®»
T
—]
]
(1)
»
Ll
»
e
»
N —
[

Elliot
Waingold

Michael
Taylor
Devabbaktuni
Srikrishna
Vivek Sarkar
Walter Lee
Victor Lee
Jang Kim
Matthew
Frank

Peter Finch
Rajeev Barua
Jonathan
Babb

Saman
Amarasinghe

Anant
Agarwal
Massachusetts
Institute of
Technology,
Laboratory
for Computer
Science

Baring It All to

Software:

Raw Machines

This innovative approach eliminates the traditional instruction set interface
and instead exposes the details of a simple replicated architecture directly
to the compiler. This allows the compiler to customize the hardware to

each application.

s our industry develops the technology that
will permit a billion transistors on a chip,
computer architects must face three converg-
ing forces: the need to keep internal chip wires
short so that clock speed scales with feature
size; the economic constraints of quickly verifying new
designs; and changing application workloads that
emphasize stream-based multimedia computations.
One approach is to rely on a simple, highly parallel
VLSI architecture that fully exposes the hardware
architecture’s low-level details to the compiler. This
allows the compiler—or, more generally, the soft-
ware—to determine and implement the best resource
allocation for each application. We call systems based
on this approach Raw architectures because they
implement only a minimal set of mechanisms in hard-
ware. Raw machines require only short wires, are
much simpler to design than today’s superscalars, and
support efficient pipelined parallelism for multimedia
applications.

RAW ARCHITECTURE

Our general philosophy is to build an architecture
based on replicating a simple tile, each with its own
instruction stream. As Figure 1 shows, a Raw micro-
processor is a set of interconnected tiles, each of which
contains instruction and data memories, an arithmetic
logic unit, registers, configurable logic, and a pro-
grammable switch that supports both dynamic and
compiler-orchestrated static routing.

The tiles are connected with programmable, tightly
integrated interconnects. The tightly integrated, syn-
chronous network interface of a Raw architecture
allows for intertile communication with short latencies
similar to those of register accesses. Static scheduling
guarantees that operands are available when needed,
eliminating the need for explicit synchronization.

In addition, each tile supports multigranular (bit-,
byte- and word-level) operations and programmers
can use the configurable logic in each tile to construct

Computer

operations uniquely suited to a particular application.
Together, these features will enable high switching
speeds and dramatically simplify hardware design and
verification tasks.

Small replicated tiles

As Figure 1 shows, a Raw machine is made up of a
set of interconnected tiles. Each tile contains a simple,
RISC-like pipeline and is interconnected with other
tiles over a pipelined, point-to-point network. Having
many distributed registers eliminates the small-regis-
ter name-space problem, allowing a greater degree of
instruction-level parallelism (ILP).

Static RAM (SRAM) distributed across the tiles
eliminates the memory bandwidth bottleneck and pro-
vides significantly shorter latency to each memory
module. The distributed architecture also allows mul-
tiple high-bandwidth paths to external Rambus-like
DRAM-—as many as packaging technology will per-
mit. A typical Raw system might include a Raw micro-
processor coupled with off-chip memory and
stream-1O devices. The amount of memory is chosen
to roughly balance the areas devoted to processing and
memory and to match the memory-access time to the
processor clock. The compiler implements higher level
abstractions like caching, global shared memory, and
memory protection.! Software handles dynamic events
like cache misses.

Unlike current superscalars, a Raw processor does not
bind specialized logic structures such as register-renam-
ing logic or dynamic instruction-issue logic into hard-
ware. Instead, the focus is on keeping each tile small to
maximize the number of tiles that can fit on a chip,
increasing the chip’s achievable clock speed and the
amount of parallelism it can exploit. For example, a sin-
gle one-billion-transistor die using a conventional logic
technology could carry 128 tiles. Each tile would use 5
million transistors for memory, splitting them among a
16-Kbyte instruction memory (IMEM); a 16-Kbyte
switch instruction memory (SMEM); and a 32-Kbyte

0018-9162/97/$10.00 © 1997 IEEE

() ()

IMEM

DMEM

Registers

CL

SMEM

(

\Switm/

Figure 1. A Raw processor is constructed of multiple identical tiles. Each tile contains instruction memory (IMEM), data mem-
ories (DMEM), an arithmetic logic unit (ALU), registers, configurable logic (CL), and a programmable switch with its associ-

ated instruction memory (SMEM).

