Evaluating Celerity: A 16nm 695 Giga-RISC-V Instructions/s
Manycore Processor with Synthesizable PLL

Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christopher Torng, Scott Davidson,
Aporva Amarnath, Luis Vega, Bandhav Veluri, Anuj Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie Zhao,
Dustin Richmond, Zhiru Zhang, Ian Galton, Christopher Batten, Michael B. Taylor, Ronald G. Dreslinski

Abstract—This letter presents a 16nm 496-core RISC-V
network-on-chip (NoC). The mesh achieves 1.4GHz at 0.98V,
yielding a peak throughput of 695 Giga RISC-V instructions/s
(GRVIS), a peak energy efficiency of 314.89 GRVIS/W, and a
record 825,320 CoreMark benchmark score. Unlike previously
reported [1], this new score was obtained without modifying the
core benchmark code. The main feature is the NoC architecture,
which uses only 1881 um? per router node, enables highly scalable
and dense compute, and provides up to 361 Tb/s of aggregate
bandwidth.

Index Terms—Celerity, Manycore, Network-on-Chip, RISC-V

I. INTRODUCTION

Complex, data-parallel workloads continue to push towards
edge devices, such as mobile and internet-of-things (IoT) plat-
forms. In particular, streaming-based workloads like real-time
computer vision and machine learning are steadily increasing
in demand. Mobile devices demand high energy efficiency
to attempt these computationally-intensive workloads. At the
same time, the hardware must remain flexible to perform
state-of-the-art algorithms as well as workloads that emerge
post-fabrication. Prior manycore architectures [2]-[4] that tar-
get streaming workloads have yielded high area and energy
efficiencies (Table I). However, much of the die area for
these architectures were dedicated towards the NoC, including
cache-coherence protocol controllers, which restricts potential
compute density and efficiency. We demonstrate a novel NoC
architecture that enables fast inter-node communication with
significantly reduced die area (2.5x-44x) compared to prior
work. The processor is composed of a 496-core array of 5-
stage, in-order RISC-V RV32IM cores in a mesh configuration
(Fig. 1). It achieves a peak of 695 GRVIS, and a record
825,320 CoreMark benchmark score.

II. MANYCORE ARCHITECTURE

In order to achieve a high compute density, the network
architecture (Fig. 1) differs significantly from a traditional
coherent shared-memory model as described in this section.

Manuscript received Nov. 9, 2019. This research was supported in part
by DARPA Award HR0011-16-C-0037, NSF Awards 1059333, 1512937,
1563767, 1565446, and 1337240. This research employed a BaseJump ASIC
Motherboard; the bringup effort was partly funded by the DARPA/SRC JUMP
ADA center. (Corresponding author: Austin Rovinski).

A. Rovinski, A. Amarnath, T. Ajayi, and R. Dreslinski are with the Univer-
sity of Michigan, Ann Arbor, MI 48109 USA (e-mail: rovinski@umich.edu).

C. Zhao, P. Gao, S. Xie, S. Davidson, L. Vega, B. Veluri, D. Richmond, and
M. Taylor are with the University of Washington, Seattle, WA 98195 USA.

K. Al-Hawaj, C. Torng, S. Dai, R. Zhao, Z. Zhang, and C. Batten are with
Cornell University, Ithaca, NY 14853 USA.

A. Rao, J. Puscar, and 1. Galton are with the University of California, San
Diego, CA 92093, USA

\I 0x000.... [$] 0x080... [% -~ 3{ 0x780... |
~ J: vt vt
Core s 4t it
[Lox070... J$1 ox0F0... [% -+ 3] ox7Fo... |
’ vt vt
D Mem || | Mem | 0Xfi7;1--,’l$| OX%T”' s 0x7&4 |
Z
R ‘ 0x078... 4] 0x0F8... I% -+ [0x7F8... |
vl | p K k)
< 7 V1 VT VT
FigoCRoutsrT e External Host)
v
Nm. .g Control North Data
T . !! {N,E,S.W,P)_ready -_Erm_’ North e
—+. . Round i ;a:(:‘ >
_—ub—p Robin NESWP)_sel __»m_’ DA™ :
Vet - Arbiter st Proc
——P NESW,P) valid ——bm—f 7
T UL B
v

