Bridging the Parallelization Gap:
Automating Parallelism Discovery and Planning

Saturnino Garcia, Donghwan Jeon, Chris Louie, Sravanthi Kota Venkata,
and Michael Bedford Taylor
Department of Computer Science & Engineering
University of California, San Diego
http://parallel.ucsd.edu/pyrprof

Abstract

Multicore processors have forced mainstream program-
mers to rethink the way they design software. Parallelism
will be the avenue for performance gains in these multi-
core processors but will require new tools and method-
ologies to gain full acceptance by everyday program-
mers. As a step towards improved parallelization tools,
we propose a parallelization taxonomy that categorizes
tools based on which of five fundamental stages of par-
allelization they assist with. Based on this taxonomy,
we find that many popular parallelization tools focus
on the final stages, leaving the programmer to perform
the initial stages without assistance. In this paper we
provide a preliminary description of pyrprof, a tool
that helps the programmer locate parallel regions of code
and decide which regions to parallelize first. pyrprof
performs dynamic critical path analysis and utilizes the
structure of programs to highlight exploitable forms of
parallelism. A case study based on MPEG encoding is
used to demonstrate pyrprof’s effectiveness.

1 Introduction

With the promise of mainstream multiprocessors comes
the formidable challenge of programming them. Pro-
gramming these multicore processors will require the
programmer to perform the notoriously difficult task of
exploiting parallelism. These parallelism requirements
as well as the ubiquity of multicore processors have
forced parallelization into the consciousness of the main-
stream programming community. To address the rising
prevalence of parallel programming, many tools have
been developed to aid the programmer in this difficult
task. Unfortunately, these tools do not form a com-
plete flow that addresses all parts of the parallelization
task. This absence of tools for several key paralleliza-
tion stages has created a “parallelization gap” that the
programmer must bridge on their own. This gap hinders
programmers’ effectiveness in exploiting the parallel re-

1 Discovery

: ~ @@

PyrProf
P2 ‘ Planning ‘
SUIF SRR
Polaris 3 ‘ Enabling ‘
RawCC Transforms |
{ 4‘ Code ‘

Generation | OpenMP,
b g Cilk++,
< | Runtime etc

{ | Management | ;

Figure 1: A Taxonomy of Parallelization The taxon-
omy categorizes parallelization tools based on which of
five fundamental parallelization stages they assist with.
Automatically parallelizing compilers like Polaris [1]
and SUIF [3] attempt to perform all five without pro-
grammer assistance, while tools like OpenMP, Cilk++
[6], and X10 [8] focus on the last two. The paper’s tool,
pyrprof, targets the first two stages.

sources of multicore processors and threatens to limit the
potential of these chips.

The parallelization gap is partially a result of the lack
of a well-established terminology to describe the stages
involved in parallelization. As shown in Figure 1, we
have developed a taxonomy for common parallelization
stages. Parallelization begins with Parallelism Discov-
ery, which is the process of identifying regions of a pro-
gram that have exploitable parallelism. Locating these
regions of the program is especially onerous for large,
complex programs or when —as is often the case—the
parallel programmer is not the original author of the pro-

gram. The next stage, Parallelism Planning, determines
which subset of these parallel regions should be paral-
lelized. Ideally, this plan would consider many factors
including the parallel resources available and the run-
time environment’s ability to effectively utilize each type
of parallelism. The third step is Enabling Transforms.
These are source-level transformations that the user per-
forms in order to enhance the parallelizability of the code
used in subsequent stages. The parallelization process
concludes with the final two steps of Parallel Code Gen-
eration and Runtime Management. During these two
stages, parallel/threaded code is generated and runtime
systems provide an environment that allows for parallel
execution of the program.

As shown in Figure 1, automatic parallelizing com-
pilers such as Polaris [1], [5], and SUIF [3] automate
all of the stages in the parallelization taxonomy. Al-
though they eliminate the need for manual intervention,
the performance of code generated by these compilers
often pales in comparison with code generated manu-
ally. This lack of performance stems from the difficulty
of many of these steps; the compiler cannot effectively
perform them without the benefit of runtime informa-
tion or without otherwise unsound semantic changes by
the user. While additional information could potentially
improve their performance, early parallelizing compilers
did not have each mechanism for the user to influence
their behavior. Without this additional input, these com-
pilers had an all-or-nothing feel: the compiler either did
all of the work or none of it.