Memory | | Memory | | Memory Memory Switch @ @
I I
I I I I
Registers| |Registers| |Registers Registers Memory | | Memory | | Memory
I I I
4@ 4@ @ Registers| [Registers| [Registers
| | I I I
ALU ALU ALU ALU ALU ALU ALU ALU ALU
(a) (b) (o)

Figure 2. Raw microprocessors differ from superscalar and multiprocessor architectures. (a) Raw microprocessors distribute the register file and mem-
ory ports and communicate between ALUs on a switched, point-to-point interconnect. (b) A superscalar contains a single register file and memory port

and communicates between ALUs on a global bus. (¢) Multiprocessors communicate at a much coarser grain through the memory subsystem.

first-level data memory. Each type of memory is imple-
mented with 6-transistor SRAM memory cells backed
by 128 Kbytes of dynamic memory implemented using
2-transistor memory cells. Each tile could devote a gen-
erous 2-million-transistor equivalent area to the pipelined
data path and control (say, an R2000-equivalent CPU,
floating-point unit, and configurable logic). Interconnects
would consume about 30 percent of the chip area.

As Figure 2 shows, a Raw architecture basically
replaces a superscalar processor’s bus architecture
with a switched interconnect while the software sys-
tem implements operations such as register renam-
ing, instruction scheduling, and dependency checking.
Reducing hardware support for these operations

opposes current trends, but it makes more chip area
available for memory and computational logic,
results in a faster clock, and reduces verification com-
plexity. Taken together, these benefits can make the
software synthesis of complex operations competi-
tive with hardware for overall application perfor-
mance.

Programmable, Integrated Interconnect

As Figure 2 shows, a Raw machine uses a switched
interconnect instead of buses. The switch is integrated
directly into the processor pipeline to support single-
cycle message injection and receive operations. The
processor communicates with the switch using dis-

September 1997

Compilers
can schedule
single-word
data transfers
and exploit

tinct opcodes to distinguish between accesses to static
and dynamic network ports. No signal in a Raw
processor travels more than a single tile width within
a clock cycle.

Because the interconnect allows intertile communi-
cation to occur at nearly the same speed as a register

ation of the processing elements. The second is dedi-
cated to sequencing routing instructions for the static
switch. Separate controls for processor and switch lets
the processor take arbitrary, data-dependent branches
without disturbing the routing of independent mes-
sages passing through the switch. Loading a different
program into the switch instruction memory changes
the switch schedule. Programming network switches
with compilation time schedules lets the compiler sta-
tically schedule the computations in each tile. Static
scheduling eliminates synchronization and its signifi-
cant overhead.

Compiler orchestration ensures that the static
switch stalls infrequently. Dynamic events, however,
may force one of the tiles to delay its static schedule.
For correctness, the static network provides minimal
hardware-supported flow control. Although both
static and dynamic networks export flow-control
bits to the software, we are exploring strategies to
entirely avoid the flow-control requirement on the
static network.

ILP, in read, compilers can schedule single-word data trans-
addition to fers and exploit ILP, in addition to coarser forms of
coarser parallelism. Integrated interconnects also allow chan-
forms of nels with hundreds of wires instead of tens—very large
parallelism. scale integration switches are pad-limited and rarely
dominated by internal switch area. The switch multi-
plexes two logically distinct networks—one static and
one dynamic—over the same set of physical wires. The
dynamic wormhole router makes routing decisions
based on each message’s header, which includes addi-
tional lines for flow control.
Control
Each tile includes two sets of control logic and
instruction memories. The first set controls the oper-
compa"ng_naw to ing in coarse-grained environments like
Other Architectures

The Raw approach builds on several
previous architectures. A Raw architecture
seeks to execute pipelined applications
(like signal processing) efficiently, as did
earlier systolic-array architectures. Like
computers based on field-programmable
gate arrays (FPGAs), a Raw machine per-
mits the construction of application-spe-
cific custom operations and communi-
cation schedules. Finally, like very long
instruction word (VLIW) processors, a
Raw processor simplifies and exposes the
instruction-scheduling hardware to the
compiler.