Fig. 1: Manycore mesh architecture with callouts to an indi-
vidual tile and a tile’s router architecture

A. Partitioned Global Address Space (PGAS)

Instead of caches, the manycore processor has a partitioned
global physical address space across all network nodes. Fig. 1
illustrates the manycore mesh, and the memory address map-
ping across nodes in the network using a 32-bit addressing
scheme. This mapping extends to nodes below the bottom
edge of the network to allow messages to be sent in and out
of the network. For Celerity, we use asynchronous buffers
to communicate with four 64-bit general-purpose RISC-V
(RV64G) cores as hosts. These host cores are capable of
running a full operating systems, such as Linux.

The use of PGAS allows significant area improvement over
a traditional shared memory system. Fig. 2 shows the area
overhead of a directory-based coherent cache vs. Celerity’s
PGAS system, demonstrating that PGAS offers over a 20x
reduction in area overhead. The comparison system breakdown
was extracted from Celerity’s RV64G control cores, with
directory area conservatively estimated from Sanchez and
Kozyrakis [5]. The cost of removing these structures is mainly
the ease of programming that comes from shared memory.
However, streaming and highly parallel workloads often have
well-defined dataflow patterns, which can enable compilers to
manage data movement and mitigate this cost. Such strategies
are discussed further in Section IV.

B. Remote Store Programming

The mesh uses the remote store programming (RSP) model
[6] to send messages over the network. As opposed to a shared

= Logic

= Data
Tag Lookup
Directory

12%'
17%

Fig. 2: Area breakdown for Celerity’s PGAS memory system
(left) vs. a comparable directory-based coherent cache (right)

memory model where a node can load or store to any address,
RSP disallows loads from remote memory. A node can freely
load or store to its local memory, but can only perform stores
to remote memory. Using RSP both reduces router area (10%
less than a router with remote loads) and prevents pipeline
stalls associated with long-latency remote loads. Along with
using two physical networks and dimension-ordered routing,
RSP guarantees deadlock-free, in-order delivery.

C. Single-Flit Packets

Celerity implements a different flow control scheme com-
pared to prior work. While wormhole routing is common
due to its relative efficiency, it still has inefficiencies related
to packet ingestion in the network. Most wormhole schemes
require head and/or tail flits to reserve routes and communicate
metadata. This results in network overhead, as sending a single
data flit results in 2-3 flits being injected into the network. In
addition, wormhole routing can cause head-of-line blocking
when one packet’s route reservation conflicts with another.

Celerity instead implements a single-flit packet protocol,
where the command, address, and data of a packet is contained
in a single flit. This flow control scheme offers several benefits
over wormhole routing:

o No head or tail flits — no overhead flits in a packet

o Head-of-line blocking is not possible as routes are not
reserved (congestion can still occur)

« Small core-to-core latency, especially for adjacent cores

o An in-order pipeline can execute one store per cycle,
because a store injects only one flit into the network

The single-flit flow control scheme is further discussed in
Section VI with comparisons to prior work.

III. MANYCORE IMPLEMENTATION

Fig. 3 shows the layout of a single tile, which contains a
“Vanilla-5” core and the routing logic for that node. A core im-
plements the 32-bit RISC-V base instruction set and the mul-
tiply/divide extension (RV32IM) in a 5-stage pipeline. Each
tile contains 2x 4KB SRAMSs for instruction/data memories
(IMEM/DMEM), and a 32-entry, 32b register file implemented
using two Irlw latch-based memories. The router is a single-
stage design, allowing it to arbitrate, route, and send flits in a
single cycle. In addition to providing low latency, the area of
the router is reduced over a multi-stage design. Because there
are no pipeline registers between nodes, flits take only 1 cycle
per hop. Two-element FIFOs are used at the input for each
direction to hold packets in case of congestion. To implement
both rate limiting and memory fences, we use a source-
controlled credit counter. The credit counter is decremented

