
Design Decisions in the Implementation of a
Raw Architecture Workstation

by

Michael Bedford Taylor

A.B., Dartmouth College 1996

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1999

 MCMXCIX Massachusetts Institute of Technology.
All rights reserved.

Signature of Author ...
Department of Electrical Engineering and Computer Science

September 9, 1999

Certified by ..
Anant Agarwal

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by ..
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students
1

Design Decisions in the Implementation of a
Raw Architecture Workstation

by
Michael Bedford Taylor

Submitted to the
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 9, 1999

in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering and Computer Science.

Abstract

In this thesis, I trace the design decisions that we have made along the journey to
creating the first Raw architecture prototype. I describe the emergence of extroverted
computing, and the consequences of the billion transistor era. I detail how the architec-
ture was born from our experience with FPGA computing. I familiarize the reader with
Raw by summarizing the programmer’s viewpoint of the current design. I motivate
our decision to build a prototype. I explain the design decisions we made in the imple-
mentation of the static and dynamic networks, the tile processor, the switch processor,
and the prototype systems. I finalize by showing some results that were generated by
our compiler and run on our simulator.

Thesis Supervisor: Anant Agarwal
Title: Professor, Laboratory for Computer Science
2

Dedication

This thesis is dedicated to my mom.

-- Michael Bedford Taylor, 9-9-1999
3

TABLE OF CONTENTS

1 INTRODUCTION 5

2 EARLY DESIGN DECISIONS 9

3 WHAT WE’RE BUILDING 11

4 STATIC NETWORK DESIGN 19

5 DYNAMIC NETWORK 26

6 TILE PROCESSOR DESIGN 28

7 I/O AND MEMORY SYSTEM 34

8 DEADLOCK 37

9 MULTITASKING 46

10 THE MULTICHIP PROTOTYPE 48

11 CONCLUSIONS 50

12 APPENDAGES 53
4

1 INTRODUCTION

1.0 MANIFEST

In the introduction of this thesis, I start by motivat-
ing the Raw architecture discipline, from a computer
architect’s viewpoint.

I then discuss the goals of the Raw prototype pro-
cessor, a research implementation of the Raw philoso-
phy. I elaborate on the research questions that the Raw
group is trying to answer.

In the body of the thesis, I will discuss some of the
important design decisions in the development of the
Raw prototype, and their effects on the overall develop-
ment.

Finally, I will conclude with some experimental
numbers which show the performance of the Raw proto-
type on a variety of compiled and hand-coded programs.
Since the prototype is not available at the time of this
thesis, the numbers will come from a simulation which
matches the synthesizeable RTL verilog model on a
cycle by cycle basis.

1.1 MOTIVATION FOR A NEW TYPE OF PROCESSOR

1.1.1 The sign of the times

The first microprocessor builders designed in a
period of famine. Silicon area on die was so small in the
early seventies that the great challenge was just in
achieving important features like reasonable data and
address widths, virtual memory, and support for external
I/O.

A decade later, advances in material science pro-
vided designers with enough resources that silicon was
neither precious nor disposable. It was a period of mod-
eration. Architects looked to advanced, more space con-
suming techniques like pipelining, out-of-order issue,
and caching to provide performance competitive with
minicomputers. Most of these techniques were bor-
rowed from supercomputers, and were carefully added
from generation to generation as more resources became
available.

The next decade brings with it a regime of excess.
We will have billions of transistors at our disposal. The
new challenge of modern microprocessor architects is
very simple: we need to provide the user with an effec-
tive interface to the underlying raw computational
resources.

1.1.2 An old problem: SpecInt

In this new era, we could continue on as if we still
lived in the moderation phase of microprocessor devel-
opment. We would incrementally add micro-architec-
tural mechanisms to our superscalar and VLIW
processors, one by one, carefully measuring the bene-
fits.

For today’s programs, epitomized by the SpecInt95
benchmark suite, this is almost certain to provide us
with the best performance. Unfortunately, this approach
suffers from exponentially growing complexity (mea-
sured by development and testing costs and man-years)
that is not being sufficiently mitigated by our sophisti-
cated design tools, or by the incredible expertise that we
have developed in building these sorts of processors.
Unfortunately, this area of research is at a point where
increasing effort and increasing area is yielding dimin-
ishing returns [Hennessey99].

Instead, we can attack a more fuzzy, less defined
goal. We can use the extra resources to expand the scope
of problems that microprocessors are skilled at solving.
In effect, we redirect our attention from making proces-
sors better at solving problems they are already, frankly,
quite good at, towards making them better at application
domains which they currently are not so good at.

In the meantime, we can continue to rely on the as-
yet juggernaut march of the fabrication industry to give
us a steady clock speed improvement that will allow our
existing SpecInt applications to run faster than ever.

1.1.3 A new problem: Extroverted computing

Computers started out as very oblivious, introverted
devices. They sat in air-conditioned rooms, isolated
from their users and the environment. Although they
communicated with EACH OTHER at high speeds, the
bandwidth of their interactions with the real world was
amazingly low. The primary input devices, keyboards,
provided at most tens of characters per second. The out-
put bandwidth was similarly pathetic.
5

With the advent of video display and sound synthe-
sis, the output bandwidth to the real world has blos-
somed to 10s of megabytes per second. Soon, with the
advent of audio and video processing, the input band-
width will match similar levels.

As a result of this, computers are going to become
more and more aware of their environments. Given suf-
ficient processing and I/O resources, they will not only
become passive recorders and childlike observers of the
environment, they will be active participants. In short,
computers will turn from recluse introverts to extro-
verts.

