the task of naming, scheduling, orchestrating and
routing operands between functional units [16].
Building processors that can exploit increasing amounts of

instruction-level parallelism (ILP) continues to be important
today. Many useful applications continue to display larger
amounts of ILP than can be gainfully exploited by current
architectures. Furthermore, other forms of parallelism, such
as data parallelism, pipeline parallelism, and coarse-grained
parallelism, can easily be converted into ILP.
Chip multiprocessors, like IBM's two-core Power4, hint at

a scalable alternative for codes that can leverage more func-
tional units than a wide-issue microprocessor can provide.
Research and commercial implementations have demon-
strated that multiprocessors based on scalable interconnects
can be built to scale to thousands of nodes. Unfortunately,
the high cost of inter-node operand routing (i.e. the cost of
transferring the output of an instruction on one node to the
input of a dependent instruction on another node) is often too
high (tens to hundreds of cycles) for these multiprocessors to
exploit ILP. Instead, the programmer is faced with the unap-
pealing task of explicitly parallelizing these programs. Fur-
thermore, because the di�erence in cost between local ALU
and remote ALU communication is so large (sometimes on
the order of 30x), programmers and compilers need to em-
ploy entirely di�erent algorithms to leverage parallelism at
the two levels.
Seeking to scale ILP processors, recent microprocessor de-

signs in industry and academia reveal a trend towards dis-
tributed resources to varying degrees, such as partitioned
register �les, banked caches, multiple independent compute
pipelines, and even multiple program counters. These designs
include UT Austin's Grid [15], MIT's Raw [21] and Scale [17],
Stanford's Smart Memories [13], Wisconsin's ILDP [9] and
Multiscalar [18], and the Alpha 21264 [7]. Such partitioned
or distributed microprocessor architectures have begun to
replace the traditional centralized bypass network with a
more general interconnect for bypassing and operand trans-
port. With these more sophisticated interconnects come
more sophisticated hardware or software algorithms to man-
age them. We label operand transport interconnects and the
algorithms that manage them, whether they are centralized
or distributed, scalar operand networks. Speci�cally, a scalar
operand network is the set of mechanisms that joins the dy-
namic operands and operations of a program in space to enact
the computation speci�ed by a program graph. These mech-
anisms include the physical interconnection network as well
as the operation-operand matching system that coordinates
these values into a coherent computation. Scalar operand net-
works can be designed to have short wire lengths. Therefore,
they can scale with increasing transistor counts. Further-
more, because they can be designed to resemble generalized
interconnection networks, scalar operand networks can po-
tentially provide transport for other forms of data including
I/O streams, cache misses, and synchronization signals.



Partitioned microprocessor architectures require scalar
operand networks that combine the low-latency and low-
occupancy operand transport of wide-issue superscalar pro-
cessors with the frequency-scalability of multiprocessor de-
signs. Several recent studies have shown that partitioned
microprocessors based on point-to-point scalar operand net-
works can successfully exploit �ne-grained ILP. Lee et al. [12]
showed that a compiler can successfully schedule ILP on a
partitioned architecture that uses a static point-to-point net-
work to achieve speedup that was commensurate with the
degree of parallelism inherent in the applications. Nagarajan
et al. [15] showed that the performance of a partitioned ar-
chitecture using a dynamic point-to-point network was com-
petitive with that of an idealized wide issue superscalar, even
when the partitioned architecture counted a modest amount
of wire delay.
Much as the study of interconnection networks is impor-

tant for multiprocessors, we believe that the study of scalar
operand networks in microprocessors is also important. Al-
though these networks share many of the challenges in design-
ing message passing networks, such as scalability and dead-
lock avoidance, they have many unique requirements includ-
ing ultra-low latencies (a few cycles versus tens of cycles) and
ultra-fast operation-operand matching (0 cycles versus tens
of cycles). This paper identi�es �ve important challenges in
designing scalar operand networks. The paper also de�nes
a parameterized 5-tuple model that gives structure to the
task of reasoning about the tradeo�s in the design of these
networks. To show that large-scale low-latency operand net-
works are realizable, we also describe some of the details of
the actual 16-way issue scalar operand network designed and
implemented in the Raw microprocessor, using the .15 micron
IBM SA-27E ASIC process.
One concrete contribution of this paper is that we show

sender and receiver occupancies have a �rst order impact on
ILP performance. For our benchmarks running on a 64-tile
microprocessor (i.e., 64 ALUs, 64-way partitioned register
�le, 64 instruction and data caches, connected by a scalar
operand network) we measure a performance drop of up to
25 percent when either the send or the receive occupancy is
increased from zero to one cycle. The performance loss due
to network contention, on the other hand, was discovered to
average only 5 percent for a 64-tile Raw mesh. These results
lead us to conclude that whether the network is static or
dynamic is less important (at least for up to 64 nodes) than
whether it o�ers eÆcient support for matching operands with
the intended operations.
The rest of this paper proceeds as follows. Section 2

provides background on operand networks and their evolu-
tion. Section 3 discusses the ILP computation model and
how it maps to partitioned microprocessors based on point-
to-point scalar operand networks. Section 4 continues by
describing several important challenges in designing scalar
operand networks that distinguish these networks from pre-
vious multiprocessor interconnects. Section 5 discusses the
scalar operand network implementation in the Raw proces-
sor. Section 6 quanti�es the sensitivity of ILP performance
to network properties. Section 7 presents related work. Sec-
tion 8 concludes.

2. EVOLUTION OF SCALAR OPERAND
NETWORKS

The role of a scalar operand network is to join the dynamic
operands and operations of a program in space to enact the
computation speci�ed by a program graph. A scalar operand
network includes both the physical interconnection network

and the associated operation-operand matching algorithms
(hardware or software) that coordinate operands and opera-
tions into a coherent computation. Designing scalar operand
networks was a simple task during the era of non-pipelined
processors, but as our demands for parallelism (e.g., multi-
ple ALUs, large register name spaces), clock rate (e.g., deep
pipelines), and scalability (e.g., partitioned register �les) have
increased, this task has become much more complex. This
section describes the evolution of scalar operand networks
{ from those that employ early, monolithic register �le in-
terconnects to the more recent ones that incorporate routed
point-to-point mesh interconnects.
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Figure 1: The simplest scalar operand network.

A non-pipelined processor with a register �le and ALU con-
tains a simple, specialized form of a scalar operand network.
The logical register numbers provide a naming system for
connecting the inputs and outputs of the operations. The
number of logical register names sets the upper bound on the
number of live values that can be held in the operand net-
work. In Figure 1, rather than treating the register �le as a
black box, we emphasize its role as a device that is capable
of performing two parallel routes from any two of a collection
of registers to the output ports of the register �le, and one
route from the input of the register �le to any of the registers.
Each arc in the diagram represents a possible operand route
that may be performed on each cycle. (In fact, each register
should have a self-arc, since, in the default case, it is actually
routing to itself on each cycle.) It may seem absurd to view
a register �le in this framework, but the delay of a register
�le is largely interconnect-related; so the interconnect-centric
view may not be far o�, especially as wire delay worsens in
our fabrication processes.
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Figure 2: Scalar operand network in a pipelined processor

with bypassing links added.

Figure 2 shows a pipelined, bypassed register-ALU pair.
The operand network now adds several new paths, multi-
plexers and pipeline registers. Notice, we have partitioned
the operand traÆc into two classes: \live" operands that



are being routed directly from functional unit to functional
unit, and \quiescent-but-live" operands that are being routed
\through time" (via self routes in the register �le) and then
eventually to the ALU. This optimization improves the cy-
cle time because the routing complexity of the live values is
far less than the routing complexity of the resident register
set. This transformation also changes the naming system {
the registers in the pipeline dynamically shadow the registers
in the register �le, and any reference to a shadowed register
name will actually refer to the youngest shadowing register
in the pipeline. However, for an in-order pipeline, the to-
tal number of live operands in the system does not actually
change.