Cell Type > %
(um
IMEM 6691| 27.59
DMEM 6691| 27.59
RF 2008| 8.28
Core logic 24731 10.20
ALU 485 2.00
Div 412 1.70
Mult 301 1.24
Pipeline/other | 1275| 5.26
NoC 1881 7.76
Endpoint FIFO| 303| 1.25
Credit counter 23| 0.09
Router 1555 6.41
Endcap/welltap 281 1.16
Filler 1635| 6.74
Unutilized 2591| 10.68

Total 24251{100.00

Fig. 3: (left) Physical area breakdown of each manycore tile
(top right) Tile die photograph (bottom right) Tile floorplan

on each packet injected into the network from a remote store,
and incremented when a remote store completes. Credits are
returned over a separate 9-bit NoC with the same architecture
as in Fig. 1. The per-module physical area breakdown is
listed in Table 3, with the NoC occupying only 1881 um?
(7.8%) of the tile. The router supports 80b transfers per cycle,
which packages data, address, and commands into a single
flit. The router and core run on the same clock domain up
to 1.4 GHz, allowing each tile to both transfer 750 Gb/s and
process 1.4 GRVIS. Several gaps were created between rows of
tiles to allow for ESD cells and In-Cell Overlays ICOVL) as
required for fabrication. The total die area of the manycore is
15.25 mm? as fabricated with ESD and ICOVL (or 12.03 mm?
without). This yields an area efficiency of 45.57 GRVIS/mm?
(57.77 GRVIS/mm?).

IV. PORTING WORKLOADS

Software programs are compiled using a different workflow
from shared memory systems. Because each tile is a RISC-
V core, C/C++ programs can be compiled using the standard
RISC-V toolchains. We use a custom GCC linker script which
maps data and instructions to separate 4KB segments such
that instructions and data may be placed into the respective
IMEM and DMEM. When compiling, the program must target
a single tile and fit within a tile’s IMEM/DMEM. For Single-
Program, Multiple-Data (SPMD) class programs, the same
program can simply be replicated across each tile in the mesh.
Larger programs can be constructed by partitioning instruc-
tions across tiles and explicitly passing data between them. For
example, a large program can be split into multiple program
segments. Each segment is stored in a different tile’s IMEM,
and data is passed between tiles. In the case of streaming
applications, this works particularly well for separating con-
sumer and producer functions across tiles and streaming data
between them. Infrastructures have been developed to simplify
compiling such workloads, such as Streamlt [7], an infrastruc-
ture to automatically partition programs using annotations, and
bsg_manycore_1lib, our library for sending, receiving, and
synchronizing data across tiles. These infrastructures can allow
programmers to write code segments, annotate dependencies,
and allow compilers/libraries to orchestrate the data transfer.

A. CoreMark

The primary workload we use to benchmark our proces-
sor is CoreMark, a computationally-intensive benchmark that
stresses pipeline performance. We port CoreMark to the many-
core platform by starting with the “barebones” implementation
provided by EEMBC. With this implementation, we create a
simple linker script to identify which functions to distribute to
the manycore tiles vs. the functions to run on the host control
cores. We then use CoreMark’s parallelization interface to load
the program binaries to all manycore tiles and run the program.
The CoreMark benchmark enumerates the criteria to submit a
valid CoreMark score, which we adhere to. Unlike previously
reported [1], the scores we report in Section VI do not use
modified core benchmark code. A change in compiler version
and compiler flags allowed us to fit the benchmark within a
single tile’s IMEM, as well as modestly improve the score.

