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Abstract—In today’s many-core era, the interconnection networks have
been the key factor that dominates the performance of a computer system.
In this paper, we propose a design flow to discover the best topology in
terms of the communication latency and physical constraints. First a set of
representative candidate topologies are generated for the interconnection
networks among computing chips; then an efficient multi-commodity flow
algorithm is devised to evaluate the performance. The experiments show
that the best topologies identified by our algorithm can achieve better
average latency compared to the existing networks.

I. INTRODUCTION

Interconnection networks play an important role in the multi-
processor system. Currently, massively parallel computer systems
have become popular, where the interconnection networks consist
of a lot of processing cores. For example, IBM Blue Gene/L has
65,536 processors located in 64 racks [4] and the Cray Black Widow
networks scales up to 32K processors [12]. Thus, the interconnection
networks in these systems have become a more critical factor in the
performance of a computer system than the computing or memory
modules [3]. Communication latency, which largely depends on
the interconnection network, is of great concern in these current
multiprocessor systems and has become crucial with the growth of
system sizes and shrink of clock cycles [12].

Most interconnection networks in the current multiprocessor sys-
tems make use of regular low-radix topologies, among which the
k-ary n-cube [2] and torus topologies are the most often used [12].
Although the simpler designs imply simpler design and manufacture,
they are probably unable to capture the bottleneck of the communica-
tions among processors and utilize the limited interconnect resources
(e.g. wires, pins, connectors), therefore affecting the performance of
the entire system. In this paper, we propose a design methodology that
is able to select the best interconnection network topology among a
large number of candidates so that the average communication latency
is minimized. The major contributions of our work are as follows:

Firstly, we propose a fully automated design flow that is able to
evaluate thousands of network topologies and find the best candi-
date according to the available technology, physical constraints and
applications, which appear as the parameters of the flow, and thus
can be specified and modified by users. This feature enables our
methodology to be applicable for different supercomputer systems,
with little modification.

Secondly, we make use of a fast multi-commodity flow (MCF)
solver which is based on an efficient approximation algorithm to
evaluate the performance of different topologies. In our experiments,
it takes less than one minute to evaluate one topology, which makes it
possible to explore a large design space to discover the most suitable
topology among the candidate pool, which is entirely determined by
users.

Thirdly, we demonstrate our flow by using the packaging frame-
work of Blue Gene/L supercomputer. We conduct the experiments
using different input parameters. The optimal designs we find in a
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midplane under different circumstance can improve 12% — 56% of
the average communication latency compared to the original 3D torus
design, which shows the effectiveness of our methodology.

The rest of the paper is organized as follows. Section II will
introduce our design flow and the general formulation to evaluate the
performance of interconnection networks. We will describe the MCF
algorithms in Section III. In Section IV, we will use the packaging
framework of Blue Gene/L as a concrete example to demonstrate our
design flow. The experimental results will be presented in Section V.
Conclusions will be given in the last section.

II. GENERAL DESIGN FLOW & FORMULATION

Fig. 1 shows the general design flow of our methodology. Users
need to provide four inputs to perform the topology synthesis:
the topology pool contains all candidate topologies users want to
use; the delay models of wires and routers are based on their
architectures, which are used to calculate the communication latency;
the communication patterns among processors will be fed into our
evaluation algorithm so that the synthesized network satisfies the
communication demands; and users need to discover the physical
constraints which must not be violated, including board dimensions,
number of layers, number of pins, and number of connectors.

All these inputs are fed into the MCF solver to evaluate the
performance and the best topology will be selected according to the
communication latency. The MCF solver is able to take all the inputs,
perform the evaluation, and provide the synthesis results which can
be used by the designers. As the core component of our flow, we
introduce the formulation of the MCF evaluation solver first.

We model a given interconnection network topology as a graph
G(V,E), where |V| = n, |[E|] = m. Each node represents a
computing module (processor) and each edge (a, b) represents a link
between processors a and b. A set of k£ communication demands are
given, i.e. d; represents the demand from processors (nodes) s; to
tj, V1 < j < k. The communication demands represent the demand
for bandwidth between each pair of nodes; this quantity becomes the
injection rate when averaged over the lifetime of the network that
we profiled. Our task is to determine how many wires need to be
assigned for each link, so that the physical constraints are satisfied
and the overall average latency is minimized.
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The above statement can be formulated as a multi-commodity flow
problem if we consider the communication demand from s to ¢ as
a commodity with source node s to sink node ¢, and the number of
wires for link e € F as the flow f(e). The average communication
latency consists of two portions: the router delay and the wire delay.
If we assume there is a router with each node, our objective can be
written as follows:

> fe)- Dy + > fle)- DY
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where Df(e) represents the delay for the router in node g(e) that is
the starting node of edge e, and D} represents the delay for link e.
Therefore the first part of the objective denotes the total latency on
routers and the second part is the latency on wires.