Figure 3: A pipelined processor with bypass links and

multiple ALUs.

Figure 3 shows a pipelined processor with multiple ALUs.
Notice that the scalar operand network includes many more
multiplexers, pipeline registers, and bypass paths, and it be-
gins to look much like our traditional notion of a network.
The introduction of multiple ALUs creates additional de-

mands on the naming system of the scalar operand network.
First, there is the temptation to support out-of-order issue of
instructions, which carries numerous scheduling-related ben-
e�ts: better utilization of the ALUs, reduced code size, and
�nally, the ability to change a program's schedule in response
to dynamic events or changing microarchitectural proper-
ties. On the other hand, out-of-order issue forces the scalar
operand network to deal with the possibility of having several
live aliases of the same register name.
Adding register renaming to the scalar operand network

allows the network to manage these live register aliases. Per-
haps more signi�cantly, register renaming also allows the
quantity of simultaneous live values to be increased beyond
the limited number of named live values �xed in the ISA. An
even more scalable solution to this problem is to adopt an
ISA that allows the number of named live values to increase
with the number of ALUs.

Regs Regs Regs

Figure 4: Multiscalar's operand network

More generally, increasing the number of functional units
necessitates more live values in the scalar operand network,
distributed at increasingly greater distances. This require-
ment in turn increases the number of physical registers, the

number of register �le ports, the number of bypass paths, and
the diameter of the ALU-register �le execution core. These
increases make it progressively more diÆcult to build larger,
high-frequency scalar operand networks that employ central-
ized register �les as operand interconnect. One solution is to
partition and distribute the interconnect and the resources it
connects.
Figure 4 depicts the partitioned register �le and distributed

ALU design of the Multiscalar { one of the early distributed
ILP processors. Notice that the Multiscalar pipelined results
through individual ALUs with a one-dimensional multi-hop
operand network. Accordingly, the interconnect between the
ALUs in the Multiscalar distinguishes it as an example of an
early point-to-point scalar operand network.
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Figure 5: Scalar operand network based on a two dimen-

sional, point-to-point routed interconnect.

Figure 5 shows the two-dimensional point-to-point scalar
operand network in the Raw microprocessor. Raw imple-
ments a set of replicated tiles and distributes all the physical
resources: 
oating point and integer ALUs, registers, caches,
memories, and I/O ports. Raw also implements multiple PCs,
one per tile, so that instruction fetch and decoding are also
parallelized. Both Multiscalar and Raw (and in fact most
distributed microprocessors) exhibit replication in the form
of more or less identical units that we will refer to as tiles.
Thus, for example, we will use the term tile to refer to either
an individual ALU in the Grid processor, or an individual
pipeline in Multiscalar, Raw, or the ILDP processor.
Exploiting ILP on architectures with distributed scalar

operand networks is not as straightforward as with early, cen-
tralized architectures. The next section provides some back-
ground on how ILP gets mapped in such processors, and the
section after next discusses the challenges in building scalar
operand networks for partitioned microprocessors.

3. ILP COMPUTATION ON PARTITIONED
ARCHITECTURES

Once the processor resources are partially or fully dis-
tributed and connected via a scalar operand network, the
mapping of ILP can take many forms. As background, we
will discuss a generic distributed ILP architecture here and
use it to illustrate some of the issues in mapping ILP to the
distributed resources. Depending on the speci�c methods
adopted to map ILP, the demands on the network can di�er.
We will address these alternatives in the next section.
ILP computations are commonly expressed as a data
ow

graph. In a data
ow graph, the nodes represent operations,
and the arcs represent data values 
owing from the output of
one operation to the input of the next. The existence of an
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Figure 6: A code fragment and its data
ow graph.

arc between operations implies a sequential ordering between
the execution of the two operations. Figure 6 shows a code
fragment and its data
ow graph.
Memory operations fall into a special case. If the compiler

cannot determine that the memory operations will not con-

ict, then there are possible dependences existing between the
operations. Short of using a speculation scheme, the applica-
tion must sequentialize these operations. Thus, in Figure 6,
the accesses to b must be done sequentially; only the add and
shift instructions can be performed in parallel.
Typically, these data
ow graphs are enclosed in some sort

of control structure: if-statements, loops, etc. ILP compilers
increase the amount of parallelism by transforming looping
structures to enlarge the size of the data
ow graph and �nd
more things that can execute in parallel. The two most com-
mon techniques are loop unrolling and pipelining.
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Figure 7: Mapping a data
ow graph on a generic dis-

tributed microprocessor containing six tiles.

To execute an ILP computation on a distributed-resource
microprocessor containing a scalar operand network (for ex-
ample, that shown in Figure 5), one �rst needs to �nd an as-
signment from the nodes of the data
ow graph to the nodes of
the network of ALUs. Then it needs to route the intermedi-
ate values between these ALUs. Figure 7 shows one possible
assignment of operations to each of the physical resources.
Immediately, several issues relating to scalar operand net-
works become evident.
First, how should the assignment of operations to ALUs be

performed? This assignment of operations can be performed
at run-time or compile-time. Superscalar and early dynamic
data
ow [2] are examples of run-time assignment architec-
tures, while VLIW, TTA [8], Raw, and Grid are compile-time
assignment architectures.
Second, how should the routing be performed? Notice that

the value of \q" is available at the node performing the \ld b"
operation. This value must be routed to the node perform-
ing the \+" operation. If the architecture is a compile-time
assignment architecture, the choice of the path that the val-
ues take between the ALUs can in turn be done either at
compile-time or at run-time. Raw chooses the routing path

at compile-time, while Grid does it at run-time.
Third, what is the tradeo� between parallelism and com-

munication in the assignment problem? On one hand, we
want to spread the computation as far out into space as pos-
sible to maximize the number of ALUs that can be used si-
multaneously (and thus maximize the parallelism). On the
other hand, we do not want to have operations performed
too far away, because the travel time over the network will
add up and impact the critical path of the application. For
instance, in Figure 7, if it takes a cycle to traverse a network
link, and the ops each take only one cycle, then it would have
been more e�ective to allocate all of the operations to one
ALU (assuming that the processor supports this mapping).
Finally, what are the constraints on the ordering of the

computation and on the ordering of operands? Are the
operands guaranteed to arrive in order \just in time," or will
they arrive out-of-order and need to be stored until the op-
eration is ready to �re? Is there 
ow control on the operands
coming into a node?
With an intuition of the structure of ILP programs and how

they are mapped to distributed microprocessor resources, we
can turn to some of the challenges in the designing scalar
operand networks.

4. CHALLENGES IN THE DESIGN OF
SCALAR OPERAND NETWORKS

This section identi�es and discusses some of the key chal-
lenges in the design of scalar operand networks: delay scal-
ability, bandwidth scalability, deadlock and starvation, eÆ-
cient operation-operand matching, and handling exceptional
events.

1. Delay Scalability Delay scalability is the term that we
use to describe the ability of a design to maintain high clock
frequencies as that design scales. When an unpipelined, two-
dimensional VLSI structure increases in area, physics dictates
that the propagation delay of this structure must increase
asymptotically at least as fast as the square root of the area.
This increase in delay is a direct result of the additional dis-
tance that signals inside this structure have to travel. If we
want to build larger structures and still maintain high fre-
quencies, there is no option except to pipeline the logic and
turn the propagation delay into pipeline latency.