V. DIGITAL PLL

The manycore clock is supplied by a custom, fully synthe-
sized, and automatically placed and routed clock generator.
It operates from an isolated 0.8V supply and occupies 5898
pm?. With a reference frequency of f,.; = 26 MHz, its
output frequency is tunable from 10MHz to 3.3GHz with
minimum increments of no more than 2%, and consumes 1.5—
3.5mW at the min and max frequencies, respectively. The
PLL achieves a (simulated worst-case) period jitter of 2.5 ps.
Jitter was obtained using a bit-exact, event-driven simulation
which accounts for phase noise. The simulation forgoes supply
noise, as the design was done in parallel to the SoC before
supply characteristics were known. However, the synthesizable
architecture was created to be tolerant of supply noise. The
PLL locks both frequency and phase with a simulated worst-
case lock time of 230 ps.

Vre

Digital
Loop
Filter

fraction
integer

Fig. 4: Synthesizable PLL architecture

The clock generator’s PLL core (Fig. 4) consists of a first-
order AY frequency-to-digital converter [8], an « adder, a
frequency-to-phase accumulator, a digital low pass loop filter,
DCO drift compensation logic, DCO control logic, and a bank
of 16 DCOs. The 16 DCOs together cover a frequency range
of 1.3-3.3 GHz, and only one DCO is enabled for each output
frequency setting. Each DCO (Fig. 4) is a ring oscillator
wherein each inverting delay element is loaded with a bank
of NAND gate frequency control elements (FCEs) [9]. We
target a 50% frequency range overlap above and below for
each DCO in order to margin against process, voltage, and
temperature variation (Fig. 5). The DCO drift compensator

dynamically controls 37 of the FCEs to compensate for drift
of the DCO’s center frequency over temperature and supply.
The DCO control logic partitions its input into integer and
fractional parts. The integer part drives all but 8 of the
remaining FCEs with an update rate of f,..s. The fractional
part is oversampled by a second-order AY. modulator followed
by a dynamic element matching encoder, the output of which
drives the final 8 FCEs.

Ur Rahman et al. [10] propose a similar architecture to
this work, however a key distinction is that this work uses
NAND gates as loading elements to vary node capacitance,
whereas ur Rahman et al. use inverters in parallel to vary drive
current. NAND gate loading is compatible with synthesis tools,
whereas parallel driving cells are usually not, due to a lack of
tristate devices in most digital cell libraries.

35

w
o

N
o1

Frequency (GHz)

=
o

o
o

0.0
DCO Code

DCO4 —DCO5 —DCO6 —DCO7 —DCO8
DCO14 DCO15 DCO16

—DCO1 DCO2 DCO3
—DCO9 —DCO010 —DCO11 —DC012 —DCO013

Fig. 5: PLL DCO code vs. simulated output frequency
VI. EXPERIMENTAL RESULTS

To validate the manycore processor, we run CoreMark
distributed across all cores simultaneously. CoreMark is struc-
tured as self-validating benchmark: each iteration depends on
the previous iteration and a hash of the final state is used to
check correctness. Fig. 6 identifies the operating configurations
where CoreMark reports a correct result for all tiles. The
processor achieves a max throughput of 695 GRVIS at 1.4GHz
and 0.98V - the highest single-chip RISC-V throughput to date
— and a max energy efficiency of 314.89 GRVIS/W at S00MHz
and 0.60V. It achieves a record CoreMark score of 825,320,
outperforming the next best score by more than 2x, as well
as our previously reported score [1] by a small margin. Our
evaluation uses GRVIS as a measure of performance because it
signifies compliance with the RISC-V ISA. A custom ISA can
increase efficiency by tailoring instructions, but this extricates
the architecture from the benefits of open-source software
and toolchains. In our comparison, we quantify non-RISC-
V performance with giga-operations per second (GOPS). For
direct comparisons, GRVIS can be treated as GOPS. Table I
compares our work against prior manycore works. In most
metrics, this work compares very favorably against related
works. Celerity exceeds all compared works for normalized
NoC area (2.5x-44x), area efficiency (1.8x-160x), and energy
efficiency (4.2x-37x). Throughput measurements are normal-
ized to 32-bit operations, under the optimistic assumption that
two 16-bit operations are equivalent to one 32-bit operation.