The physical constraints restrict the number of wires we are able to
use. In our formulation, we consider two types of physical constraints:

1) Intra-board constraints: a set of wires that link the nodes in
different regions in one board must not exceed the cross section of
the board. The resource used for each wire can be estimated by the
wire pitches and the available cross section can be calculated by the
board dimension and the number of signal layers:
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where F¢"°%% is the set of edges that pass over the cross section
g, Wy is the available cross section width and L, is the number of
signal layers in the board.

2) Inter-board constraints: the number of wires connecting nodes
on different boards is usually constrained by the number of pins in the
board connectors. Similarly, we can write the following constraint:
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where Efi” is the set of edges that cross over the connector 7,
K}i’i” is the number of pins needed for each wire, C’. is the number
of available connectors, and V7" is the number of pins in each
connector.

The above is a very general formulation to evaluate the commu-
nication latency in a supercomputer system with the given topology.
It is applicable to any multiprocessor interconnection network by
deriving the delay models and setting the parameters accordingly.

III. MCF ALGORITHMS

The MCF solver is implemented using a polynomial time ap-
proximation scheme (PTAS), which is able to find (1 + €) optimal
solutions in polynomial time, where € is an input parameter to control
the accuracy. The idea is based on the primal-dual theory in linear
programming by Karakostas [10]. First we transform the problem into
a maximum concurrent flow problem, i.e. we would like to route \-d;;
units flow for each commodity j, subject to the physical constraints
and a latency upper bound L7, where ) is a scalar value representing
the throughput. We use path-based flow variables: let p; denote the
set of flow paths from s; to ¢; for commodity j; f(p) denote the
flow along path p, p € p;. Then the LP primal formulation could be
written as follows:
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Then we write the dual formulation. Let Z; be the dual variable
for the demand constraint for dj, X, and Y, be the dual variables
for the cross section and connector constraints, and ¢ be the dual
variable associated with the latency constraint:
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According to the above dual formulation, we can define the length
of edge e as
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The PTAS will iteratively route the flow along the shortest path
from s; to t;, according to the length function above, and update the
dual variables according to the current flows. Therefore the primal
and dual values will be simultaneously updated until the gap is small
enough, which implies that it is sufficiently close to the optimal
solution according to the LP primal-dual theory. For the detailed
algorithms and convergence proof, please refer to [10] and [9].

The concurrent flow algorithm described above is able to maximize
the flow amount A, with the given latency bound L7'. Thus, in order
to minimize the total latency, we perform binary search on the value
LT by checking whether the current A exceeds 1. The binary search
is accelerated by the interval estimation heuristic proposed in [9].

IV. TOPOLOGY SYNTHESIS IN BLUE GENE/L: AN EXAMPLE

Blue Gene/L computer is a massively parallel supercomputer based
on IBM system-on-chip technology. It is designed to scale to 65, 536
dual-processor nodes (computer ASICs) [1][4]. The entire system is
organized as 2 nodes per compute card, 16 compute cards per node
card, 16 node cards per 512-node midplane, 2 midplanes in a 1024-
node rack, and totally 64 racks. The nodes are connected using 3-
dimensional torus networks. Each 512-node midplane contains an 8
x 8 x 8 torus. In this work, we will consider the networks within
one midplane, i.e. the topologies that connect 512 nodes.

In our work, we make the following two assumptions. First, we
follow the same hierarchical structure of midplane/node card/compute
card in our design. The number of nodes in each board remains the
same too. Second, the properties of the boards, including dimensions,
number of layers and dielectric keep unchanged. We will seek better
topologies than the existing 3D torus to implement the networks in
the Blue Gene/L midplane.

We use a 512-node graph to model a midplane, where each node
in the graph represents a computer ASIC. Since the ASICs in a
midplane are organized hierarchically, we also build a two-level graph
model that captures the topologies in one node card (low-level) and
the entire midplane (high-level) respectively. The low-level graph
therefore consists of 32 nodes, as one node card contains 16 compute
cards and one compute card has 2 nodes. The 32 nodes are arranged
in 8 x 4 grids, according to their locations in a node card, as shown
in Fig. 2 (a) [7]. Fig. 2 (b) shows the organization of the low-level
graph. We highlight one row and one column, where we could plug
in different topologies and duplicate them to all rows and columns.
We follow the method in [8] to generate all topologies of 8 nodes,
with the limitation that the degree of each node is no more than 3.
There are totally 192 isomorph-free topologies. Then we place each
topology in a line, which results 2092 different linear placements.
They are duplicated to each column. We apply the similar method
on the high level graph.