The dawn of the extroverted computing age is upon
us. Microprocessors are just getting to the point where
they can handle real-time data streams coming in from
and out to the real world. Software radios and cell
phones can be programmed in a 1000 lines of C++
[Tennenhouse95]. Video games generate real-time
video, currently with the help of hardware graphics back
ends. Real-time video and speech understanding,
searching, generation, encryption, and compression are
on the horizon. What once was done with computers for
text and integers will soon be done for analog signals.
We will want to compose sound and video, search it,
interpret it, and translate it.

Imagine, while in Moscow, you could talk to your
wrist watch and tell it to listen to all radio stations for
the latest news. It would simultaneously tune into the
entire radio spectrum (whatever it happens to be in Rus-
sia), translate the speech into English, and index and
compress any news on the U.S. At the same time, your
contact lens display would overlay English translations
of any Russian word visible in your sight, compressing
and saving it so that you can later edit a video sequence
for your kids to see (maybe you’ll encrypt the cab ride
through the red light district with DES-2048). All of
these operations will require massive bandwidth and
processing.

1.1.4 New problem, old processors?

We could run our new class of extroverted applica-
tions on our conventional processors. Unfortunately,
these processors are, well, introverted.

First off, conventional processors often treat I/O
processing as a second class citizen to memory process-
ing. The I/O requests travel through a hierarchy of
slower and slower memory paths, and end up being bot-
tlenecked at the least common denominator. Most of the

pins are dedicated to caches, which ironically, are
intended to minimize communication with the outside
world. These caches, which perform so well on conven-
tional computations, perform poorly on streaming,
extroverted, applications which have infinite data
streams that are briefly processed and discarded.

Secondly, these new extroverted applications often

have very plentiful fine grained parallelism. The con-
ventional ILP architectures have complicated, non-scal-
able structures (multi-ported or rotating register files,
speculation buffers, deferred exception mechanisms,
pools of ALUs) that are designed to wrest small degrees
of parallelism out of the most twisty code. The parallel-
ism in these new applications does not require such
sophistication. It can be exploited on architectures that
are easy to design and are scalable to thousands of
active functional units.

Finally, the energy efficiency of architectures needs
to be considered to evaluate their suitability for these
new application domains. The less power microproces-
sors need, the more and more environments they can
exist in. Power requirements create a qualitative differ-
ence along the spectrum of processors. Think of the
enormous difference among 1) machines that require
large air conditioners, 2) ones that need to be plugged in,
3) ones that run on batteries, and ultimately, 4) ones that
runs off their tiny green chlorophyllic plastic case.

1.1.5 New problems, new processors.

It is not unlikely that existing processors can be
modified to have improved performance on these new
applications. In fact, the industry has already made
some small baby steps with the advent of the Altivec
and MAX-2 technologies [Lee96].

The Raw project is creating an extroverted architec-
ture from scratch. We take as our target these data-inten-
sive extroverted applications. Our architecture is
extremely simple. Its goal is to expose as much of the
copious silicon and pin resources to these applications.
The Raw architecture provides a raw, scalable, parallel
interface which allows the application to make direct
use of every square millimeter of silicon and every I/O
pin. The I/O mechanism allows data to be streamed
directly in and out of the chip at extraordinary rates.

The Raw architecture discipline also has advan-
tages for energy efficiency. However, they will not be
discussed in this thesis.
6

a
ne
pe
ch
 the
o-
 as
art
ot

o

 of
h

ts,

e a
it
s is
die
not
ive
the
m
a
th
r-

hat
le.
do
er
f a
a-

s

1.2 MY THESIS AND HOW IT RELATES TO RAW

My thesis details the decisions and ideas that have
shaped the development of a prototype of the new type
of processor that our group has developed. This process
has been the result of the efforts of many talented peo-
ple. When I started at MIT three years ago, the Raw
project was just beginning. As a result, I have the luxury
of having a perspective on the progression of ideas
through the group. Initially, I participated in much of the
data gathering that refined our initial ideas. As time
passed on, I became more and more involved in the
development of the architecture. I managed the two sim-
ulators, hand-coded a number of applications, worked
on some compiler parallelization algorithms, and even-
tually joined the hardware project. I cannot claim to
have originated all of the ideas in this thesis; however I
can reasonably say that my interpretation of the
sequence of events and decisions which lead us to this
design point probably is uniquely mine. Also uniquely
mine probably is my particular view of what Raw
should look like.

Anant Agarwal and Saman Amarasinghe are my
fearless leaders. Not enough credit goes out to Jonathan
Babb, and Matthew Frank, whose brainstorming planted
the first seeds of the Raw project, and who have contin-
ued to be a valuable resource. Jason Kim is my partner
in crime in heading up the Raw hardware effort. Jason
Miller researched I/O interfacing issues, and is design-
ing the Raw handheld board. Mark Stephenson, Andras
Moritz, and Ben Greenwald are developing the hard-
ware/software memory system. Ben, our operating sys-
tems and tools guru also ported the GNU binutils to
Raw. Albert Ma, Mark Stephenson, and Michael Zhang
crafted the floating point unit. Sam Larsen wrote the
static switch verilog. Rajeev Barua and Walter Lee cre-
ated our sophisticated compiler technology. Elliot Wain-
gold wrote the original simulator. John Redford and
Chris Kappler lent their extensive industry experience to
the hardware effort.

1.2.1 Thesis statement

The Raw Prototype Design is an effective design
for a research implementation of a Raw architecture
workstation.

1.2.2 The goals of the prototype

In the implementation of a research prototype, it is
important early on to be excruciatingly clear about one’s
goals. Over the course of the design, many implementa-
tion decisions will be made which will call into question
these goals. Unfortunately, the “right” solution from
purely technical standpoint may not be the correct o
for the research project. For example, the Raw prototy
has a 32-bit architecture. In the commercial world, su
a paltry address space is a guaranteed trainwreck in
era of gigabit DRAMs. However, in a research prot
type, having a smaller word size gives us nearly twice
much area to further our research goals. The tough p
is making sure that the implementation decisions do n
invalidate the research's relevance to the real world.