Intra-component delay scalability A number of common mi-
croprocessor structures like multi-ported register �les, by-
passing logic, selection logic, and wakeup logic grow indi-
rectly, if not directly, with the issue width of the processor.
Although extremely eÆcient versions of these components ex-
ist, their burgeoning size guarantees that intra-component in-
terconnect delay will inevitably slow them down. Thus, these
components have an asymptotically unfavorable growth func-
tion that is partially obscured by a favorable constant factor.
There are a number of solutions to the delay scalability of

these structures; the general themes typically include parti-
tioning and pipelining. A number of recently proposed aca-
demic architectures [9, 13, 15, 17, 18, 21] (and current-day
multiprocessor architectures) compose their systems out of
replicated tiles in order to simplify the task of reasoning about
and implementing delay-scalable systems. A system is scaled
up by increasing the number of tiles, rather than increasing
the size of the tiles. A latency is assigned for accessing or
bypassing the logic inside the tile element. The inputs and
outputs of the tiles are periodically registered so that the cy-
cle time is not impacted. In e�ect, tiling ensures that the task
of reasoning about delay scalability need only be performed



at the intercomponent level.

Inter-component delay scalability Delay scalability is a prob-
lem not just within components, but between components.
Components that are separated by even a relatively small
distance are a�ected by the substantial wire delays of mod-
ern VLSI processes. This inherent delay in interconnect is a
central issue in multiprocessor designs that is now becoming
a central issue in microprocessor designs. There are two clear
examples of commercial architectures addressing the inter-
connect delay issue: the Pentium IV, which introduced two
pipeline stages that are dedicated to the crossing of long wires
between remote components; and the Alpha 21264, which in-
troduces a one cycle latency cost for results from one integer
cluster to reach the other cluster. The Alpha 21264 marked
the beginning of an architectural movement that recognizes
that interconnect delay can no longer be ignored by the micro-
architectural abstraction layer. Once interconnect delay be-
comes signi�cant, high-frequency systems must be designed
out of components that operate with only partial knowledge
of what the rest of the system is doing. In other words, the
architecture needs to be implemented as a distributed pro-
cess. If a component depends on information that is not gen-
erated by a neighboring component, the architecture needs to
assign a time cost for the transfer of this information. Non-
local information includes the outputs of physically remote
ALUs, stall signals, branch mispredicts, exceptions, and the
existence of memory dependencies.

Managing latency As studies that compare small, short-
latency caches with large, long-latency caches have shown,
a large number of resources (e.g., cache lines) with long la-
tency is not always preferable to a small number of resources
with a short latency. This tradeo� between parallelism and
locality is becoming increasingly important. On one hand,
we want to spread virtual objects { such as cached values,
operands, and instructions { as far out as possible in order
to maximize the quantities of parallel resources that can be
leveraged. On the other hand, we want to minimize com-
munication latency by placing communicating objects close
together, especially if they are on the critical path. These
con
icting desires motivate us to design architectures with
non-uniform costs; so that rather than paying the maximum
cost of accessing a object (e.g., the latency of the DRAM), we
pay a cost that is proportional to the delay of accessing that
particular object (e.g., a hit in the �rst-level cache). This
optimization is further aided if we can exploit locality among
virtual objects and place related objects (e.g. communicating
instructions) close together.

2. Bandwidth Scalability Bandwidth scalability is the
ability of a design to scale without inordinately increasing
the relative percentage of resources dedicated to interconnect.
Bandwidth scalability is also a challenge that is making its
way from multiprocessor designs to microprocessor designs.
Superscalars currently rely on global broadcasts to communi-
cate the results of instructions. The output of every ALU is
indiscriminately being sent to every waiting instruction that
could possibly depend on that value. Thus, if RB is the num-
ber of result buses of the processor, and WS is the window
size of the processor, there are RB*WS individual routes and
comparisons that are being made on every cycle. As shown
by the Alpha 21264, superscalars can handle the delay scal-
ability of broadcasting by pipelining these broadcast wires.
This pipelining causes some dependent instructions to incur
an extra cycle of delay but guarantees that broadcasting of
results does not directly impact cycle time. Unfortunately,
the usage of indiscriminate broadcast mechanisms carries ad-

ditional delay and area penalties as a system is scaled up {
�rst, the interconnect area (and resulting delay due to the
area) of the routing resources, and second, the cost of pro-
cessing the incoming information.
The architecture community has had previous exposure

to the scalability limitations of broadcast-based protocols.
Snoopy-cache multiprocessors employ broadcasting; each cy-
cle, R (which is some function of N) broadcasted cache re-
quests have to be compared against the T tags in N proces-
sors; typical implementations have an area on the order of
N*R*T.
The key to overcoming this problem is to �nd a way to dec-

imate the volume of messages sent in the system. Directory-
based cache-coherent multiprocessors tackle this problem by
employing directories: distributed, known-ahead-of-time lo-
cations that contain dependence information. The directories
allow the caches to reduce the broadcast to a unicast or mul-
ticast to only the parties that need the information. Then,
the broadcast network is replaced with a point-to-point net-
work that can perform unicast routes in order to exploit the
bandwidth savings.
A directory scheme is a potential candidate for replacing

broadcast in a scalar operand network. The source instruc-
tions can look up destination instructions in a directory and
then multicast output values to the nodes on which the des-
tination instructions reside. If the system can guarantee that
every dynamic instance of an instruction is always assigned to
the same node in the operand network, it can store or cache
the directory entry at the source node. The entry could have
been placed there by the compiler, or it could be dynamically
annotated by the architecture in a supplementary route ta-
ble for each source instruction. The �xed mapping scheme is
quite eÆcient because the lookup of directory entry does not
incur lengthy communication delays. We call architectures [6,
15, 21] whose operand networks use �xed assignments of in-
structions to nodes �xed-assignment architectures.
Dynamic-assignment architectures like superscalars and

ILDP assign dynamic instruction instances to di�erent nodes
in order to load balance. In this case, the removal of broad-
cast mechanisms is a more challenging problem to address,
because the directory can not be co-located with the instruc-
tion, which is moving around. ILDP decimates broadcast
traÆc by providing intra-node bypassing for values that are
only needed locally; however it still employs broadcast for
values that may be needed by other nodes. It would be in-
teresting to see if one could replace this broadcast with a
distributed register �le or directory system.

3. Deadlock and starvation Superscalar operand net-
works use relatively centralized structures to 
ow control in-
structions and operands so that internal bu�ering cannot be
overcommitted. With less centralized operand networks, such
global knowledge is more diÆcult to attain. If the process-
ing elements independently produce more values than the
operand network has storage space, then either data loss or
deadlock must occur. This problem is not unusual; in fact
some of the earliest large-scale operand network research { the
data
ow machines { encountered serious problems with the
overcommitment of storage space and resultant deadlock [2].
Alternatively, priorities in the operand network may lead to
a lack of fairness in the execution of instructions, which may
severely impact performance.

4. EÆcient Operation-Operand Matching Operation-
operand matching is the process of gathering operands and
operations to meet at some point in space to perform a
data
ow computation. If operation-operand matching can



not be done eÆciently, there is little point in scaling the issue-
width of a processing system, because the bene�ts will rarely
outweigh the overhead.
Because the cost of operation-operand matching is one of

the most important �gures of merit for a scalar operand net-
work, we de�ne a parameterization of these costs that allows
us to compare the operation-operand matching systems of dif-
ferent architectures. This �ve-tuple of costs <SO, SL, NHL,
RL, RO> consists of:

Send occupancy number of cycles that an ALU wastes in
transmitting an operand to dependent instructions at other
ALUs.

Send latency number of cycles of delay incurred by the
message at the send side of the network without consuming
ALU cycles.

Network hop latency number of cycles of delay, per hop,
incurred travelling through the interconnect; more generally,
this is the cost that is proportional to the physical distance
between the sender and receiver.

Receive latency number of cycles of delay between when
the �nal input to an ALU instruction arrives and when the
consuming instruction is issued.

Receive occupancy number of cycles that an ALU wastes
because it is employing a remote value.