An alternative to the fully-automated approach is to
separate the parallelization process into the stages shown
in Figure 1 and make use of parallel programming tools
to automate as much of the work as possible. These tools
would relieve most of the burden on the programmer and
allow them to focus on the Enabling Transforms stage
where automated tools are most limited. Recent tools
such OpenMP, Cilk++ [6], and X10 [8] are examples
of how user-centered tools can improve the productiv-
ity of parallel programmers. These tools provide exten-
sions to standardized languages that allow a programmer
to explicitly specify parallel regions and synchronization
points and automatically handle the final two stages of
the parallelization process. By the time a programmer
can utilize tools such as OpenMP and Cilk++, they must
have already performed the first three stages of paral-
lelization without assistance. We refer to this lack of
assistance as the parallelization gap.

To help the programmer bridge the parallelization gap,
we have developed pyrprof, which performs both Par-
allelism Discovery and Parallelism Planning. pyrprof
profiles a sequential program to determine the amount
of parallelism in each region, typically a loop or func-
tion, of a program. We call the tool pyrprof because

it analyzes the program at every level of region nesting,
similar to multi-scale pyramid representations in image
processing. This is an important feature for choosing the
right granularity at which to exploit parallelism. A
visual representation of pyrprof’s discovery stage can
also provide insight during parallelization.

To help determine what regions to parallelize first,
pyrprof’s planning phase takes the output of the paral-
lelism discovery phase and creates a sequence in which
the regions should be parallelized. It is designed to be
as easy to use as gprof but with additional capabilities
needed by the parallel programmer. If the user wishes
to deviate from the presented plan, pyrprof offers an
interface that allows the programmer to specify regions
which they cannot or will not parallelize. This input is
used by pyrprof to revise its recommendations.

The rest of the paper is structured as follows. We
start by providing a case study of pyrprof based on
an MPEG encoding program in Section 2. In Section 3
we discuss the implementation of pyrprof including
its two main phases: discovery and planning. Finally, we
summarize our work in Section 4.

2 Case Study: MPEG encoder

Before we describe how pyrprof is implemented, we
will motivate the need for such a tool as well as demon-
strate its capabilities through the use of a case study. For
this case study, we looked at the MPEG encoder applica-
tions from the ALP benchmark suite [9]. This program
provides ample opportunities for parallelization and in-
cludes a reference parallelized implementation which
employed pthreads.

To create a simple yet effective tool for discovering
and planning for parallelism, we took inspiration from
gprof [2]. gprof is a profiling tool that presents the
user with a list of functions ordered by the amount of
time the program spent executing them. A programmer
typically visits functions in order down this list, looking
for optimization opportunities. Implicitly, gprof’s or-
dering addresses Amdahl’s Law-style limitations by fo-
cusing the programmer on the regions of the program
that apply to the largest percentage of the program’s dy-
namic execution. Typically, the user stops when potential
speedups become overly limited by Amdahl’s Law.

While both pyrprof and gprof seek to provide
an ordering based on potential for optimization, only
pyrprof takes into account both the time spent in each
region and the potential speedup benefits from that re-
gion’s inherent parallelism. These benefits require not
only an assessment of the amount of available paral-
lelism, but also an evaluation of the effect of paralleliza-
tion of a region on overall execution time. These effects
can be quite subtle, because the performance benefit de-

$> make CC=pyrprof-cc

$> ./mpeg_enc -1 input.data —-o output.mpg
$> pyrprof mpeg.enc --exclude=exclude.txt -n 7

The following regions will be excluded from recommendations: D, E
GNTES

ID Cum. Incr File Lines Function Type
1 A 3.14 3.14 motion.c 208 - 220 ptmotion_estimation loop
2 B 4.40 1.40 motion.c 211 - 220 ptmotion_estimation loop
3 G 5.50 1.25 transfrm.c 176 - 233 pttransform loop
4 H 7.17 1.30 transfrm.c 249 - 305 ptitransform loop
5 C 9.60 1.34 putpic.c 376 - 612 ptputpict loop
6 F 13.50 1.41 quantize.c 105 - 137 ptquant loop

Parallelize these regions in the exact

order shown.