We should derive the delay models for both wires and routers. We
assume that differential wires are used in the Blue Gene/L boards.
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(a) Blue Gene/L Node Card

(b) Graph Model in Node Card

Fig. 2. Blue Gene/L Node Card and Topology

We estimate the unit length delay as the speed of light in the card
dielectrics FR4. Therefore the unit length delay is roughly 7.1 ns/m.

The router delay is related to the radix of routers. We make use
of the formula derived in [11] which is based on the logical effort,
and assume 90nm design technology is used.

We should consider two types physical constraints: the available
routing area for wires in cards, and the number of pins in the
connectors among cards. The first factor is determined by the board
dimensions, number of layers and wire pitches, and the second one
is determined by the number of connectors and the number of pins
per connector, as discussed in Section II. The details of the boards
and connectors are obtained in [7]. We do not present the numbers
here due to the space limitation.

V. EXPERIMENTAL RESULTS

We implemented the MCF solver using the C language to test the
design flow we proposed in a Linux machine with a 2.8GHz CPU
and 2GB memory. The experiments were conducted on two groups
of test cases: the first group is randomly generated, and the second
group contains existing benchmarks.

A. Experiments on Generated Instances

We generate test cases which are the communication pairs among
processors. The communication patterns are randomly generated;
however, they are controlled by the following parameters:

o Total number of communication demands (T'): It is reasonable
to assume there are only O(n) pairs of communications, as the
examples in the benchmark suites in [6].

o Communication amount/coefficient (d): Without loss of general-
ity, we assume all the communications have uniform traffic.

o Communication distribution probability: During the processor
task assignment, we know that the tasks which need to commu-
nicate with each other will be assigned to processors that are
close together [6].

1) Latency and Throughput Tradeoffs: To demonstrate the tradeoff
between latency and communication throughput, we first fix the
communication distribution: 40% of the communications happen
within a compute card, 50% of the communications happen crossing
compute cards but within a node card, and the rest 10% happen across
node cards. We use three groups of cases where the total number
of communication demands 7" = 2048, 3072 and 4096 respectively
(4x, 6x and 8x of the total number of nodes). The latency-throughput
tradeoff curves with optimal topology selection are shown in Fig. 3.
The X-axis is the traffic demand coefficient (throughput) for each
communication demand (all are uniform); the Y-axis is the average
latency, which is the total latency on wires and routers divided by
the total amount of communications. Different points indicate that
different topologies are used. We also compare the latency values
of 3D torus networks and our optimal topologies. The results are
shown in Table I, where “Capacity” means the maximum number
of demand amount it can accommodate; “Min Latency” and “Max
Latency” denote the average latency when the demand has minimum
and maximum values. For 3D torus topology, these two values are
the same since there are no topology optimizations.

6.6

Average Latency (us)

L5 2

Demand Coefficient

Fig. 3. Latency-Throughput Tradeoff Curves with Fixed Communication
Distribution
# D d Topology | Capacity Min Latency (us) Max Latency (us)
2048 Optimal 2 5.86 6.49
3D Torus 1.1 6.63 6.63
3072 Optimal 1.3 6.05 6.56
3D Torus 0.7 10.54 10.54
4096 Optimal 0.8 6.59 6.99
3D Torus | 0.3 15.06 15.06
TABLE 1

COMPARISON OF OPTIMAL AND 3D TORUS TOPOLOGIES

By analyzing the results, we have the following observations:

(i) Given fixed number of communication demands and patterns,
different topologies will be selected with different communication
amounts, after the links are congested. We can see the curve is a
straight line with low traffic but becomes super linear with the growth
of traffic amount. We always prefer a topology with less number of
hops and also less detours, since such a topology will incur less router
and wire delays. When the traffic increases, however, this topology is
no longer feasible since it will cause congestion in some nodes/links.
Those topologies with more even link distributions will be chosen.

(ii) The commonly used 3D torus topology has two weaknesses.
First, it cannot accommodate large communication traffic. For ex-
ample, the maximum coefficient is 1.1 with 2048 communications
in a 3D torus network while the optimal topology we find can
accommodate a coefficient as large as 2. Second, with the same
communication coefficient, the latency in a 3D torus is worse than the
optimal topology, especially when there are many communications.
This is because the torus does not have enough long links, which
results in more hops and detours. Thus, it is of importance to look
for better alternative topologies.

2) Physical Constraints Impacts: In all the above experiments
we define the physical constraints by using the board dimensions,
connectors and pin numbers used in Blue Gene/L packaging [7].
According to our analysis, the flows are saturated due to the limited
number of pins in the connectors between compute cards and node
cards, and between node cards and midplane. In this part of the
experiment, we would like to relax this physical constraint and
assume we have more pins available for routing.