For reference, these �ve components typically add up to
tens to hundreds of cycles [10] on a multiprocessor. In con-
trast, all �ve components in conventional superscalar bypass
networks add up to zero cycles! The challenge is to explore
the design space of eÆcient operation-operand matching sys-
tems that also scale.
In the follow subsections, we examine scalar operand net-

works implemented on a number of existing systems and de-
scribe the components that contribute to the 5-tuple for that
system. For these systems, we make estimates of 5-tuples
for aggressive but conventional implementations. At one end
of the spectrum, we consider superscalars, which have per-
fect 5-tuples, <0,0,0,0,0>, but limited scalability. On the
other end of the spectrum, we examine message passing and
shared memory systems, which have good scalability but poor
5-tuples. The Raw prototype, described in Section 5, serves
as an example of a design that falls in between the two ex-
tremes, with multiprocessor-like scalability and a 5-tuple that
comes closer to that of the superscalar.

Superscalar operation-operand matching Out-of-order super-
scalars achieve operation-operand matching via the instruc-
tion window and result buses of the processor's operand
network. The routing information required to match up
the operations is inferred from the instruction stream and
routed, invisible to the programmer, with the instructions
and operands. Beyond the occasional move instruction (say
in a software-pipelined loop, or between the integer and 
oat-
ing point register �les, or to/from functional-unit speci�c reg-
isters), superscalars do not typically incur send or receive oc-
cupancy. Superscalars tend not to incur send latency, unless
a functional unit loses out in a result bus arbitration. Receive
latency is often eliminated by waking up the instruction be-
fore the incoming value has arrived, so that the instruction
can grab its inputs from the result buses as it enters the ALU.
This optimization requires that wakeup information be sent
earlier than the result values. If more instructions are woken
up in a cycle than the select logic can simultaneously handle,

one could say that there is an e�ective receive latency. How-
ever, this is an arguable point. Thus, in total, the low-issue
superscalars have perfect 5-tuples, i.e., <0,0,0,0,0>. Network
latencies of a handful of cycles have appeared in clustered su-
perscalar designs.

Multiprocessor operation-operand matching One of the
unique issues with multiprocessor operation-operand match-
ing is the tension between commit point and communication
latency. Uniprocessor designs tend to execute early and spec-
ulatively and defer commit points until much later. When
these uniprocessors are integrated into multiprocessor sys-
tems, all potential communication must be deferred until the
relevant instructions have reached the commit point. In a
modern-day superscalar, this deferral means that there could
be tens or hundreds of cycles that pass between the time
that a communication instruction executes and the time at
which it can legitimately send its value on to the consuming
node. We call the time it takes for an instruction to commit
the commit latency. Until these networks support speculative
sends and receives (as with a superscalar!), the send latency
of these networks will be adversely impacted.
Multiprocessors employ a variety of communication mech-

anisms; two 
avors are message passing and shared memory.

Message-passing operation-operand matching For the
purposes of discussing message-passing operation-operand
matching, we will assume that a dynamic network [5] is being
employed. Implementing operation-operand matching using
a message-passing style network has two key challenges.
First, nodes need a processor-network interface that al-

lows low-overhead sends and receives of operands. In an
instruction-mapped interface, special send and receive in-
structions are used for communication; in a register-mapped
interface, special register names correspond to communica-
tion ports. Using either interface, the sender somehow needs
to specify the destination(s) of the out-going operands. (Re-
call that the superscalar uses indiscriminate broadcasting to
solve this problem.) There are a variety of methods for spec-
ifying this information. For instruction-mapped interfaces,
the send instruction can leave encoding space (the log of the
maximum number of nodes) or take a parameter to specify
the destination node. For register-mapped interfaces, an ad-
ditional word may have to be sent to specify the destination.
If a node can send to only a limited number of neighboring
locations, then multiple registers can be used to denote those
directions. Finally, dynamic networks typically do not sup-
port multicast, so multiple message sends may be required
for operands that have non-unit fanout. These parameters
will impact the send and receive occupancies.
Second, receiving nodes need to be able to gather incoming

operands and match them with the appropriate instruction.
Because timing variances due to I/O, cache misses, and inter-
rupts can delay nodes arbitrarily, one cannot assume a set ar-
rival order for operands sent over the dynamic network. Thus,
a tag will also need to be sent along with each operand. When
the operand arrives at the destination, it needs to be demulti-
plexed and delivered to the correct instruction. Conventional
message-passing implementations typically would have to do
this in software, creating a considerable receive occupancy.
Section 6 of this paper measures the performance impact of
performing this operation in software. In that section, we
estimate the 5-tuple of this message-passing implementation
of a scalar operand network as <3,3+c,1,1,12> with c being
the commit latency of the processor.

Shared-memory operation-operand matching On a shared-
memory multiprocessor, one could imagine implement-



ing operation-operand matching by implementing a large
software-managed operand bu�er in cache RAM. Each com-
munication edge between sender and receiver could be as-
signed a memory location that has a full/empty bit. In order
to support multiple simultaneous dynamic instantiations of
an edge when executing loops, a base register could be incre-
mented on loop iteration. The sender processor would exe-
cute a special store instruction that stores the outgoing value
and sets the full/empty bit. The readers of a memory location
would execute a special load instruction that blocks until the
full/empty bit is set, then returns the written value. Every
so often, all of the processors would synchronize so that they
can reuse the operand bu�er. A special mechanism could 
ip
the sense of the full/empty bit so that the bits would not
have to be cleared.
The send and receive occupancies of this approach are diÆ-

cult to evaluate. The sender's store instruction and receiver's
load instruction only occupy a single instruction slot; how-
ever, the processors may still incur an occupancy cost due to
limitations on the number of outstanding loads and stores.
The send latency will be the latency of a store instruction
plus the commit latency. The receive latency would include
the delay of the load instruction, as well as the non-network
time required for the cache protocols to process the receiver's
request for the line from the sender's cache.
This approach has number of bene�ts: First, it supports

multicast (although not in a way that saves bandwidth over
multiple unicasts). Second, it allows a very large number
of live operands due to the fact that the physical register
�le is being implemented in the cache. Finally, because the
memory address is e�ectively a tag for the value, no soft-
ware instructions are required for demultiplexing. In Sec-
tion 6, we estimate the 5-tuple of this relatively aggressive
shared-memory scalar operand network implementation to be
<1,14+c,2,14,1>.

Systolic array operation-operand matching Systolic machines
like iWarp [6] were some of the �rst systems to achieve low-
overhead operation-operand matching in large-scale systems.
iWarp sported register-mapped communication, although it
is optimized for transmitting streams of data rather than in-
dividual scalar values. The programming model supported
a small number of pre-compiled communication patterns (no
more than 20 communications streams could pass through a
single node). For the purposes of operation-operand match-
ing, each stream corresponded to a logical connection between
two nodes. Because values from di�erent sources would arrive
via di�erent logical streams and values sent from one source
would be implicitly ordered, iWarp had eÆcient operation-
operand matching. It needed only execute an instruction to
change the current input stream if necessary, and then use the
appropriate register designator. Similarly, for sending, iWarp
would optionally have to change the output stream and then
write the value using the appropriate register designator. Un-
fortunately, the iWarp system is limited in its ability to facili-
tate ILP communication by the hardware limit on the number
of communication patterns, and by the relatively large cost of
establishing new communication channels. Thus, the iWarp
model works well for stream-type bulk data transfers between
senders and receivers, but it is less suited to ILP communica-
tion. With ILP, large numbers of scalar data values must be
communicated with very low latency in irregular communica-
tion patterns. iWarp's �ve-tuple can modeled as <1,6,5,0,1>
- one cycle of occupancy for sender stream change, six cycles
to exit the node, four or six cycles per hop, approximately
0 cycles receive latency, and 1 cycle of receive occupancy.
An on-chip version of iWarp would probably incur a smaller

per-hop latency but a larger send latency because, like a mul-
tiprocessor, it must incur the commit latency cost before it
releases data into the network.