Ultimately, the prototype must serve to facilitate
the exploration and validation of the underlying
research hypotheses.

The Raw project, underneath it all, is trying t
answer two key research questions:

1.2.3 The Billion Transistor Question

What should the billion transistor processor of the
year 2007 look like?

The Raw design philosophy argues for an array
replicated tiles, connected by a low latency, hig
throughput, pipelined network.

This design has three key implementation benefi
relative to existing superscalar and VLIW processors:

First, the wires are short. Wire length has becom
growing concern in the VLSI community, now that
takes several cycles for a signal to cross the chip. Thi
not only because the transistors are shrinking, and
sizes are getting bigger, but because the wires are
scaling with the successive die shrinks, due to capacit
and resistive effects. The luxurious abstraction that
delay through a combinational circuit is merely the su
of its functional components no longer holds. As
result, the chip designer must now worry about bo
congestion AND timing when placing and routing a ci
cuit. Raw's short wires make for an easy design.

Second, Raw is physically scalable. This means t
all of the underlying hardware structures are scalab
All components in the chip are of constant size, and
not grow as the architecture is adapted to utilize larg
and larger transistor budgets. Future generations o
Raw architecture merely use more tiles with out neg
tively impacting the cycle time. Although Raw offer
7

scalable computing resources, this does not mean that
we will necessarily have scalable performance. That is
dependent on the particular application.

Finally, Raw has low design and verification com-
plexity. Processor teams have become exponentially
larger over time. Raw offers constant complexity, which
does not grow with transistor budget. Unlike today’s
superscalars and VLIWs, Raw does not require a rede-
sign in order to accommodate configurations with more
or fewer processing resources. A Raw designer need
only design the smaller region of a single tile, and repli-
cate it across the entire die. The benefit is that the
designer can concentrate all of one’s resources on
tweaking and testing a single tile, resulting in clock
speeds higher than that of monolithic processors.

1.2.4 The “all-software hardware” question

What are the trade-offs of replacing conventional
hardware structures with compilation and software
technology?

Motivated by advances in circuit compilation tech-
nology, the Raw group has been actively exploring the
idea of replacing hardware sophistication with compiler
smarts. However, it is not enough merely to reproduce
the functionality of the hardware. If that were the case,
we would just prove that our computing fabric was Tur-
ing-general, and move on to the next research project.
Instead our goal is more complex. For each alternative
solution that we examine, we need to compare its area-
efficiency, performance, and complexity to that of the
equivalent hardware structure. Worse yet, these numbers
need to be tempered by the application set which we are
targeting.

In some cases, like in leveraging parallelism,
removing the hardware structures allows us to better
manage the underlying resources, and results in a per-
formance win. In other cases, as with a floating point
unit, the underlying hardware accelerates a basic func-
tion which would take many cycles in software. If the
target application domain makes heavy use of floating
point, it may not be possible to attain similar perfor-
mance per unit area regardless of the degree of compiler
smarts. On the other hand, if the application domain
does not use floating point frequently, then the software
approach allows the application to apply that silicon
area to some other purpose.

1.3 SUMMARY

In this section, I have motivated the design of a new
family of architectures, the Raw architectures. These
architectures will provide an effective interface for the
amazing transistor and pin budgets that will come in the
next decade. The Raw architectures anticipate the
arrival of a new era of extroverted computers. These
extroverted computers will spend most of their time
interacting with the local environment, and thus are
optimized for processing and generating infinite, real-
time data streams.

I continued by stating my thesis statement, that the
Raw prototype design is an effective design for a
research implementation of a Raw architecture worksta-
tion. I finished by explaining the central research ques-
tions of the Raw project.
8

of

e

 it
 to
 a
n
ni-
his

it
ey

s-

ve
a-
ch

ry
he
-

r,
st
e
D
cal
he-
2-

se
2 EARLY DESIGN
DECISIONS
2.0 THE BIRTH OF THE FIRST RAW ARCHITECTURE

2.0.1 RawLogic, the first Raw prototype

Raw evolved from FPGA architectures. When I
arrived at MIT almost three years ago, Raw was very
much in its infancy. Our original idea of the architecture
was as a large box of reconfigurable gates, modeled
after our million-gate reconfigurable emulation system.
Our first major paper, the Raw benchmark suite, showed
very positive results on the promise of configurable
logic and hardware synthesis compilation. We achieved
speedups on a number of benchmarks; numbers that
were crazy and exciting [Babb97].

However, the results of the paper actually consider-
ably matured our viewpoint. The term “reconfigurable
logic” is really very misleading. It gives one the impres-
sion that silicon atoms are actually moving around
inside the chip to create your logic structures. But the
reality is, an FPGA is an interpreter in much the same
way that a processor is. It has underlying programmable
hardware, and it runs a software program that is inter-
preted by the hardware. However, it executes a very
small number of very wide instructions. It might even be
viewed as an architecture with a instruction set opti-
mized for a particular application; the emulation of digi-
tal circuits. Realizing this, it is not surprising that our
experiences with programming FPGA devices show that
they are neither superior nor inferior to a processor. It is
merely a question of which programs run better on
which interpreter.

In retrospect, this conclusion is not all that surpris-
ing; we already know that FPGAs are better at logic
emulation than processors; otherwise they would not
exist. Conversely, it is not likely that the extra bit-level
flexibility of the FPGA comes for free. And, in fact, it
does not. 32-bit datapath operations like additions and
multiplies perform much more quickly when optimized
by an Intel circuit hacker on a full-custom VLSI process
than when they are implemented on a FPGA substrate.
And again, it is not much wonder, for the processor's
multiplier has been realized directly in silicon, while the
multiplier implementation on the FPGA is running
under one level of interpretation.