Systolic arrays

The design of systolic-array architec-
tures like iWarp' and NuMesh? empha-
sizes efficient processing of streams of
data. They share with the Raw approach
the philosophy of building point-to-point
networks that support static scheduling.
However, the cost of initiating a message
in iWarp or introducing a new pipeline
pattern in NuMesh is too high. This lim-
ited compilers to focusing on signal pro-
cessing applications that have a uniform
structure, in order to amortize startup
costs over long messages. Static schedul-

Computer

those provided by iWarp and NuMesh is
very difficult—predicting static events
over long periods of time is hard. So, a
Raw architecture, which also handles
fine-grained parallelism, provides several
advantages. The register-like communi-
cation latency in a Raw processor allows
it to exploit the same types of ILP that
superscalar processors exploit. Predicting
latencies over short instruction sequences
and statically scheduling multiple, tightly
coupled instruction streams is much sim-

pler.

FPGAs

A second approach to processing
streams is to build computers from FPGAs.
Like custom hardware, these chips can be
configured to user specification. FPGA-
based machines achieve their speeds by
exploiting fine-grained parallelism and fast
static communication. An FPGA’s software
has access to its low-level details, allowing
the software to optimize mapping of the
user application. Users can also bind com-
monly used instruction sequences into con-
figurable logic. As a result, these special-
purpose instruction sequences can execute
in a single cycle. A Raw machine also
incorporates these features.

FPGA systems, however, do not support
instruction sequencing and are thus inflex-
ible—they require loading an entire bit-
stream to reprogram the FPGAs for a new
operation. Compilation for FPGAs is also
slow because of their fine granularity. The
onerous compilation times of our FPGA-
based Raw prototype (discussed later)
amply demonstrate this compilation speed
problem.

Unlike FPGA systems, however, Raw
machines support instruction sequencing.
They are more flexible, merely pointing to
a new Instruction to execute a new opera-
tion. Compilation in Raw is fast because
the hardware contains commonly used
compute mechanisms such as ALUs and
memory paths. This eliminates repeated,
low-level compilations of these units.
Binding common mechanisms into hard-
ware also yields faster execution speed,
lower area, and better power efficiency
than FPGA systems.

VLIW processors

Work in very long instruction word
processors inspires many features of the
Raw approach. Like the VLIW Multiflow
Trace machine,> Raw machines have a
large register name space, a distributed reg-
ister file, and multiple memory ports. Both

Multigranular operations

A Raw architecture is multigranular—it implements
wide-word arithmetic logic units and multiple-bit or
byte-level operations in each tile. Thus, a Raw proces-
sor is coarser than traditional FPGA-based processors
but, for a given application, can achieve the same level
of fine-grained parallelism. Logic simulation, for
example, requires bit-level operations, so FPGA-based
emulators are simply special-purpose processors that
handle bit-level parallelism.

The byte-granular configurable logic permits the
ALUs to be used for either a few wide-word operations
or many narrow-word computations much like HP’s
MAX, Sun’s VIS or Intel’s MMX. The small amount of
configurable logic in each Raw tile—for which soft-
ware can select the data path width—permits a Raw
processor to support multigranular operation.

Configurability
Raw architectures combine bit- or byte-level paral-
lelism with special communication paths among the

individual bits or bytes. This permits significantly
more powerful multigranular operations than those
supplied by MMX-like instruction sets. We can view
configurable logic as a means for the compiler to cre-
ate customized instructions without resorting to
longer software sequences. In the Conway’s Game of
Life benchmark discussed later, configuration com-
presses a software sequence from 22 cycles into one.

SOFTWARE SUPPORT

The software system can leverage Raw’s high degree
of parallelism and wide, static network for algorithms
that require high-bandwidth and fine-grained com-
munication. Thus, a Raw architecture is particularly
suited for traditional scientific applications and for
processing streams of data.