If you decide not

to parallelize a region,

add it to the

exclude list and rerun pyrprof.

Figure 2: Output of pyrprof. pyrprof-cc transparently inserts instrumentation code into the program. After
running the program, pyrprof uses the profiling results to produce ordered recommendations, with the option to
exclude specific regions that the user has decided not to parallelize. pyrprof includes an approximate upper bound

on expected speedup (GNTES).

Region | gprof | pyrprof | pyrprof
initial interactive
A 7 1 1
B 8 3 2
G 27 41 3
H 31 29 4
C 35 35 5
F 42 13 6
D 3 4 exclude
E 5 2 exclude

Table 1: For each region in the original serial version of
MPEG encode that improved program performance after
parallelization, the corresponding rank given by gprof,
non-interactive pyrprof, and interactive pyrprof.
gprof was extended with region support. Region B was
not parallelized by the ALP reference parallel implemen-
tation; based on pyrprof’s results, we were able to im-
prove the performance.

pends non-linearly on what future and previous regions
in the program have been or will be parallelized. For
example, only parts of the program that are on the crit-
ical path will affect execution time when parallelized.
gprof does not capture either of these accurately in its
relative execution time-based ordering. pyrprof takes
both of these into account by modeling the execution
time of the program using information such as the par-
allelism in each region, the structure of the program, and
the parallelization status of each region. Section 3.2 dis-

cusses these factors in more detail.

Figure 2 shows the output of running pyrprof on
the original serial version of the MPEG encoder bench-
mark and displays the steps required to use pyrprof.
pyrprof integrates seemlessly into current compilation
frameworks by providing a drop-in replacement for gcc:
pyrprof-cc. pyrprof-cc inserts all the necessary
instrumentation code into the program so pyrprof’s
parallelism analysis is performed during the normal exe-
cution of the program. A special file is created after run-
ning the compiled program which pyrprof uses to pro-
vide an ordered set of recommendations to the user. The
user will examine these recommendations, in order, and
if they are unable to effectively exploit the parallelism
in a particular region, they should add it to an exclusion
list and rerun pyrprof so that it can adjust the plan.
pyrprof’s output provides not only basic region infor-
mation (source file, line numbers, and type) but also the
somewhat facetiously named Guaranteed Not To Exceed
Speedup, or GNTES. The GNTES provides an approx-
imate upper bound on the speedup that can be obtained
without speculation or dependence-altering transforma-
tions. It comes in a cumulative form, including all re-
gions above it, and an incremental form, indicating the
marginal benefit of that region. The GNTES is calculated
based on pyrprof’s region time estimation model. Our
experience suggests that GNTES is well correlated with
speedup across a diverse collection of multicore archi-
tectures and programmer skill levels.

Table 1 provides a comparison of pyrprof with

gprof. The first six regions were the ones that resulted
in the best parallel execution time for the benchmark.
The last two regions are two regions that were recom-
mended by pyrprof but were excluded after examina-
tion by the user. The first column shows how gprof
ranked these regions. The second column shows the ini-
tial ranking of pyrprof, and the third column shows
the final output of pyrprof after the user had iterated
on the recommendations and excluded two regions. The
results show that only one of the parallelized regions
in the optimized parallel implementation (region A) ap-
peared in the top ten list of gprof while the others fell
between 27 and 42 out of total 189 regions. Interestingly,
pyrprof recommended a region, B, not exploited by
the original authors of the ALP benchmark, and we were
able to get additional speedup. Overall, the numbers
show that pyrprof is significantly more effective at pri-
oritizing the important regions than gprof.