2.0.2 Our Conclusions, based on Raw logic

In the end, we identified three major strengths
FPGA logic, relative to a microprocessor:

FPGAs make a simple, physically scalable parallel fabric.

For applications which have a lot of parallelism, w

can easily exploit it by adding more and more fabric.

FPGAs allow for extremely fast communication and
synchronization between parallel entities.

 In the realm of shared memory multiprocessors,
takes tens to hundreds of cycles for parallel entities
communication and synchronize [Agarwal95]. When
silicon compiler compiles parallel verilog source to a
FPGA substrate, the different modules can commu
cate on a cycle-by-cycle basis. The catch is that t
communication often must be statically scheduled.

FPGAs are very effective at bit and byte-wide data
manipulation.

Since FPGA logic functions operate on small b
quantities, and are designed for circuit emulation, th
are very powerful bit-level processors.

We also identified three major strengths of proce
sors relative to FPGAs:

Processors are highly optimized for datapath ori-
ented computations.

Processors have been heavily pipelined and ha
custom circuits for datapath operations. This customiz
tion means that they process word-sized data mu
faster than an FPGAs.

Compilation times are measure in seconds, not hours
[Babb97].

The current hardware compilation tools are ve
computationally intensive. In part, this is because t
hardware compilation field has very different require
ments from the software compilation field. A smalle
faster circuit is usually much more important than fa
compilation. Additionally, the problem sizes of th
FPGA compilers are much bigger -- a net list of NAN
gates is much larger than a dataflow graph of a typi
program. This is exacerbated by the fact that the synt
sis tools decompose identical macro-operations like 3
bits adds into separately optimized netlists of bit-wi
operations.
9

t-

g

Processors are very effective for just getting through
the millions of lines of code that AREN’T the inner
loop.

The so-called 90-10 rule says that 90 percent of the
time is spent in 10 percent of the program code. Proces-
sor caches are very effective at shuffling infrequently
used data and code in and out of the processor when it is
not needed. As a result, the non-critical program por-
tions can be stored out to a cheaper portion of the mem-
ory hierarchy, and can be pulled in at a very rapid rate
when needed. FPGAs, on the other hand, have a very
small number (one to four) of extremely large, descrip-
tive instructions stored in their instruction memories.
These instructions describe operations on the bit level,
so a 32-bit add on an FPGA takes many more instruc-
tion bits than the equivalent 32-bit processor instruction.
It often takes an FPGA thousands or millions of cycles
to load a new instruction in. A processor, on the other
hand, can store a large number of narrow instruction in
its instruction memory, and can load in new instructions
in a small number of cycles. Ironically, the fastest way
for an FPGA to execute reams of non-loop-intensive
code is to build a processor in the FPGA substrate.
However, with the extra layer of interpretation, the
FPGA’s performance will not be comparable to a pro-
cessor built in the same VLSI process.

2.0.3 Our New Concept of a Raw Processor

Based on our conclusions, we arrived at a new
model of the architecture, which is described in the Sep-
tember 1997 IEEE Computer “Billion Transistor” issue
[Waingold97].

We started with the FPGA design, and added coarse
grained functional units, to support datapath operations.
We added word-wide data memories to keep frequently
used data nearby. We left in some FPGA-like logic to
support fine grained applications. We added pipelined
sequencers around the functional units to support the
reams of non-performance critical code, and to simplify
compilation. We linked the sequenced functional units
with a statically scheduled pipelined interconnect, to
mimic the fast, custom interconnect of ASICs and
FPGAs. Finally, we added a dynamic network to support
dynamic events.

The end result: a mesh of replicated tiles, each con-
taining a static switch, a dynamic switch, and a small
pipelined processor. The tiles are all connected together

through two types of high performance, pipelined ne
works: one static and one dynamic.

Now, two years later, we are on the cusp of buildin
the first prototype of this new architecture.
10

e
ks

n
et
l,”

e
en
ps
m-

he
ng

is

ry,
m
l-

h
es,
, it
h.
3 WHAT WE’RE
BUILDING

3.0 THE FIRST RAW ARCHITECTURE

In this section, I present a description of the archi-
tecture of the Raw prototype, as it currently stands, from
an assembly language viewpoint. This will give the
reader a more definite feel for exactly how all of the
pieces fit together. In the subsequent chapters, I will dis-
cuss the progress of design decisions which made the
architecture the way it is.

3.0.1 A mesh of identical tiles

A Raw processor is a chip containing a 2-D mesh of
identical tiles. The tiles are connected to its nearest
neighbors by the dynamic and static networks. To pro-
gram the Raw processor, one programs each of the indi-
vidual tiles. See the figure entitled “A Mesh of Identical
Tiles.”

3.0.2 The tile

Each tile has a tile processor, a static switch proces-
sor, and a dynamic router. In the rest of this document,
the tile processor is usually referred to as “the main pro-

cessor,” “the processor,” or “the tile processor.” “Th
Raw processor” refers to the entire chip -- the networ
and the tiles.

The tile processor uses a 32-bit MIPS instructio
set, with some slight modifications. The instruction s
is described in more detail in the “Raw User’s Manua
which has been appended to the end of this thesis.

The switch processor (often referred to as “th
switch”) uses a MIPS-like instruction set that has be
stripped down to contain just moves, branches, jum
and branches. Each instruction also has a ROUTE co
ponent, which specifies the transfer of values on t
static network between that switch and its neighbori
switches.

The dynamic router runs independently, and
under user control only indirectly.