In the past, it has been difficult to compile for a sta-
tic architecture like Raw. Today’s workloads, however,
are beginning to emphasize stream-processing prob-
lems that can benefit significantly from the type of sta-
tic pipelining Raw architectures support. In addition,

Stream-
processing
problems
can benefit
significantly
from the
type of static
pipelining
Raw
architectures
support.

machines rely heavily on compiler tech-
nology to discover and statically schedule
ILP. Unlike traditional VLIW processors,
however, Raw machines provide multiple
instruction streams. Individual instruction
streams allow Raw processors to perform
independent but statically scheduled com-
putations (such as loops with different
bounds) in different tiles.

Multiscalar processors

The Raw processor is deceptively simi-
lar to a multiscalar processor, but the lat-
ter does not expose all its hardware
resources to software. For example, a mul-
tiscalar might expose only 32 registers
through a compact ISA, but relegate reg-
ister renaming and dependence checking
to hardware. A Raw machine exposes all
registers to the compiler, and it implements
similar mechanisms in software. Clearly,
full exposure affords the compiler more
flexibility in using the registers.

For example, a Raw machine allows
explicit forwarding of register values to
specific tiles, which permits the use of a
scalable mesh interconnect to couple the
tiles. In contrast, a multiscalar must use a
bus (possibly pipelined) to broadcast for-
warded values to each tile. Of course, the
Raw approach’s drawback is that it must

revert to a software-simulated broadcast
when the compiler cannot statically estab-
lish a schedule.

Single-chip multiprocessor

It is natural to compare Raw architec-
ture with the logical evolution of multi-
processors: on-chip integration of a
multiprocessor built from simple RISC
processors.* Like a Raw machine, such a
multiprocessor uses a simple replicated tile
and provides distributed memory. But
unlike a Raw processor, the cost of mes-
sage startup and synchronization hampers
the multiprocessor’s ability to exploit fine-
grained ILP.

IRAM architectures

Raw architectures also promise better
on-chip balance than the processor-in-
memory or Intelligent RAM architectures,
which integrate processor and memory on
the same chip to improve performance. As
Dick Sites observed, in many applications,
current superscalars spend three out of
four CPU cycles waiting for memory.’ Two
reasons for this are long memory latencies
and limited memory bandwidth, which
can be somewhat relieved by on-chip inte-
gration. IRAM chips, however, will have
longer delays than Raw chips because of

long memory bit-lines or long crossbar
wires in a multibanked memory. These
delays will be less tolerable when com-
pared to the faster processing and switch-
ing speeds of future-generation chips.

References

1. S. Borkar et al., “Supporting Systolic and
Memory Communication in 1Warp,”
Proc. 17th Int’l Symp. Computer Archi-
tecture, IEEE CS Press, Los Alamitos,
Calif., 1990, pp. 70-81.

2. D. Shoemaker et al., “NuMesh: An Archi-
tecture Optimized for Scheduled Com-
munication,” J. Supercomputing, 1996,
pp- 285-302.

3. J.A. Fisher, “Very Long Instruction Word
Architectures and the ELI-512,” Proc.
10th Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1983,
pp- 140-150.

4. K. Olukotun et al., “The Case for a Single-
Chip Multiprocessor,” Proc. Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems VII,
ACM Press, New York, 1996, pp. 2-11.

5. R. Sites, “Architects Look to the Future,”
Microprocessor Report, Aug. 5, 1996, pp.
19-20.

September 1997

A key issue
in handling
dynamic
events is to
maximize the
independence
of the
dynamic
events from
other static
parts of the
program.

runtime systems can provide extra dynamic support
when the compiler cannot easily identify parallelism
in, for example, programs that use pointer-based data
structures. In this case, the compiler identifies threads
to speculatively execute in parallel. It will also con-
struct software checks for resolving dependencies
between threads, thereby making full compilation-time
knowledge of such dependencies unnecessary. Runtime
checks are slower than corresponding hardware mech-
anisms, but the compiler can optimize individual
checks whenever information becomes available.