5. Handling Exceptional Events Exceptional events,
despite not being the common case, tend to occupy a fair
amount of design time. Whenever designing a new archi-
tectural mechanism, one needs to think through a strategy
for handling these exceptional events. Each operand network
design will encounter speci�c challenges based on the particu-
lars of the design. It is a good bet that cache misses, branch
mispredictions, exceptions, interrupts and context switches
will be among those challenges. For instance, if an operand
network is being implemented using a dynamic network, how
do context switches work? Is the state drained out and re-
stored later? If so, how is the state drained out? Is there
a freeze mechanism for the network? Or is there a roll back
mechanism that allows a smaller representation of a process's
context? Are the branch mispredicts and cache miss requests
sent on the operand network, or on a separate network?

Having explored some of the challenges of implementing
scalar operand networks, we now look at the Raw scalar
operand network and how it addresses these �ve challenges.

5. IMPLEMENTATION OF THE RAW
SCALAR OPERAND NETWORK

This section describes the scalar operand network of the
Raw microprocessor. We received one hundred and twenty of
the .15 micron, 6-layer Cu, 330 mm2, 1657 pin, 16-tile Raw
prototypes from IBM's fabrication facility in October 2002.
The Raw prototype divides the usable silicon area into an

array of 16 identical, programmable tiles. A tile contains an
8-stage in-order single-issue MIPS-style compute processor,
a 4-stage pipelined FPU, a 32 KB data cache, two types of
communication routers { static and dynamic, and 96 KB of
instruction cache. These tiles are connected to nearest neigh-
bors using 4 separate networks, two static and two dynamic.
These networks consist of over 1024 wires per tile. The static
router controls the static network, which is used as point-
to-point transport for Raw's operand network. The dynamic
routers and networks are used for all other traÆc such as
memory, interrupts and user-level message passing codes.

Compute 
Processor

Static and

Dynamic
Routers

256 wires

Figure 8: The Raw microprocessor.

The Raw processor handles the delay scalability challenge
through tiling. Each tile is sized so that a signal can travel
through a small amount of logic and across the tile in one
clock cycle. Larger Raw systems can be designed simply by
stamping out more tiles. Figure 8 shows the array of Raw
tiles, an individual Raw tile and its network wires. Notice



that these wires are registered on input. Modulo building a
good clock tree, we do not have to worry about the frequency
decreasing as we add more tiles.
Raw's scalar operand network addresses the bandwidth scal-

ability challenge by replacing buses with a point-to-point
mesh interconnect. Because Raw's point-to-point static net-
work is programmed to route operands only to those tiles that
need them, the bandwidth required for operand transport is
decimated relative to a comparable bus implementation.
Raw's scalar operand-network achieves eÆcient operation-

operand matching through the combination of the static net-
work, an intelligent compiler, and bypass-path integrated net-
work interfaces.
The static network is used to route the outputs of instruc-

tions on one tile to the inputs of the dependent instructions on
other tiles. It provides single-cycle-per-hop latencies and can
route two values in each direction per cycle. If an instruction
output is required on the same tile, then the 0-cycle latency
internal bypass paths are used. Live but not active values can
be stored in the static router register �le, compute-processor
register �le, or in the FIFOs of the network itself.
The 5-stage static router controls two routing crossbars

and thus two physical networks. Each crossbar routes values
between seven entities { north, east, south, west, the static
router pipeline, the compute processor, and the other cross-
bar { and supports multicast. Each cycle, the static router
fetches a 64-bit instruction word from an 8 K-entry instruc-
tion cache. This instruction simultaneously encodes a small
command (conditional branches with/without decrement, ac-
cesses to a small register �le) and thirteen routes, one for each
crossbar output, for a total of fourteen operations per cycle
per tile. The static router uses its register �le to recast data
values into the compute processor in the event that they are
required multiple times.
For each word sent between tiles on the static network,

there is a corresponding instruction in the instruction mem-
ory of each router that the word will travel through. These
instructions are typically programmed at compile time, and
they are cached just like the instructions of the compute
processor. Thus, the static routers collectively recon�gure
the entire communication pattern of the network on a cycle-
by-cycle basis. Because the static router knows what route
will be performed long before the word arrives, the prepa-
rations for the route can be pipelined, and the data word
can be routed immediately when it arrives. This ahead-of-
time knowledge of routes could enable implementations of the
static network that have lower latencies and higher frequen-
cies than the equivalent dynamic network.
The static router is 
ow controlled. It will not proceed

to the next instruction until all of the routes in a particular
instruction have completed. This behavior ensures that des-
tination tiles receive incoming words in a known order, even
when tiles su�er cache misses, interrupts, branch mispredicts,
or other unpredictable events.
The Raw tile compute processor register maps all of Raw's

networks in order to interface with the on-chip networks with
minimal latencies and occupancies. Because the static net-
work has been pre-programmed with the instructions for rout-
ing the data, sender compute processors do not have to spec-
ify destinations, and receivers do not have to demultiplex in-
coming operands. Thus Raw's send and receive occupancies
are zero, and the per-hop cost is one cycle. Because a mes-
sage must go through the local switch on a route, the send
latency due to the network is one cycle.
In order to ascertain the receive and send latencies, let us

examine the Raw compute processor pipeline. Our design
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Figure 9: Direct integration of the network interfaces into

the bypass paths of the compute processor.

takes network integration one step further: the networks are
not only register-mapped but also integrated directly into
the bypass paths of the processor pipeline. This integration
makes the network ports truly �rst-class citizens in the archi-
tecture. Figure 9 shows the bypass-integrated network ports.
Registers 24 through 27 are mapped to the four physical net-
works on the chip. For example, a read from register 24 will
actually pull an element from an input FIFO, while a write to
register 24 will send the data word out onto that network. If
data is not available on an input FIFO, or if an output FIFO
does not have enough room to hold a result, the processor will
stall in the register fetch (RF) stage. The instruction format
also provides a single bit that allows an instruction to specify
two outputs: one network or register and the network implied
by r24 (the �rst static network). This feature gives the tile
the option of keeping local copies of transmitted values.
The interesting activity occurs on the output FIFOs. Each

output FIFO is connected to each pipeline stage. The FI-
FOs pull the oldest value out of the pipeline as soon as it
is ready, rather than just at the writeback stage or through
the register �le [6]. This optimization decreases the latency
of an ALU-to-network instruction by as much as 4 cycles for
our 8-stage pipeline. This logic is exactly like the standard
bypass logic of a processor pipeline except that it gives pri-
ority to older instructions rather than newer instructions. In
e�ect, we've deliberately designed an early commit point into
our processor in order to eliminate the common multiproces-
sor communication-commit delay that was described in the
challenges section.
Because of the early-commit optimization, the compute

processor incurs no additional send latency (i.e., the commit
latency c = 0). There is one cycle of receive latency because
the receive FIFOs are accessed in the dispatch stage of the
processor. The valid bits of these FIFOs are also required for
the stall logic of the pipeline. This cycle of receive latency
could be eliminated as with a superscalar if we route the valid
bits one cycle ahead of the data bits in the network.
The combination of static router, compiler, and eÆ-

cient processor-network interconnect allows Raw to perform
operand-operator matching with a 5-tuple of <0,1,1,1,0>.
Furthermore, because routes are speci�ed at compile time,
the compiler can easily guarantee that the static network sat-
is�es the deadlock and starvation challenge.
Raw's operand network also supports exceptional events,

the �nal challenge. Branch conditions and jump pointers are
transmitted over the static network, just like data. Raw's
interrupt model allows each tile to take and process interrupts
individually. Compute processor cache misses stall only the



compute processor that misses. Switches and tiles executing
instructions that attempt to route in the result of a cache-
missing load from a neighboring tile will block, waiting for
the value to be transmitted over the static network. These
cache misses are processed over a separate, dynamic network.
Raw supports context switches by draining and restore the
contents of its networks. This network state is saved o� into a
context block and then restored when the process is switched
back in.
This brief summary of Raw is expanded further in [19]

and [21]. Details on how the compiler programs the static
switch are available in [12].