3.0.3 The tile processor

The tile processor has a 32 Kilobyte data memo
and a 32 Kilobyte instruction memory. Neither of the
are cached. It is the compiler’s responsibility to virtua
ize the memories in software, if this is necessary.

 The tile processor communicates with the switc
through two ports which have special register nam
$csto and $csti. When a data value is written to $csto
is actually sent to a small FIFO located in the switc

A Mesh of Identical Tiles

Tile Processor

StaticDynamic

Logical View of A Raw Tile

$csto
$cdno
$cdni

$csti

Router Switch

network wires
11

uc-
ps,
he
rs.
et-
to,
d
put
put
nd
h-

a
th
d

When a data value is read from $csti, it is actually read
from a FIFO inside the switch. The value is removed
from the FIFO when the read occurs.

 If a read on $csti is specified, and there is no data
available from that port, the processor will block. If a
write to $csto occurs, and the buffer space has been
filled, the processor will also block.

Here is some sample assembly language:

XOR register 2 with 15,
and put result in register 31

xori $31,$2,15

get value from switch, add to
register 3, and put result
in register 9

addu $9,$3,$csti

an ! indicates that the result
of the operation should also
be written to $csto

and! $0,$3,$2

load from address at $csti+25
put value in register 9 AND
send it through $csto port
to static switch

ld! $9,25($csti)

jump through value specified
by $csti

j $csti
nop # delay slot

The dynamic network ports operate very similarly.
The input port is $cdni, and the output port is $cdno.
However, instead of showing up at the static switch, the
messages are routed through the chip to their destination
tile. This tile is specified by the first word that is written
into $cdno. Each successive word will be queued up
until a dlaunch instruction is executed. At that point,
the message starts streaming through the dynamic net-
work to the other tile. The next word that is written into
$cdno will be interpreted as the destination for a new
dynamic message.

specify a send to tile #15

addiu $cdno,$0,15

put in a couple of datawords,
one from register 9 and the other
from the csti network port

or $cdno,$0,$9
ld $cdno,$0,$csti

launch the message into the
network

dlaunch

if we were tile 15, we could
receive our message with:

read first word
or $2,$cdni,$0

read second word,
or $3,$cdni,$0

the header word is discarded
by the routing hardware, so
the recipient does not see it
there are only two words in
this message

3.0.4 The switch processor

The switch processor has a local 8096-instruction
instruction memory, but no data memory. This memory
is also not cached, and must be virtualized in software
by the switch’s nearby tile processor.

The switch processor executes a very basic instr
tion set, which consists of only moves, branches, jum
and nops. It has a small, four element register file. T
destinations of all of the instructions must be registe
However, the sources can be network ports. The n
work port names for the switch processor are $cs
$csti, $cNi, $cEi, $cSi, $cWi, $cNo, $cEo, $cSo an
$cWo. These correspond to the main processor’s out
queue, the main processor’s input queue, the in
queues coming from the switch’s four neighbors, a
the output queues going out to the switch’s four neig
bors.

Each switch processor instruction also has
ROUTE component, which is executed in parallel wi
the instruction component. If any of the ports specifie
12

 of
r-
re

or
we
n,
an-
d

ct
 on
c-
ys-
ally
at
in the instruction are full (for outputs) or empty (for
inputs), the switch processor will stall.

branch instruction
beqz $9, target
nop

branch if processor
sends us a zero

beqz $csto, target
nop

branch if the value coming
from the west neighbor is a zero

beqz $cWi, target
nop

store away value from
east neighbor switch

move $3, $cEi

same as above, but also route
the value coming from the north
port to the south port

move $3, $cEi route $cNi->$cSo

all at the same time:
send value from north neighbor
to both the south and processor
input ports.
send value from processor to west
neighbor.
send value from west neighbor to
east neighbor

nop route $cNi->$cSo, $cNi->$csti,
 $csto->$cWo,$cWi->$cEo

jump to location specified
 # by west neighbor and route that

location to our east neighbor

jr $cWi route $cWi->$cEo
nop

3.0.5 Putting it all together

For each switch-processor, processor-switch, or
switch-switch link, the value arrives at the end of the

cycle. The code below shows the switch and tile code
required for a tile-to-tile send.

TILE 0:

or $csto,$0,$5

SWITCH 0:

nop route $csto->$cEo

SWITCH 1:

nop route $cWi->$csti

TILE 1:

and $5, $5, $csti

This code sequence takes five cycles to execute. In
the first cycle, tile 0 executes the OR instruction, and the
value arrives at switch 0. On the second cycle, switch 0
transmits the value to switch 1. On the third cycle,
switch 1 transfers the value to the processor. On the
fourth cycle, the value enters the decode stage of the
processor. On the fifth cycle, the AND instruction is
executed.

Since two of those cycles were spent performing
useful computation, the send-to-use latency is three
cycles.

More information on programming the Raw archi-
tecture can be found in the User’s Manual at the end
this thesis. More information on how our compiler pa
allelizes sequential applications for the Raw architectu
can be found in [Lee98] and [Barua99].

3.1 RAW MATERIALS

Before we decided what we were going to build f
the prototype, we needed to find out what resources
had available to us. Our first implementation decisio
at the highest level, was to build the prototype as a st
dard-cell CMOS ASIC (application specific integrate
circuit) rather than as full-custom VLSI chip.

In part, I believe that this decision reflects the fa

that the group's strengths and interests center more
systems architecture than on circuit and micro-archite
tural design. If our research shows that our software s
tems can achieve speedups on our micro-architectur
unsophisticated ASIC prototype, it is a sure thing th
13

e
d

C,
l-

es.
hip
s

ips
ey
ce

the
bly
e
he
e

ts.
dor
er-

's
st
ss,
een
,”

nt
te
o

the micro-architects and circuit designers will be able to
carry the design and speedups even further.