Gompilation

A compiler for Raw processors must take a single-
threaded (sequential) or multithreaded (parallel) pro-
gram written in a high-level programming language
and map it onto Raw hardware. A Raw architecture’s
explicitly parallel model is different from that of a
superscalar. A superscalar’s hardware extracts instruc-
tions for concurrent execution from a sequential
instruction stream. Unlike the coarse-grained paral-
lelism exploited on multiprocessor systems, the Raw
compiler views the set of N tiles in a Raw machine as
a collection of functional units for exploiting ILP.

Partitioning, placement, routing, and scheduling. An
early phase of the compiler identifies and partitions
for fine-grained ILP? by balancing the benefits of par-
allelism versus the overheads of communication and
synchronization. Because these overheads are much
lower than in traditional multiprocessors, partition-
ing can occur at a much finer grain than in conven-
tional parallelizing compilers. Partitioning generates
parallel code for an idealized Raw machine with the
same number of tiles as the physical architecture. This
phase, however, assumes an idealized, fully connected
switch; an unbounded number of virtual registers per
tile; and symbolic data references.

Placement selects a one-to-one mapping from
threads to physical tiles. The placement algorithm
minimizes a latency and bandwidth cost measure and
is a variant of a VLSI cell-placement algorithm.?

Finally, routing and global scheduling allocates phys-
ical network resources to minimize the overall pro-
gram completion time. This phase produces a program
for each tile and switch. We plan to adapt the Topology
Independent Pipelined Routing and Scheduling algo-
rithm* for this task. TIERS is a VLSI algorithm that
uses a greedy allocation scheme. It determines a time-
space path for each intertile communication event and
a schedule for the instructions in each thread.

Configuration selection. An additional compilation
phase selects an application-specific configuration for
loading into the configurable logic. For each custom
operation, the configuration phase must both output
a specification for the configurable logic and rewrite
the intermediate code. This replaces each compound

Computer

operation by a call to the appropriate custom instruc-
tion. The compiler will invoke a logic synthesis tool
to translate a custom operation specification into the
appropriate bit sequence for the configurable logic.
Commonly occurring subtree patterns can be good
candidates for implementation as custom instruc-
tions. To identify these patterns, the compiler will
extend the dynamic-programming algorithms used in
tree pattern-matching systems.’

Dynamic-event support

Dynamic events typically occur when the compiler
cannot resolve data dependencies or latencies at com-
pilation. In this section we discuss a number of tech-
niques that the compiler can use to change dynamic
patterns into static patterns. When static techniques
fail, dynamic software methods are the next resort.
For programs that the compiler cannot analyze, we
plan to implement a system similar to the Multiscalar,”
but with software-based runtime checks. We believe
many of these checks can be eliminated because the
compiler has full access to the underlying hardware
mechanisms. Hardware implementation is a last
resort. A key issue in handling dynamic events is to
maximize the independence of the dynamic events
from other static parts of the program.

Software dynamic routing. A Raw system uses one
of two approaches to handle dynamic messages (mes-
sages that cannot be routed and scheduled at compi-
lation). The first is a software approach that statically
reserves channel bandwidth between nodes that may
potentially communicate. This approach preserves
the program’s predictability by using a static, data-
independent routing protocol. In the worst case, this
conservative approach will involve an all-to-all per-
sonal communication schedule between the process-
ing elements.*

The second approach uses the dynamically routed
network. By conservatively estimating the delivery
time of dynamic messages and allowing enough slack,
the compiler can still hope to meet its global static
schedules. Software checks of the flow control bits
preserve correctness in this approach.

Software memory dependency checking. Dynamic-
ally checking for dependencies between every pair of
memory operations is expensive. Most superscalar
processors can sustain only one or at most two mem-
ory instruction issues per cycle (as does the Digital
Alpha 21264), limiting the total parallelism they can
achieve. For applications that require high-bandwidth
runtime dependency checking, the compiler can con-
struct distributed software dependency-checking
structures from multiple Raw tiles. As with directory
based cache-coherence protocols, the system can sta-
tically assign the task of resolving the dependencies
for each address to a different system node. Previous

research gives an example of an all-software, cache-
coherent, shared memory.!