6. RESULTS
This section presents results on the impact of scalar

operand network properties on performance. We focus our
evaluation on the 5-tuple cost model. First, we consider the
impact each element of the 5-tuple has on performance. We
�nd that occupancy costs have the highest impact. Then,
we consider the impact of some factors not modeled directly
in the 5-tuple. We �nd that the impact of contention and
multicast on performance is not signi�cant, which reassures
us that our cost model successfully captures �rst order ef-
fects. Finally, we use our model to study operand networks
based on traditional multiprocessor communication mecha-
nisms. Though these mechanisms are scalable, we show that
they do not provide adequate performance for operand de-
livery { which in turns justi�es the study of scalable scalar
operand networks as a distinct area of research.
Most of our experiments focus on results for 64 tiles. We

have performed all our experiments for 32 tiles as well. The
results are qualitatively similar, and due to space limitations
we do not present them here.

Experimental setup Our apparatus includes a simulator,
a memory model, a compiler, and a set of benchmarks.

Simulator Our experiments were performed on Beetle, a
validated cycle-accurate simulator of the Raw microproces-
sor [19]. In our experiments, we used Beetle to simulate up
to 64 tiles. Data cache misses are modeled faithfully; they
are satis�ed over a dynamic network that is separate from
the static scalar operand network. All instructions are as-
sumed to hit in the instruction cache.
Beetle has two modes: one mode simulates the Raw proto-

type's actual static scalar operand network; the other mode
simulates a parameterized scalar operand network based on
the 5-tuple cost model. The parameterized network correctly
models the occupancy and latency costs, but it does not
model contention. The network maintains an in�nite bu�er
for each destination tile, so an operand arriving at its des-
tination bu�er is stored until an ALU operation consumes
it.

Memory model The Raw compiler maps each piece of pro-
gram data to a speci�c home tile. This home tile becomes
the tile that is responsible for caching the data on chip. The
distribution of data to tiles is provided by Maps, Raw's com-
piler managed memory system [4, 11]. Using compiler anal-
ysis, Maps attempts to select a distribution that guarantees
that any load or store refers to data corresponding to exactly
one home tile. Dense matrix arrays, for example, usually get
distributed element-wise across the tiles. The predictability
of the accesses allows memory values to be forwarded from
the caches of the home tiles to other tiles using the static
operand network, which is much faster than the analogous
dynamic mechanism. See [4] for details.

2 4 8 16 32 64
cholesky 1.622 3.234 5.995 9.185 11.898 12.934
vpenta 1.714 3.112 6.093 12.132 24.172 44.872
mxm 1.933 3.731 6.207 8.900 14.836 20.472
fpppp-kernel 1.511 3.336 5.724 6.143 5.988 6.536
sha 1.123 1.955 1.976 2.321 2.536 2.523
swim 1.601 2.624 4.691 8.301 17.090 28.889
jacobi 1.430 2.757 4.953 9.304 15.881 22.756
life 1.807 3.365 6.436 12.049 21.081 36.095

Table 1: Performance of Raw's static scalar operand net-

work <0,1,1,1,0> for two to 64 tiles. Speedups are relative

to that on one tile.

Compiler Code is generated by Rawcc, the Raw parallelizing
compiler [12]. Rawcc takes sequential C or Fortran programs
and parallelizes them across the Raw tiles. Rawcc operates on
individual scheduling regions, each of which is a single-entry,
single-exit control 
ow region. The mapping of code to Raw
tiles includes the following tasks: assigning instructions to
tiles, scheduling the instructions on each tile, and managing
the delivery of any non-local operands.
Before scheduling, Rawcc performs unrolling for two rea-

sons. First, it unrolls to expose more parallelism. Second,
unrolling is performed in conjunction with Maps to allow the
compiler to distribute arrays, while at the same time keeping
the accesses to those arrays predictable.
To make intelligent instruction assignment and scheduling

decisions, Rawcc models the communication costs of the tar-
get network accurately. Our memory placement algorithm,
however, is currently insensitive to the latency of the scalar
network. (The compiler, however, does attempt to place op-
erations close to the memory banks they access.) Therefore,
when dense matrix arrays are distributed, they are always dis-
tributed across all the tiles. As communication cost increases,
it may be better for the arrays to be distributed across fewer
tiles, but our experiments do not vary this parameter.
Even though the Raw hardware has zero receive occupancy

cost, Rawcc inserts a move instruction to bu�er an incoming
operand that is needed more than once in a destination tile.
In this select case, because the operand is not consumed di-
rectly from the network, the receive occupancy is one. For
convenience, we will continue to use <0,1,1,1,0> to represent
Raw's static scalar operand network.

Benchmarks The benchmarks we used for our experiments
are Cholesky, Vpenta, Mxm, Swim, Fpppp-kernel, Sha, Ja-
cobi and Life. Cholesky, Vpenta, and Mxm are from Nasa7 of
Spec92. Swim is from Spec95. Fpppp-kernel consumes 50%
of the run-time of Spec95's Fpppp. Sha is an implementa-
tion of Secure Hash Algorithm. Jacobi and Life are from the
Raw benchmark suite [3]. Fpppp-kernel and Sha are irregular
codes, while the rest are dense matrix codes. The problem
sizes of the dense matrix applications have been reduced to
cut down on simulation time. To improve parallelism via un-
rolled loop iterations, we manually applied an array reshape
transformation to Cholesky, and a loop fusion transformation
to Mxm. Both transformations can be automated.

Impact of each 5-tuple parameter on performance
We evaluated the impact of each 5-tuple parameter on per-
formance. We used the Raw static operand network as the
baseline for comparison, and we recorded the performance as
we varied each individual 5-tuple parameter.

Baseline performance First, we measured the absolute per-
formance attainable with the actual, implemented Raw static
operand network with 5-tuple<0,1,1,1,0>. Table 1 shows the
speedup attained by the benchmarks as we vary the number
of tiles from two to 64. Speedup for a benchmark is computed
relative to its execution time on a single tile.
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Figure 10: E�ect of send occupancy on performance on

64 tiles, i.e., <n,1,1,1,0>.

All of the benchmarks are able to gain additional perfor-
mance with additional tiles. On 64 tiles, Sha has the least
parallelism and attains a 2.5 fold speedup. Fpppp-kernel and
Cholesky contain modest amounts of parallelism and attain 7
and 13 fold speedup, respectively. The remaining �ve bench-
marks (Vpenta, Mxm, Swim, Jacobi, and Life) have enough
parallelism for the speedup to scale well up to 64 tiles, with
speedups ranging from 20 to 45. The presence of sizable
speedup validates our experimental setup for the study of
operand networks { without such speedups, it would be moot
to explore operand networks that are scalable.

Send and receive occupancies Next, we measured the e�ects
of send and receive occupancies on performance. We empha-
size that these occupancies are visible to the compiler so that
it can account for them as best as it can when it schedules
ILP. Figures 10 and 11 graph these e�ects. All data points
are based on 64 tiles. A performance of 1.0 corresponds to
the performance of the actual Raw static operand network
with 5-tuple <0,1,1,1,0>.
The trends of the two occupancy curves are similar. Over-

all, results indicate that occupancy impacts performance sig-
ni�cantly. Except for the anomaly for Mxm explained below,
performance drops by as much 25% even when the send oc-
cupancy is increased from zero to one cycle. Increasing the
send occupancy from one to two yields between a 0% to 10%
loss, with the rest of the curves following linear trends. For
receive occupancy, the performance curves look like those of
the send occupancy shifted by one, with the datapoint for
receive occupancy p corresponding to the datapoint for send
occupancy p + 1. As noted in the experimental setup, the
base receive occupancy is somewhere between zero and one,
which helps explain this correspondence.
The slope of each curve is primarily a function of the

amount of slack in the schedule. Benchmarks with large num-
ber of cache misses, such as Vpenta, have higher slacks and
are able to better tolerate increase in send occupancies.
The large drop o� in performance for Mxm when going

from zero to one in send occupancy is due mainly to an issue
with register allocation and not the occupancy increase it-
self. The nature of the accesses in Mxm requires that its loop
be unrolled along two dimensions in order for Maps to get
predictable memory accesses. This unrolling leads to a large
basic block with many live ranges that are diÆcult to register
allocate. The quality of the register allocation is somewhat
due to luck, and this factor can have a large e�ect on per-
formance. It happens that the code for send occupancy one
register allocates much better than the code for send occu-
pancy zero.
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Figure 11: E�ect of receive occupancy on performance on

64 tiles, i.e., <0,1,1,1,n>.