3.1.1 The ASIC choice

When I originally began the project, I was not
entirely clear on the difference between an ASIC and
full-custom VLSI process. And indeed, there is a good
reason for that; the term ASIC (application specific inte-
grated circuit) is vacuous.

As perhaps is typical for someone with a liberal arts
background, I think the best method of explaining the
difference is by describing the experience of developing
each type of chip.

In a full-custom design, the responsibility of every
aspect of the chip lies on designer’s shoulders. The
designer starts with a blank slate of silicon, and specifies
as an end result, the composition of every unit volume
of the chip. The designer may make use of a pre-made
collection of cells, but they also are likely to design their
own. They must test these cells extensively to make sure
that they obey all of the design rules of the process they
are using.

These rules involve how close the oxide, poly, and
metal layers can be to each other. When the design is
finally completed, the designer holds their breath and
hopes that the chip that comes back works.

In a standard-cell ASIC process, the designer (usu-
ally called the customer) has a library of components
that have been designed by the ASIC factory. This
library often includes RAMs, ROMs, NAND type prim-
itives, PLLs, IO buffers, and sometimes datapath opera-
tors. The designer is not typically allowed to use any
other components without a special dispensation. The
designer is restricted from straying too far from edge
triggered design, and there are upper bounds on the
quantity of components that are used (like PLLs). The
end product is a netlist of those components, and a floor-
plan of the larger modules. These are run through a vari-
ety of scripts supplied by the manufacturer which insert
test structures, provide timing numbers and test for a
large number of rule violations. At this point, the design
is given to the ASIC manufacturer, who converts this
netlist (mostly automatically) into the same form that
the full-custom designer had to create.

If everything checks out, the ASIC people and the
customer shake hands, and the chip returns a couple of
months later. Because the designer has followed all of

the rules, and the design has been checked for the viola-
tion of those rules, the ASIC manufacturer GAURAN-
TEES that the chip will perform exactly as specified by
the netlist.

In order to give this guarantee however, their librar-
ies tend to be designed very conservatively, and cannot
achieve the same performance as the full custom ver-
sions.

The key difference between an ASIC and full cus-
tom VLSI project is that the designer gives up degrees
of flexibility and performance in order to attain the
guarantee that their design will come back “first tim
right”. Additionally, since much of the design is create
automatically, it takes less time to create the chip.

3.1.2 IBM: Our ASIC foundry

Given the fact that we had decided to do an ASI
we looked for an industry foundry. This is actually a re
atively difficult feat. The majority of ASIC developers
are not MIT researchers building processor prototyp
Many are integrating an embedded system onto one c
in order to minimize cost. Closer to our group in term
of performance requirements are the graphics ch
designers and the network switch chip designers. Th
at least are quite concerned with pushing performan
envelope. However, their volumes are measured in
hundreds of thousands, while the Raw group proba
will be able to get by on just the initial 30 prototyp
chips that the ASIC manufacturer gives us. Since t
ASIC foundry makes its money off of the volume of th
chips produced, we do not make for great profi
Instead, we have to rely on the generosity of the ven
and on other, less tangible incentives to entice a partn
ship.

We were fortunate enough to be able to use IBM
extraordinary SA-27E ASIC process. It is IBM's late
ASIC process. It is considered to be a “value” proce
which means that some of the parameters have b
tweaked for density rather than speed. The “premium
higher speed version of SA-27E is called SA-27.

Please note that all of the information that I prese
about the process is available off of IBM's websi
(www.chips.ibm.com) and from their databooks. N
proprietary information is revealed in this thesis.
14

ie
 16
 at
 or
ly 1
o-
hly
-
s
e
e
 in
pal

ire
al
ed-

r
y

ee
or

-
 4

ss-
ey
n

ly
to

 a

ve
f
e
r,
 for
rea
.

e
d
es-
The 24 million gates number assumes perfect wire-
ability, which although we do have many layers of metal
in the process, is unlikely. Classically, I have heard of
wireability being quoted at around %35 - %60 for older
non-IBM processes.

This means that between %65 and %40 of those
gates are not realizable when it comes to wiring up the
design. Fortunately, the wireability of RAM macros is at
%100, and the Raw processor is mostly SRAM!

We were very pleasantly surprised by the IBM pro-
cess, especially with the available gates, and the abun-
dance of I/O. Also, later, we found that we were very
impressed with the thoroughness of IBM’s LSSD test
methodology.

3.1.3 Back of the envelope: A 16 tile Raw chip

To start out conservatively, we started out with a d
size which was roughly 16 million gates, and assume
Raw tiles. The smaller die size gives us some slack
the high end should we make any late discoveries
have any unpleasant realizations. This gave us rough
million gates to allocate to each tile. Of that, we all
cated half the area to memory. This amounts to roug
32 kWords of SRAM, with 1/2 million gates left to ded
icate to logic. Interestingly, the IBM process also allow
us to integrate DRAM on the actual die. Using th
embedded DRAM instead of the SRAM would hav
allowed us to pack about four times as much memory
the same space. However, we perceived two princi
issues with using DRAM:

First, the 50 MHz random access rate would requ
that we add a significant amount of micro-architectur
complexity to attain good performance. Second, emb
ded DRAM is a new feature in the IBM ASIC flow, and
we did not want to push too many frontiers at once.

We assume a pessimistic utilization of %45 fo
safeness, which brings us to 225,000 “real” gates. M
preferred area metric of choice, the 32-bit Wallace tr
multiplier, is 8000 gates. My estimate of a process
(with multiplier) is that it takes about 10 32 bit multipli
ers worth of area. A pipelined FPU would add about
multipliers worth of area.