2.1 Eyeballing pyrprof’s Discovery Stage

While pyrprof provides an order in which regions
should be parallelized, the user may wish to understand
graphically the structure of parallelism in these and other
regions. Like with turn-by-turn directions from Google,
the graphical overview can be used to sanity check the
step-by-step directions. Figure 3 visualizes pyrprof’s
analysis of the serial version of the MPEG encoder pro-
gram. The x-axis charts the serial execution time of the
program from start to finish, and is further subdivided
into boxes whose left and right sides indicate the start
and finish times for each (possibly nested) program re-
gion. The relative widths of the boxes can be used to
infer their relative importance with respect to the serial
execution time (e.g. region A takes much more time than
region G, F, or H). The y-axis of this chart plots the ideal
parallelism based on pyrprof’s analysis.

In addition to providing the user with a sense of the rel-
ative importance of the regions in a program, the chart in
Figure 3 can quickly reveal the structure of the program
and the relationships between regions. For example, Fig-
ure 3 shows that region A encompasses 8 instances of
region B while region E contains instances of A, C, F,
G, and H. In the first case, region A has a higher ideal
parallelism than the regions it encloses. This indicates
that there is more parallelism to be found by executing
these enclosed regions in parallel. In the case of region
E, the ideal parallelism is below that of most of its en-
closed regions. This is likely because region C is having
an Amdahl’s Law effect on the speedup of region E.

3 pyrprof Implementation

As described in the introduction, pyrprof addresses
the first two stages of the parallelization process: Paral-

lelism Discovery and Parallelism Planning. During the
discovery stage, pyrprof profiles the application to es-
timate the parallelism in each region. The planning stage
then uses these estimates to order the regions based on
their potential parallelization benefit. We now examine
pyrprof’s implementation of these two stages.

3.1 Discovery Stage

pyrprof’s discovery stage analyzes every region in the
target application to determine its suitability for paral-
lelization. pyrprof currently gathers two important
classes of information as part of this task. First, it es-
tablishes the amount of work in each region by analyz-
ing the dynamic instruction counts. Second, it estimates
the amount of parallelism in each region by analyzing
runtime control and data dependences, including those
through memory.

pyrprof finds the dependencies and estimates the
parallelism available in a region using a dynamic analy-
sis. Using a dynamic analysis instead of a static analysis
allows pyrprof’s planning stage to make use of run-
time information, including control-flow transfers and
run-time memory dependences. pyrprof uses LLVM
[4] to insert instrumentation directly into the source code
before it is compiled. We opt for this approach over
a dynamic binary instrumentation infrastructure such as
Valgrind [7] for two key reasons. First, it allows us to
perform a deeper analysis of the underlying source code
that would be hard or otherwise impossible to discover
from the binary. Our experience in working with binary
instrumentation has suggested that it often requires rela-
tively complex and sometimes approximate heuristics to
uncover critical information such as the location of re-
gion boundaries, control dependencies, and false depen-
dencies caused by loop induction variables. Source-level
instrumentation provides easy access to all of these. Sec-
ond, using source-level input allows pyrprof to heav-
ily optimize the instrumentation code against the original
source code, resulting in better combined performance.

During profiling, pyrprof estimates the parallelism
in each region of code based on two factors: the amount
of work in the region, and the critical path time of the re-
gion. pyrprof’s profiling infrastructure determines the
earliest time that an instruction will be available based
on its data and control dependencies as well as the time
required to execute that instruction. pyrprof tracks
the latest availability time in each region using a shadow
memory infrastructure to determine the earliest possible
time that the region can complete. This time is referred
to as the critical path time. pyrprof divides the criti-
cal path time into the total amount of work in the region
to determine the average ideal parallelism of the region.
We define ideal parallelism as the number of instructions
the region can execute in parallel at any given time, on

H
G G
32768 4) -

16384 —

8192 —
4096 —
2048 —

1024 —
512 —
256 —

]

128

Ideal Parallelism

64 —
32
16

PN A~
1

I T
I I
I I
I I
I f
I I
| |
| I
I I
| I
I I
| I
I I
I I
I I
I I
I I
I I
1 1

T T T 1

0% 10% 20% 30% 40%

T T T T T
50% 60% 70% 80% 90% 100%

Percent of Serial Execution Time from Cycle 0 to 89,477,402

Figure 3: Visualization of pyrprof’s parallelism analysis for MPEG encoder benchmark.

an idealized parallel machine with infinite resources and
zero-latency communication. For example, parallel re-
gions such as DOALL loops with independent iterations
will result in high ideal parallelism while a loop that per-
forms pointer chasing will force this ratio towards one.