Although such a software-implemented system is
less efficient than an all-hardware implemention, the
exposed mechanisms in a Raw architecture provide
opportunities for optimization that are unavailable in
all-hardware implementations. Consider the loop

for (i = 0; i < n; it+)
albl[il] = alc[il]

Figure 3 shows a systolic structure that maintains all
the true value dependencies of this loop but allows
independent memory references to proceed in paral-
lel. Because the compiler knows that accesses to the
a, b, and c arrays are independent, it can create a 6-tile
systolic structure. Each box represents a Raw tile. A
value is read out of the b and c arrays every cycle,
while the tile handling the a array alternates each cycle
between handling a load or a store. The limit is a
potential value dependence between each load from
the a array and the store in the following cycle. This
implementation performs an iteration in two cycles
without requiring dual-ported caches. Providing hard-
ware for dynamic dependency checking is less impor-
tant because a Raw compiler can provide memory
dependence information to the hardware.

Logical data partitioning. The compiler can further
reduce the required dynamic software support by cre-
atively partitioning data. The offset for memory oper-
ations is often known at compilation time (for
example, the stack frame offset for a local variable
or the field/element offset in a heap-allocated object)
even though the base address is unknown. Therefore,
by using low-order interleaving and N x B alignment
we can calculate the destination tile for each memory
request.

e Low-order interleaving. We assume that the
address space is divided into blocks of B = 2% bytes
(typical values of B are 8, 16, 32, and 64), and that
the addressing of blocks is low-order-interleaved
across tiles. The compiler chooses larger block
sizes when it expects a high level of spatial local-
ity in data accesses. This means that the bit layout
of a data address contains the block address in the
nodeftile, 7 bits for the node/tile ID, and b bits for
the block offset. The number of tiles is N = 2.

e N x B alignment. We assume the base address of
commonly used program entities (stack frames, sta-
tic arrays, heap-allocated structures, and so on) is
aligned with an N x B boundary (that is, has zeroes
in the lowest 72 + b bits). This enables the compiler
to statically predict the destination tile for a known
offset, even though the actual base address is
unknown. If the system implements some form of

Y

b [i]

Y
o

<<2

Y

<<2

i+=4 - c[i]

virtual memory, then this scheme will continue to
work if N x B is less than the page size.

For base pointers such as function parameters that
may not be known at compilation time to be N x B
aligned, we suggest generating dual-path (multiver-
sion) code with a runtime test that checks whether
unknown base addresses are N x B aligned.

RAWLOGIC PROTOTYPE RESULTS

We wanted to learn how to write compilers that can
statically orchestrate the communication and com-
putation in multiple threads as well as study the per-
formance of the Raw processor. We thus implemented
the RawLogic prototype and an associated compila-
tion system by leveraging commercial FPGA-based
logic emulation technology. The RawLogic prototype
consists of a VirtuaLogic Emulator from Ikos Systems
coupled with a Sun SparcStation 10/51 via an Sbus
interface card from Dawn VME Products. The emu-
lator also has a SCSI interface for downloading con-
figurations and controlling clock speed. Our system
has five boards, each with 64 directly connected Xilinx
4013 FPGAs.

RawLogic supports only some Raw architecture
features. It has simple replicated tiles and supports
statically scheduled, tightly integrated communica-
tion, multigranularity, and configurability. But it does
not support the instruction processing of a more gen-
eral Raw system. Rather, we converted each static con-
trol sequence into an individual state machine and
hardwired it into RawLogic. RawLogic therefore has
the problems associated with FPGA-based systems—
it lacks flexibility and has long compilation times.

To compile applications for RawLogic, we developed
a framework that specifies the dependence structure of
a program’s loops (in C) and the computation it per-
forms (in behavioral Verilog). This program specifica-
tion is used to automatically generate a behavioral
Verilog netlist for the program. A commercial behav-
ioral compiler automatically synthesizes a gate-level
netlist, which is then processed by a VirtualWires com-
piler. This compiler partitions, places, and schedules the

Figure 3. Six-tile
systolic structure
that maintains value
dependencies for a
looped array access.

September 1997

Table 1. Benchmark results for the Raw processor.