The rest remains for the switch processor and cro
bars. I do not have a good idea of how much area th
will take (the actual logic is small, but the congestio
due to the wiring is of concern) We pessimistical
assign the remaining 14 multipliers worth of area
these components.

Based on this back-of-the-envelope calculation,
16 tile Raw system looks eminently reasonable.

This number is calculated using a very conservati
wireability ratio for a process with so many layers o
metal. Additionally, should we require it, we have th
possibility of moving up to a larger die. Note howeve
that these numbers do not include the area required
I/O buffers and pads, or the clock tree. The addition a
due to LSSD (level sensitive scan design) is included

The figure “A Preliminary Tile Floorplan” is a pos-
sible floorplan for the Raw tile. It is optimistic becaus
it assumes some flexibility with memory footprints, an
the sizes of logic are approximate. It may well be nec

Table 1: SA-27E Process

Param Value

Leff .11 micron

Ldrawn .15 micron

Core Voltage 1.8 Volts

Metallization 6 layers, copper

Gates Up to 24 Million 2-input
NANDs, based on die size

Embedded
Dram

SRAM MACRO

 1 MBit = 8mm2

DRAM MACRO

 first 1 MBit = 3.4 mm2

 addt’l MBits = 1.16 mm2

 50 MHz random access

I/O C4 Flip Chip Area I/O
up to 1657 pins on CCGA
(1124 signal I/Os)

Signal technologies:
SSTL, HSTL, GTL, LVTTL
AGP, PCI...
15

Switch MEMORY

Processor

Data

Switch Bus

Switch

~4 mm

FPU Processor

 (8k x 64)

Memory
(8kx32)

Instr Mem
(8kx32)

Processor

Partial Crossbar

204 wires

Boot Rom

A Preliminary Tile Floorplan
16

k
eld

e

of
nd
 the
ce
-

es.
ill
ets
ps
s
cts
m,
e is
 a
rge
it
 to
sary that we reduce the size of the memories to make
things fit. Effort has been made to route the large buses
over the memories, which is possible in the SA-27E pro-
cess. This should improve the routability of the proces-
sor greatly, because there are few global wires. Because
I am not sure of the area required by the crossbar, I have
allocated a large area based on the assumption that
crossbar area will be proportional to the square of the
width of input wires.

In theory, we could push and make it up to 32 tiles.
However, I believe that we would be stretching our-
selves very thinly -- the RAMs need to be halved (a big
problem considering much of our software technology
has code expansion effects), and we would have to
assume a much better wireability factor, and possibly
dump the FPU.

For an estimate on clock speed, we need to be a bit
more creative because memory timing numbers are not
yet available in the SA-27E databooks. We approximate
by using the SA-27 “premium” process databook num-
bers, which should give us a reasonable upper bound. At
the very least, we need to have a path in our processor
which goes from i-memory to a 2-1 mux to a register.
From the databook, we can see the total in the “Ballpark
clock calculation” table.

The slack is extra margin required by the ASIC
manufacturer to account for routing anomalies, PLL jit-
ter, and process variation. The number given is only an
estimate, and has no correlation with the number actu-
ally required by IBM.

This calculation shows that, short of undergoing
micro-architectural heroics, 290 Mhz is a reasonable
strawman UPPER BOUND for our clock rate.

3.2 THE TWO RAW SYSTEMS

Given an estimate of what a Raw chip would loo
like; we decided to target two systems, a Raw Handh
device, and a Raw Fabric.

3.2.1 A Raw Handheld Device

The Raw handheld device would consist of on
Raw chip, a Xilinx Vertex, and 128 MB of SDRAM.
The FPGA would be used to interface to a variety
peripherals. The Xilinx part acts both as glue logic a
as a signal transceiver. Since we are not focusing on
issue of low-power at this time, this handheld devi
would not actually run off of battery power (well, per
haps a car battery.).

This Raw system serves a number of purpos
First, it is a simple system, which means that it w
make a good test device for a Raw chip. Second, it g
people thinking of the application mode that Raw chi
will be used in -- small, portable, extroverted device
rather than large workstations. One of the nice aspe
of this device is that we can easily build several of the
and distribute them among our group members. Ther
something fundamentally more exciting about having
device that we can toss around, rather than a single la
prototype sitting inaccessible in the lab. Additionally,
means that people can work on the software required

Table 2: Ballpark clock calculation

Structure Propagation Delay

8192x32 SRAM
read

2.50 ns

2-1 Mux 0.20 ns

Register 0.25 ns

Required slack 0.50 ns (estimated)

Total 3.45 ns

RAW CHIP

Xilinx Vertex

DRAM

A Raw Handheld Device
17

get the machine running without jockeying for time on a
single machine.

3.2.2 A Multi-chip Raw Fabric, or
Supercomputer

This device would incorporate 16 Raw Chips onto a
single board, resulting in 256 MIPS processor equiva-
lents on one board. The static and dynamic networks of
these chips will be connected together via high-speed I/
O running at the core ASIC speed. In effect, the pro-
grammer will see one 256-tile Raw chip.

This would give the logical semblance of the Raw
chip that we envisioned for the year 2007, where hun-
dreds of tiles fit on a single die. This system will give us
the best simulation of what it means to have such an
enormous amount of computing resources available. It
will help us answer a number of questions. What sort of
applications can we create to utilize these processing
resources? How does our mentality and programming
paradigm change when a tile is a small percentage of the
total processing power available to us? What sort of
issues exist in the scalability of such a system? We
believe that the per-tile cost of a Raw chip will be so low
in the future that every handheld device will actually
have hundreds of tiles at their disposal.