The case we choose has 2048 communications with demand
coefficient 1.6. The previous experiment reports that the average
communication latency in midplane is 10.00 with 200 pins (15
connectors) between node cards and midplane. We gradually increase
the number of pins and compute the average latency values. The
results are shown in Fig. 4. We find that we can reduce the latency by
14% when the pin number is increased to 320; particularly, latency
is reduced by 8% if we only add 20 pins, and 13% with only 40
additional pins. This indicates that when the networks are congested,
latency can be greatly improved by adding relatively small amount of
routing resources. The corresponding topologies for the three points
in Fig. 4 are shown in Fig. 5: when pins are limited, long links
are essential to reduce the intermediate traffic; with the increase of
pin number, the long links are no longer preferred since they will
increase the degree of routers therefore add the routing complexity.
Hence, using this approach, we are able to know which resources are
needed in order to improve the latency, and their marginal impacts
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on the performance.

B. Experiments on Benchmark Instances

We also demonstrate the strengths of our design flow using the
NAS parallel benchmarks [5]. We run the class B benchmarks with
121 processes (for BT and SP) or 128 processes (for other six
benchmarks). The traffic patterns are then extracted using Intel Trace
Analyzer and Collector 7.1 in Linux platform. Among the eight
benchmarks, we exclude EP, FT and IS in our experiments, because
there are too few communications among the processes.

Before running the experiments, we use a simulated annealing (SA)
algorithm to perform the task placement. The SA algorithm optimizes
the estimated latency (i.e. estimating the latency by the distance but
ignoring the traffic congestion). Then we feed the communication
patterns based on the placement result to our design flow. The results
are shown in Table II. The latency values are in the unit of wus,
and the values in the brackets are the latencies normalized to the
“Optimal” column. We run our design flow on the five benchmarks
in the following three ways.

First, we assume the interconnection network can be customized
for each benchmark, therefore obtain the optimal topology for each
benchmark. The latency is shown in the “Optimal” column in Table
II. Secondly, only one fixed interconnection network is allowed for
all the benchmarks. In this case, we aggregate all five traffic patterns
by adding them together and feed into the design flow. After the
optimal solution for this aggregate traffic pattern is obtained, it will
be evaluated for the five instances separately. The latency values are
shown in the “Aggregate” column in Table II. Thirdly, we assume the
dimension and pin resources are uniformly distributed to all the wires,
which is much less flexible design choices than our design flow. The
latency values obtained are shown in the “Uniform” column in Table
II. We also obtain the latency results of 3D torus structure, which are
shown in the last column in Table II.

Table II shows that the optimal topology found by the design flow
can achieve much smaller average latency than the 3-D torus. It

Benchmark | Optimal | Aggregate Uniform | 3D Torus

(us) (us) (us) (us)
BT 130 (1) | 1.44(1.11) | 1.67(1.29) | 2.00(1.54)
CG 0.96 (1) 1.01(1.05) | 1.36(1.41) | 1.76(1.84)
LU 1.05 (1) 1.38(1.32) | 1.60(1.59) | 1.69(1.60)
MG 0.89 (1) | 0.90(1.02) | 1.15(1.29) | 1.65(1.83)
SP 224 (1) | 2.49(1.11) | 2.73(1.22) | 3.60(1.61)

TABLE II

LATENCY COMPARISON ON NAS PARALLEL BENCHMARKS

Average Latency (us)
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Fig. 6. Latency-Throughput Tradeoff Curves for the Aggregated Benchmark
Instance

also indicates that the aggregate traffic pattern is representative, as
the optimal topology identified using the aggregate traffic achieves
similar latency values to the individual ones. If we compare the
latency values in the “Uniform” column with those in the “Optimal”
and “Aggregate” columns, we found that it is essential to enable the
non-uniform resource allocation for wires, since the flexible choices
could accommodate particular traffic patterns and reduce the average
latency.

Lastly, to demonstrate the tradeoff between the throughput and la-
tency, we manually increase the communication tratfic by multiplying
the coefficients to all the communications uniformly. We compute
the average latency for the aggregated case. The results are shown
in Fig. 6, the two curves represent the latency values for the optimal
topologies selected by the design flow, and the 3D torus topology
respectively. Similar to the curves in Fig. 3, the curve for optimal
topologies is also super linear, which indicates that different optimal
topologies are selected with the increase of communication demands.
Comparing the two curves, we observe that much lower latencies
could be achieved when optimal topologies are used. Also, with the
flexibility of the topologies, the system is able to accommodate much
larger traffic throughput. This again shows the strength of our design
flow over fixed topologies.

VI. CONCLUSION

We propose a design methodology to synthesize the supercomputer
interconnection topologies according to the communication patterns,
traffic amount, and physical constraints. In the example that we
demonstrated, we are able to find different good network topologies
on a midplane of the Blue Gene/L supercomputer, each of which
has better performance than its original 3D torus. In addition, we
are able to correctly identify the bottleneck of the communication,
and therefore can provide useful information for designers to further
enhance the performance.
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