It is clear from these results that scalar operand networks
should implement zero cycle send and receive occupancy.

Send and receive latencies We switched to the parameterized
scalar operand network to measure the e�ects of send and re-
ceive latencies on performance. For this experiment, we set
the network hop latency to zero, with 5-tuple <0,n,0,0,0>
or <0,0,0,n,0>. Due to simulator constraints, the minimum
latency we can simulate is one. Note that because the pa-
rameterized network does not model contention, the e�ect of
n cycles of send latency is the same as the e�ect of n cycles
of receive latency, so we need not collect data for both. Also,
note that each of these 5-tuples also happens to represent an
n cycle contention-free crossbar.
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Figure 12: E�ects of send or receive latencies on perfor-

mance on 64 tiles, i.e., <0,n,0,0,0> or <0,0,0,n,0>.

Figure 12 graphs these latency e�ects on performance on
64 tiles. As with the occupancy experiments, a speedup of
1.0 represents the performance of the Raw static operand
network with 5-tuple <0,1,1,1,0>.
Intuitively, we expect benchmark sensitivity to latency to

depend on its granularity of available parallelism. The �ner
the grain of parallelism, the more sensitive the benchmark
is to latency. Granularity of parallelism does not necessary
correspond to amount of available parallelism: it is possible
to have a large amount of �ne-grained parallelism, or a small
amount of coarse grained parallelism.
We found that the sensitivity to latency varies greatly be-

tween the benchmarks. Cholesky, Swim, and Vpenta exhibit
\perfect" locality and thus coarse grained parallelism, so they
are not sensitive to latency at all. Note that in our compi-
lation framework, perfect locality not only requires that the



computation exhibit good locality, but that memory accesses
also exhibit good locality. The rest of the benchmarks have
�ner grained parallelism and incur slowdown to some degree.
Sha, which has the least amount of parallelism, also has the
�nest grained parallelism and su�ers the worst slowdown.
There is an anomaly with Jacobi for latency eight and 16,

where the application actually speeds up as latency increases.
This behavior is due to a factor not accounted for in the com-
piler. The compiler schedules each scheduling region individ-
ually, assuming that they all start and end at the same time,
but the actual execution of scheduling regions may overlap.
It just happens that the schedules for latency eight and 16
overlap much better than the schedules with lower latency.
Overall, we observe that benchmark performance is less

sensitive to send/receive latencies than to send/receive occu-
pancies. Even restricting ourselves to consider only bench-
marks that are latency sensitive, a latency of 64 causes about
the same degradation of performance as an occupancy of 16.
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Figure 13: E�ects of network hop latency on performance

on 64 tiles, i.e., <0,0,n,1,0>.

Network hop latency We also measured the e�ect of network
hop latency on performance. The 5-tuple that describes this
experiment is <0,0,n,1,0>, with n varying from zero to �ve.
The range of hop latency is selected to match roughly with
the range of latency in the send/receive latency experiment:
when hop latency is �ve, it takes 70 cycles (14 hops) to travel
between opposite corner tiles.
Figure 13 shows the result of this experiment. As expected,

the graph exhibits the same qualitative properties as that of
the send/receive latency experiment. Cholesky, Vpenta, and
Swim are not adversely e�ected by the latency (The Cholesky
speedup anomaly is due to the same e�ect that caused Ja-
cobi to speed up with send/receive latency). The rest of the
benchmarks incur varying degree of slowdowns.

Summary These experiments indicate that the most perfor-
mance critical components in the 5-tuple for 64 tiles are the
send and receive occupancies, followed closely by the per-hop
latency, followed more distantly by send and receive laten-
cies. The 5-tuple framework gives structure to the task of
reasoning about the tradeo�s in the design of scalar operand
networks.

Impact of other factors on performance We now con-
sider some factors not accounted for in our 5-tuple cost model:
network contention and multicast.

Contention We measured contention by comparing the per-
formance of the actual Raw static scalar operand network
with the performance of the parameterized operand network
with the same 5-tuple: <0,1,1,1,0>. The former models con-
tention while the latter does not. Figure 14 plots this com-
parison. Each data point is a ratio of the execution time of
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Figure 14: Impact of removing contention.

the realistic network over that of the idealized contention-free
network. Thus, we expect all data points to be 1.0 or above.
The �gure shows that the cost of contention is modest and

does not increase much with number of tiles. On 64 tiles,
the average cost of contention is only 5%. The anomaly
with Mxm is caused by the register allocation nonlinearity
explained earlier.

Multicast Raw's scalar operand network supports multicast,
which reduces send occupancy and makes better use of net-
work bandwidth. We evaluated the performance bene�t of
multicast on the Raw static network for 64 tiles. For the case
without multicast, we assume the existence of a broadcast
mechanism that can transmit control 
ow information over
the static network with reasonable eÆciency.
Somewhat surprisingly, we �nd that bene�t of multicast is

small. On 64 tiles, Cholesky bene�ts by 5%, Mxm by 1%.
The rest of the applications do not bene�t at all.

Summary The results of the two experiments in this section
provide some validation that our 5-tuple cost model is useful.
It suggests that e�ects not modeled directly by the 5-tuple
are not signi�cant, and that the model captures to �rst order
the performance of operand networks.

Performance of multiprocessor-based operand net-
works Using the 5-tuple cost model, we model various re-
alistic operand networks based on traditional multiprocessor
communication mechanisms, and we analyze how our bench-
marks perform on those networks. These results motivate
the di�erences in performance requirements between scalar
operand networks and multiprocessor networks.

Dynamic operand network We �rst derive the 5-tuple param-
eters for an operand network based on traditional message
passing via a dynamic network. To derive our parameters,
we design an implementation of an operand network using
Raw's dynamic network. Note that the Raw dynamic net-
work is already more suitable to operand delivery than tra-
ditional dynamic networks because of its low latency, but it
still lacks direct support for operation-operand matching and
eÆcient deadlock avoidance. As described below, our imple-
mentation performs operation-operand matching in software,
but it does not account for the cost of deadlocks, which is of-
ten signi�cant. Thus, the 5-tuple parameters in this study are
likely to be far better than those of existing implementations.
We implement operand delivery on the dynamic network as

follows. An operand message includes three words: the mes-
sage header with the addressing information, an operand tag,
and the operand itself. The receiving tile receives the operand
through polling. Although the compiler performs best-e�ort
scheduling to match up the timing of operand delivery and
consumption, timing variations associated with cache misses
and interrupts can cause operands to be delivered out of or-
der. To handle the case of unexpected operands, the receiver
performs the following: upon receiving an operand, it checks



the tag of the operand, and it bu�ers the operand in mem-
ory if the tag does not match with the expected tag. Before
checking the network, the receive code �rst checks this bu�er
to see if the operand has already been bu�ered.
The 5-tuple parameters are computed as follows. The send

occupancy is the time it takes to send the operand message:
three cycles. Assuming cache hits, the receive occupancy is
seven cycles { if all operands arrive in the expected order on
a destination tile. When an operand arrives out of order, it
costs an extra �ve cycles to perform the bu�ering, for a total
of 12 cycles. We use the send plus receive latency cost to
capture the component of the latency that is independent of
the number of hops. This latency includes the same latency
incurred by the static network (two cycles), as well as the
number of \turns" a message takes, which is always either
one or two. Thus, send plus receive latency is either three or
four. The network hop latency is one.
We de�ne two 5-tuples to bound the performance of this

implementation. RawDynSlow uses all maximum parameter
values, while RawDynFast uses all minimum parameter val-
ues. They are <3,3+c,1,1,12> and <3,2+c,1,1,7>, respec-
tively. Recall that c is the commit latency.