Table II provides a comparison of our single-flit flow control
model versus the related work, and Fig. 7 provides an example

ISSCC ‘08 [2] |HPCA ‘18 [3]] JSSC ‘17 [4] _ |ESSCIRC ‘14 [11] This work Area only includes die area allocated 10 tiles _
SA VLIW SPARC VO RISC RISC-V RISC-V b S;i?u:;::r:éhszgd‘:; 11?.& lﬁa;:(cla(m Contacted Poly Pitch (CPP) scaling
Datapath Width 32-bit 64-bit 16-bit 64-bit 32-bit d KiloCore can only power 160 cores from its package. Power extrapolated
Technology 90nm Planar 32nm SOI 32nm SOI 45nm SOI 16nm FinFET to 1000 cores
Voltage 090-130V |080-120V]| 0.67- 110V 0.65- 120 V 0.60 —098 V| Throushput normalzed 10 3243t GOPSIGRVIS
Arca” 23216 mm’ | 2937 mm’ 5741 mm’ 3.08 mm?__[15.25 (12.03%) M| 9 Network isseson Bancwids = i ks ot o biset newon) Gk
Normalized Area®®| 32.65 mm 14.08 mm’ 27.52 mm’ 0.69 mm 15.25 (12.03°) mm?| bandwidth)
Normalized NoC | ~82894 um”> | 16214 pm’ 4784 pm? _ 1881 pm?
Router Area®® (5x32 bit) (3x64 bit) (16 + 2x16 bit) (80 + 9 bit)
Cores (Threads) 64 (64) 25 (50) 1000 (1000)¢ 2(2) 496 (496)
Frequency 750 MHz 500 MHz 1770 MHz 200 - 1300 MHz 10 - 1400 MHz
Power 10.8 W 2W 39.6 W¢ 0.96 W 741 W z
Norm. Throughput®| 144 GOPS 5 GOPS 885 GOPS 5.2 GRVIS 695 GRVIS e
Network Aggregate 53.4 Tb/s (wormhole) 2
Bandwidth! 33.79 Tb/s 11.33 Tb/s 335 This (circuit) - 361 Tb/s 2
Network Bisection 0.58 Tb/s (wormhole) E
Bandwidth? 1927Tbls | 096 Tb/s |73 o5 Ty (circuit) - 4.00 Tb/s
Routing Model Wormhole Wormhole Wormhole+circuit - Single-flit packet
Energy Efficiency® |13.33 GOPS/W|2.50 GOPS/W | 22.35 GOPS/W d 5.42 GRVIS/W 93.04 GRVIS/W
Normalized Area 441 0.36 32.16 7.54 45.57 (57.77°)
Efficiency®®® GOPS/mm® | GOPS/mm? GOPS/mm” GRVIS/mm® GRVIS/mm®
TABLE I: Comparison to related works Fig. 6: Shmoo plot of operation points
T”_E6 4 Pt Work Routing | Arbitrary |Head-of-line| Packet | Min. latency | Overhead
’ fon model |destination| blocking | throughput (cycles) [flit fraction
Overhead: 67%
vernead: o/ 7 TILE64[1], i -
C1-R2 blocked Piton2] | Vormhole| Yes Yes 033 /cyclelh+n+t+1[2/(@m+1)
Flits (head] (addr] [data @ Cycle # for cycles 3-5 ‘Wormhole Yes Yes 033 /cycle[2h+n+ ¥ |2/ (n + 2)
KiloCore[3]| Circuit + Not Not Not
Cores C 0 C 1 - C 2 Latency: i syvitche(.i No N/A Reported Reported Reported
7 cycles This work Sl;lfii_e?n Yes No 1/ cycle h+n-1 0

ollom!