3.2 Planning Stage

The essential challenge of the planning stage is to accu-
rately model the execution time of a parallelized program
using only the information from the discovery stage.
With this model in place, pyrprof can quantitatively
compare potential parallelization strategies to determine
the one with the best performance.

pyrprof uses atime estimation model to account for
following factors: parallelism, execution time, program
structure, and parallelization status. Parallelism and ex-
ecution time of a region are basic information to calcu-
late the program speedup as per Amdahl’s Law. Program
structure and parallelization status are also important be-
cause the estimation of parent region execution time re-
quires that of children regions. For instance, in a dou-
bly nested loop, if the inner loop is already parallelized,
the benefit of outer loop parallelization is likely small be-
cause the nested loop’s execution time is already reduced
from the inner loop parallelization.

Simple greedy algorithms have been proven sufficient
in many cases for providing pyrprof recommenda-
tions that offer good speedups. One challenge, however,
is to avoid local minima cases, where speedup may only
be realized after parallelizing a collection of regions. To
overcome this issue, we have examine the use of a novel

backwards search algorithm. This algorithm starts with
the assumption that all regions have been parallelized and
determines the region that will result in the smallest neg-
ative impact when serialized. This process iteratively
repeats, each time adding one more region to the non-
parallelized set of regions. pyrprof reverses this or-
dering to obtain the proper sequence. This algorithm has
two significant advantages over a greedy approach. First,
it groups regions that need to be parallelized together in
order to achieve speedup: the first one removed will bear
all the negative impact with the others free to quickly
follow. Second, it avoids local plateaus because it starts
with the best performance configuration and makes it
way to being completely serial.

4 Conclusion

In this paper we have presented a new taxonomy for clas-
sifying the steps involved in parallelizing a program. We
have seen that current popular tools focus on later steps.
Motivated by the ease-of-use of gprof, we have created
pyrprof, a tool that aims to bridge the parallelization
gap by automating the first two stages of parallelization:
parallelism discovery and planning. Our results suggest
that pyrprof is effective at these tasks.

5 Availability

pyrprof is available for free download at:
http://parallel.ucsd.edu/pyrprof.

References

[1]

W. Blume, R. Doallo, R. Eigenmann, J. Grout,
J. Hoeflinger, and T. Lawrence. ‘“Parallel program-
ming with polaris.” IEEE Computer, August 2002.

S. L. Graham, P. B. Kessler, and M. K. McKusick.
“gprof: a call graph execution profiler.” SIGPLAN
Notices, 2004.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe,
B. R. Murphy, S.-W. Liao, and E. Bu. “Maximizing
multiprocessor performance with the suif compiler.”
IEEE Computer, August 1996.

C. Lattner, and V. Adve. “LLVM: A Compilation
Framework for Lifelong Program Analysis & Trans-
formation.” In Proceedings of the 2004 International
Symposium on Code Generation and Optimization,
Mar 2004.

W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb,
V. Sarkar, and S. Amarasinghe. “Space-Time
Scheduling of Instruction-Level Parallelism on a
Raw Machine.” In International Conference on
Architectural Support for Programming Languages
and Operating Systems, October 1998.

C. E. Leiserson. “The cilk++ concurrency platform.”
In Proceedings of the Design Automation Confer-
ence, 2009.

N. Nethercote, and J. Seward. “Valgrind: A frame-
work for heavyweight dynamic binary instrumenta-
tion.” SIGPLAN Notices, 2007.

V. A. Saraswat, V. Sarkar, and C. von Praun. “X10:
concurrent programming for modern architectures.”
In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
2007.

R. Sasanka, M. L. Li, S. V. Adve, Y. K. Chen, and
E. Debes. “Alp: Efficient support for all levels of
parallelism for complex media applications.” ACM
Transactions on Architecture and Code Optimiza-
tion, 2007.