Dynamic operand network with hardware support We next
consider a dynamic operand network with additional hard-
ware support to eliminate occupancy costs. To eliminate send
occupancy, we can provide a register-mapped network inter-
face, with the operand tag and operand destinations encoded
in the instruction itself. On the receive side, messages can
be received into dedicated hardware bu�ers that are indexed
by the message tag. This bu�er eliminates the receive occu-
pancy, but it does add one cycle of receive latency. In actual
use, the bu�er must also be 
ushed periodically to allow reuse
of message ids, but we assume that this cost is negligible.
We name this implementation RawDyn+Hard, with 5-tuple
<0,2+c,1,2,0>.

Shared memory operand network For an on-chip shared
memory multiprocessor, we estimate the cost of a software-
managed operand bu�er discussed in Section 4. We make
the most aggressive assumptions to get a bound on the best
performance possible. We assume that values in the operand
bu�er are communicated through the L2 caches, likely the
fastest available communication between tiles. We model
operand delivery as having the equivalent latency of two
cache misses, one on the sender side and one on the receive
side. We assume that a cache miss takes 14 cycles, which is
commensurate with the latency of L2 cache misses for chip-
multiprocessors today.
The 5-tuple for this operand network is computed as fol-

lows. Sends use a store instruction, with occupancy one. Re-
ceives use a load instruction, also with occupancy one. The
sends and receive latencies are modeled as cache misses, with
latency 14. Because operand delivery involves both a request
and a reply through the network, the net network hop la-
tency is two to account for the round-trip. Thus, the 5-tuple
is <1,14+c,2,14,1>. We use SMP to refer to this network
and its 5-tuple.

Analysis Figure 15 shows the average benchmark perfor-
mance of the operand networks on 64 tiles. The �gure
includes the four networks discussed in this section, with
the optimistic assumption that the commit latency is zero.
Since all these networks are modeled without contention,
we use the Raw scalar operand network without contention
as baseline, and we normalize all performance bars to that
baseline. For reference, the �gure also includes the perfor-
mance of RawActual, the actual Raw static network, and
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Speedup
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Figure 15: Performance spectrum of operand networks.

UnitCrossbar, a single-cycle, contention-free crossbar with 5-
tuple <0,0,0,1,0>. Note that RawActual is the only con�gu-
ration that models contention. Our results show that tradi-
tional communication mechanisms are ineÆcient for scalar
operand delivery. Operand delivery via dynamic network
has high occupancy costs, while operand delivery via shared
memory has high latency costs. The average performance is
39% to 53% worse than the baseline. With additional hard-
ware support for operation-operand matching, we can elim-
inate the large occupancies of a dynamic operand network,
reducing the performance gap to 4% relative to baseline.

7. RELATED WORK
Table 2 contrasts a number of commercial and research sys-

tems and the approaches that they use to overcome the chal-
lenges of implementing scalable scalar operand networks. We
employ tabular form rather than sentence form to facilitate
easy comparisons of the systems. The �rst section of the table
summarizes the 5-tuples, and the number of ALUs and fetch
units supported in each of the scalar operand networks. The
second, third, and fourth sections give the way in which the
networks address the delay scalability, bandwidth scalabil-
ity, and operation/operand matching challenges, respectively.
The solutions to the deadlock and exceptions challenges are
not listed because they vary between implementations of su-
perscalars, distributed shared memory machines and message
passing machines, and they are not speci�ed in full detail in
the Grid and ILDP papers. Note that the ILDP and Grid
papers examine a range of estimated costs; more information
on the actual costs will be forthcoming when those systems
are implemented.
This paper extends an earlier framework for operand net-

works that was given in [20].

8. CONCLUSIONS
As we approach the scaling limits of wide-issue super-

scalar processors, researchers are seeking alternatives that
are based on partitioned microprocessor architectures. Par-
titioned architectures distribute ALUs and register �les over
scalar operand networks that must somehow account for com-
munication latencies. Even though the microarchitectures
are distributed, ILP can be exploited on these operand net-
works because their latencies are extremely low. This pa-
per makes several contributions: it introduces the notion of
scalar operand networks and discusses the challenges in im-
plementing scalable forms of these networks. The challenges
include dealing with both the increasing delay and limited
bandwidth related to scalable networks, implementing ultra-
low cost operation-operand matching, avoiding deadlock and
starvation, and achieving correct operation in the face of ex-
ceptional events. The paper looks at several recently pro-
posed distributed architectures that exploit ILP and discusses
how each addresses the challenges. This paper also describes
the implementation of an operand network in the Raw micro-
processor and discusses how the implementation deals with



Distributed Message
Superscalar Shared Memory Passing Raw Grid ILDP

Tuple <0,0,0,0,0> <1,14+c,2,14,1> <3,3+c,1,1,12> <0,1,1,1,0> <0,0,n/8,0,0> <0,n,0,1,0>
(c = commit time) 0 � n � 8 n = 0; 2

# ALUs 4 Many Many 4x4 to 32x32 8x8 8

# Fetch units for 1 N N N 1 1
N Tiles

Delay scalability None Tiling Tiling Tiling Partial Tiling Partial Tiling
mechanism

Operand transport Broadcast Point-to-point Point-to-point Point-to-point Point-to-point Broadcast
mechanism

Operand matching Associative Full-empty bits Software Compile-time Distributed, Full-empty bits
mechanism instruction on table in demultiplexing scheduling associative on distributed

window cached RAM instruction window register �le

Intra-node Runtime Runtime Compile-time Compile-time Runtime Compile-time
instruction order ordering ordering ordering ordering ordering ordering

Free intra-node Yes Yes Yes Yes No Yes
bypassing?

Instruction Dynamic Fixed Fixed Fixed Fixed Dynamic
distribution assignment assignment, assignment, assignment, assignment, assignment of

compiler compiler compiler compiler instruction groups

Table 2: Survey of scalar operand networks

each of the challenges in scaling scalar operand networks.
This paper breaks down the latency of operand transport

into �ve components <SO, SL, NHL, RL, RO>: send oc-
cupancy, send latency, network hop latency, receive latency,
and receive occupancy. The paper evaluates several fami-
lies of scalar operand networks based on this 5-tuple. Our
early results show that send and receive occupancies have the
biggest impact on performance. For our benchmarks, perfor-
mance decreases by up to 25 percent even if the occupancy on
the send or receive side increases by just 1 cycle. The per-hop
latency follows closely behind in importance. Other parame-
ters such as send and receive latencies, presence of multicast,
and network contention have smaller impact.
In the past, the design of scalar operand networks was

closely tied in with the design of other mechanisms in a mi-
croprocessor { for example, register �les and bypassing. In
this paper, we attempt to carve out the generalized scalar
operand network as an independent architectural entity that
merits its own research. We believe that research focused on
the scalar operand network will yield signi�cant simpli�ca-
tions in future scalable ILP processors.
Avenues for further research on scalar operand networks

are plentiful. A partial list includes: (1) Designing net-
works that achieve a high clock rate while minimizing the
�ve components related to performance, (2) evaluating the
performance for much larger numbers of tiles and a wider
set of programs, (3) generalizing the operand networks so
that they support other forms of parallelism such as stream
parallelism and thread parallelism in SMT-style processing,
(4) complete designs and evaluation of both dynamic and
compile-time schemes for operation-operand assignment and
scheduling, (5) mechanisms for fast exception handling and
context switching, (6) a thorough analysis of the tradeo�s be-
tween commit point, exception handling capability, and send
latency, and (7) low energy scalar operand networks.
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