Data No. of Speedup
Benchmark Benchmark width No. of gates No. of over
category name (bits) elements (thousands) FPGAs software
Binary heap bheap15 32 15 29 20 1.26
bheap255 32 255 833 320 2.21
bubble64 32 64 142 64 7
bubble512 32 512 1,394 320 25
DES encryption des4 64 4 47 41 7
des96 64 96 1,305 320 82
Integer fast Fourier transforms fft4 3 4 4 17 9
fft32 iy 32 217 64 59
jacobi16x16 8 256 106 85 230
jacobi32x64 8 2,048 1,126 379 1,562
Conway’s Game of Life life64x16 1 1,024 229 108 597
life64x64 1 4,096 971 354 1,758
Integer matrix multiply matmult4 x4 16 16 10 18 90
matmult16x16 16 256 176 64 183
merges 32 14 14 24 2.60
merge256 32 510 596 201 1.62
nqueensi6 1 16 14 17 3.96
nqueens64 1 64 463 215 7
Single-source shortest path ssp16 16 16 44 14 10
$Sp256 16 256 814 261 52
Multiplicative shortest path spm16 16 16 156 36 14
spm32 16 32 310 90 25
Transitive closure tc512 1 512 187 48 398

logic** to produce binary code for the FPGA hardware.
This binary code consists of individual state machines
that represent programs for both the computation
threads and statically scheduled communications.

We tested RawLogic on a benchmark suite of 12
general-purpose programs. Executing these bench-
marks on the 25-MHz RawLogic prototype achieves
10 to 1,000 speedup over a commercial Sparc 20/71.
Table 1 compares execution results to an all-software
version executing on a 2.82 SPECint95 SparcStation
processor. We also list the number of gates and Xilinx
4013 FPGAs required. By using different problem
sizes, we generated cases for each benchmark ranging
in size from a few to hundreds of FPGAs. We com-
piled most of the smaller benchmarks down to con-
figuration binary code and ran them on RawLogic.
Because the FPGA compilation step is expensive (sev-
eral hours per board using 10 workstations), for the
larger benchmarks, we report accurate estimates of
execution speed provided by our emulation software.

We also attempted to understand the various
sources of speedup in each application. For example,
Life obtained a 32X speedup over the SparcStation
due to bit-level operation optimization (multigranu-
larity), 32X from parallelism, 22X from configura-
bility (a computation on eight bits from eight distinct
neighbors). In addition, Life suffered a 3X slowdown
from a slower FPGA clock and 13X from communi-
cation overhead. This results in an overall speedup of
about 600X. A Raw machine shares the advantages

Computer

of the FPGA system, but it does not suffer from the
same clock speed disadvantages. Because centraliz-
ing future systems will be physically impossible, all
systems will incur some form of communication
penalty.

suited for stream-based signal-processing compu-

tations. In 10 to 15 years, we believe that billion-
transistor chip densities, faster switching speeds, and
growing compiler sophistication will allow a Raw
machine’s performance-to-cost ratio to surpass that
of traditional architectures for future, general-purpose
workloads. Because Raw architectures are field-pro-
grammable, we further speculate that they will become
a cost-effective alternative to custom hardware in
many situations. They thus offer a universal solution
for both general- and special-purpose applications.

Using a prototype Raw system, we will attempt to
discover the greatest amount of parallelism available
at compilation. For programs that the compiler can-
not analyze, we plan to implement a system similar to
the Multiscalar,” but with software-based runtime
checks. Because the compiler has access to the under-
lying hardware mechanisms, we believe that many of
these checks can be eliminated.

We now have an operational simulator for a Raw
machine and plan a VLSI implementation of Raw
with a compiler based on Stanford University’s SUIF
system. [

I n the near term, Raw architectures will be best

Acknowledgments

We thank Doug Burger for his incisive technical
feedback and his help in condensing this article. This
project is funded by US Defense Advanced Research
Projects Agency contract DABT63-96-C-0036 and a
National Science Foundation Presidential Young
Investigator Award. Ikos Systems donated the
VirtuaLogic emulation system.