3
R0 Jgl

10 -~
R2

. J

Routers

¢/)
1

RO R

Jo00 *.

KiloCore (wormhole)
C1-R2 blocked

Overhead: 67%
Flits ® Cycle #

for cycles 4-6

el CO_| | C1 |{7C2 e
000 1@ T 0leae
~— & D N

Routers& RO J@& R1 J& R2]

This work C1-R2 blocked

Flits (data) @ Cycle # |_at max 1 cycle

we| CO| | C1 | C2 [
Q __~ v o

Routers& RO J@n R1 J@n R2]

Fig. 7: An example of sending a packet with one data flit from
Core 0 to Core 2 for each flow control model

of each flow control model sending one flit of data to another
node. Our model allows our network to outperform prior works
in both packet throughput and latency for small data transfers.
The difference in latency between the models diminishes to-
wards larger data transfers, however data streaming workloads
favor smaller transfer sizes with smaller latency in order to
allow processing at the next node sooner. Critical paths in the
design lie in both the core and NoC, although experiments
show that the NoC tends to be the limitation on frequency. In
terms of impact on improvement over related work, the NoC
and core architecture both contribute significantly.

h hops, n data flits, ¢ turns in the network path. Core<>router is 1 hop.

* KiloCore’s network is GALS and requires synchronization for each hop.

+ KiloCore’s circuit switch NoC can only be reprogrammed during the processor
configuration phase

TABLE II: Comparison of flow control models

KiloCore [4] modestly exceeds this work in network ag-
gregate and bisection bandwidth, although a majority of its
bandwidth comes from the statically-routed circuit-switched
network. KiloCore also uses only 1.1KB memory per tile,
whereas Celerity uses 8KB per tile. In terms of RISC-V
performance, Lee et al. [11] report state-of-the-art in single-
chip GRVIS throughput, which we outperform by 267x.

REFERENCES

[11 A. Rovinski, et al., “A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core
Manycore Processor With Mesh On-Chip Network and an All-Digital
Synthesized PLL in 16nm CMOS,” Symp. on VLSI Circuits, pp. C30-
C31, Jun. 2019.

S. Bell, et al., “TILE64 Processor: A 64-Core SoC with Mesh Intercon-
nect.” Intl. Solid State Circuits Conf., pp. 88-89, Feb. 2008.

M. McKeown, et al., “Power and Energy Characterization of an Open
Source 25-Core Manycore Processor”” Symp. on High-Performance
Computer Architecture, pp. 762-775, Feb 2018.

B. Bohnenstiehl, et al., “KiloCore: A 32-nm 1000-Processor Computa-
tional Array,” J. Solid-State Circuits, vol. 52, no. 5, Apr. 2017.

D. Sanchez, C. Kozyrakis, “SCD: A Scalable Coherence Directory with
Flexible Sharer Set Encoding,” Symp. on High-Performance Computer
Architecture, pp. 1-12, Feb 2012.

H. Hoffmann, et al., “Remote Store Programming,” High-Performance
Embedded Architectures and Compilers, pp. 3-17, Jan 2010.

W. Thies, et al., “Streamlt: A Language for Streaming Applications,”
Intl. Conf. on Compiler Construction, pp. 179-196, Apr. 2002.

R. Beards, M. Copeland, “An Oversampling Delta-Sigma Frequency
Discriminator,” Trans. on Circuits and Systems, vol. 41, no. 1, pp. 26-32,
Jan. 1994.

P-L. Chen, et al., “A Portable Digitally Controlled Oscillator Using
Novel Varactors.” Trans. on Circuits and Systems, vol. 52, no. 5, pp.
233-237, May 2005.

F. ur Rahman, et al., ”A 1-2 GHz Computational-Locking ADPLL With
Sub-20-Cycle Locktime Across PVT Variation”

Y. Lee, et al.,, “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W
RISC-V Processor with Vector Accelerators,” European Solid State
Circuits Conference, pp. 199-202, Sep. 2014.

[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]

(11]