References

1. D.]J. Scales, K. Gharachorloo, and C.A. Thekkath,
“Shasta: A Low Overhead, Software-Only Approach for
Supporting Fine-Grain Shared Memory,” Proc. Int’l
Conf. Architectural Support for Programming Lan-
guages and Operating Systems VII, ACM Press, New
York, 1996, pp. 174-185.

2. V. Sarkar and J.L. Hennessy, “Compile-Time Partition-
ing and Scheduling of Parallel Programs,” Proc. ACM
SIGPLAN °86 Symyp. Compiler Construction, ACM
Press, New York, 1986, pp. 17-26.

3. J. Babb et al., “Logic Emulation with Virtual Wires,”
IEEE Trans. CAD, 1997, to appear.

4. C. Selvidge et al., “TIERS: Topology Independent
Pipelined Routing and Scheduling for VirtualWire Com-
pilation,” Proc. ACM Int’l Workshop on FPGAs, ACM
Press, New York, 1995, pp. 12-14.

5. A.V. Aho, M. Ganapathi, and S.W.K. Tjiang, “Code
Generation Using Tree Matching and Dynamic Pro-
gramming,” ACM Trans. Programming Languages and
Systems, Oct. 1989, pp. 491-516.

6. S. Hinrichs et al., “An Architecture for Optimal All-to-
All Personalized Communication,” Proc. Sixth Ann.
ACM Symp. Parallel Algorithms and Architectures,
ACM Press, New York, 1994, pp. 310-319.

7. G.S. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Int’l Symp. Computer Archi-
tecture, IEEE CS Press, Los Alamitos, Calif., 1995,
pp. 414-425.

Elliot Waingold is an undergraduate researcher at
MIT’s Laboratory for Computer Science. He is pur-
suing a BS and MEng in computer science at MIT.

Michael Taylor is an MIT graduate student. He
received an AB in computer science from Dartmouth
College.

Devabhaktuni Srikrishna is a graduate student in elec-
trical engineering and computer science at MIT. He
received a BS in mathematics from the California
Institute of Technology and is a member of the Math-
ematical Association of America.

Vivek Sarkar is a visiting associate professor at the
Laboratory for Computer Science, a senior technical

staff member at the IBM Software Solutions Division,
and a member of the IBM Academy of Technology.
He received a PhD in electrical engineering from Stan-
ford University.

Walter Lee is a graduate student at the Laboratory
for Computer Science. He received a BS in computer
science and an MEng in electrical engineering and
computer science, both from MIT.

Victor Lee is a senior computer architect for Intel
Corp. He received a BS in electrical engineering from
the University of Washington and an SM in electrical
engineering and computer science from MIT.

Jang Kim is a systems analyst at Morgan Stanley. He
received a BS and an MEng in computer science from
MIT.

Maithew Frank is a graduate student at the Labora-
tory for Computer Science. He received a BS in com-
puter science and mathematics from the University of
Wisconsin-Madison.

Peter Finch is an undergraduate researcher at the Lab-
oratory for Computer Science. He is pursuing a BS
and MEng in computer science at MIT.

Rajeev Barua is a PhD candidate in computer science
at the Laboratory for Computer Science. He received
a BS in computer science and engineering from the
Indian Institute of Technology, New Delbi, and an
MS in computer science from MIT.

Jonathan Babb is a PhD candidate in electrical engi-
neering at MIT and a founder of Virtual Machine
Works Inc. He received a BS from the Georgia Insti-
tute of Technology and an SM from MIT, both in elec-
trical engineering.

Saman Amarasingbe is an assistant professor in the
Laboratory for Computer Science. Amarasinghe has
a BS in electrical engineering and computer science
from Cornell University and an MS and PhD in elec-
trical engineering from Stanford University.

Anant Agarwal is an associate professor of electrical
engineering and computer science at MIT and a
founder of Virtual Machine Works Inc. Agarwal
received a BTech in electrical engineering from the
Indian Institute of Technology, Madras, and a PhD
in electrical engineering from Stanford University.

Contact the authors at MIT Laboratory for Computer
Science, 545 Technology Sq., Rm. 627, Cambridge,
MA 02139; bttp://www.cag.lcs.mit.edu/raw.

September 1997