3.3 SUMMARY

In this chapter, I described the architecture of the
Raw prototype. I elaborated on the ASIC process that
we are building our prototype in. Finally, I described the
two systems that we are planning to build: a hand-held
device, and the multi-chip supercomputer.

A Raw Fabric
18

4 STATIC NETWORK
DESIGN

4.0 STATIC NETWORK

The best place to start in explaining the design deci-
sions of the Raw architecture is with the static network.

The static network is the seed around which the rest
of the Raw tile design crystallizes. In order to make effi-
cient fine-grained parallel computation feasible, the
entire system had to be designed to facilitate high-band-
width, low latency communication between the tiles.
The static network is optimized to route single-word
quantities of data, and has no header words. Each tile
knows in advance, for each data word it receives, where
it must be sent. This is because the compiler (whether
human or machine) generated the appropriate route
instructions at compile time.

The static network is a point-to-point 2-D mesh net-
work. Each Raw tile is connected to its nearest neigh-
bors through a series of separate, pipelined channels --
one or more channels in each direction for each neigh-
bor. Every cycle, the tile sequences a small, per-tile
crossbar which transfers data between the channels.
These channels are pipelined so that no wire requires
more than one cycle to traverse. This means that the
Raw network can be physically scaled to larger numbers
of tiles without reducing the clock rate, because the wire
lengths and capacitances do not change with the number
of tiles. The alternative, large common buses, will
encounter scalability problems as the number of tiles
connected to those buses increases. In practice, a hybrid
approach (with buses connecting neighbor tiles) could
be more effective; however, doing so would add com-
plexity and does not seem crucial to the research results.

The topology of the pipelined network which con-
nects the Raw tiles is a 2-D mesh. This makes for an
efficient compilation target because the two dimensional
logical topology matches that of the physical topology
of the tiles. The delay between tiles is then strictly a lin-
ear function of the Manhattan distances of the tiles. This
topology also allows us to build a Raw chip by merely
replicating a series of identical tiles.

4.0.1 Flow Control

 Originally, we envisioned that the network would
be precisely cycle-counted -- on each cycle, we would

know exactly what signal was on which wire. If the
compiler were to incorrectly count, then garbage would
be read instead, or the value would disappear off of the
wire. This mirrors the behaviour of the FPGA prototype
that we designed. For computations that have little or no
variability in them, this is not a problem. However,
cycle-counting general purpose programs that have
more variance in their timing behaviour is more diffi-
cult. Two classic examples are cache misses and unbal-
anced if-then-else statements. The compiler could
schedule the computation pessimistically, and assume
the worst case, padding the best case with special multi-
cycle noop instructions. However, this would have abys-
mal performance. Alternatively, the compiler could
insert explicit flow control instructions to handshake
between tiles into the program around these dynamic
points. This gets especially hairy if we want to support
an interrupt model in the Raw processor.

We eventually moved to a flow-control policy that
was somewhere between cycle-counting and a fully
dynamic network. We call this policy static ordering
[Waingold97, 2]. Static ordering is a handshake between
crossbars which provides flow control in the static net-
work. When the sequencer attempts to route a dataword
which has not arrived yet, it will stall until it does arrive.
Additionally, the sequencer will stall if a destination
port has no space. Delivery of data words in the face of
random delays can then be guaranteed. Each tile still
knows a priori the destination and order of each data
word coming in; however, it does not know exactly
which cycle that will be. This constrasts with a dynamic
network, where neither timing nor order are known a
priori. Interestingly, in order to obtain good perfor-
mance, the compiler must cycle count when it schedules
the instructions across the Raw fabric. However, with
static ordering, it can do so without worrying that imper-
fect knowledge of program behaviour will violate pro-
gram correctness.

The main benefits of adding flow control to the
architecture are the abstraction layer that it provides and
the added support for programs with unpredictable tim-
ing. Interestingly, the Warp project at CMU started with-
out flow control in their initial prototypes, and then
added it in subsequent revisions [Gross98]. In the next
section, we will examine the static input block, which is
the hardware used to implement the static ordering pro-
tocol.

4.0.2 The Static Input Block

The static input block (SIB) is a FIFO which has
both backwards and forwards flow control. There is a
19

te

he

 it

 it
st
he
rfect
he
rva-
the
r
ing
 a

e

xes
t
 a

he
le-
le.
f-
the

r-
 of
ble
 a
res
on

rk.
ing
n

that
not

-
the
he
n-
local SIB at every input port on the switch’s crossbar.
The switch’s crossbar also connects to a remote input
buffer that belongs to another tile. The figure “Static
Input Block Design” shows the static input block and
switch crossbar design. Note that an arrow that begins
with a squiggle indicates a signal which will arrive at its
destination at the end of the cycle. The basic operation
of the SIB is as follows:

1. Just before the clock edge, the DataIn and
ValidIn signals arrive at the input flops, coming from
the remote switch that the SIB is connected to. The
Thanks signal arrives from the local switch, indicating
if the SIB should remove the item at the head of the fifo.
The Thanks signal is used to calculate the YummyOut
signal, which gives the remote switch an idea of how
much space is left in the fifo.

2. If ValidIn is set, then this is a data word which
must be stored in the register file. The protocol ensures
that data will not be sent if there is no space in the circu-
lar fifo.

3. DataAvail is generated based on whether the
fifo is empty. The head data word of the queue is propa-
gated out of DataVal. These signals travel to the
switch.

4. The switch uses DataAvail and DataVal to
perform its route instructions. It also uses the YummyIn
information to determine if there is space on the remo
side of the queue. The DataOut and ValidOut sig-
nals will arrive at a remote input buffer at the end of t
cycle.

5. If the switch used the data word from the SIB,
asserts Thanks.

The subtlety of the SIB comes from that fact that
is a distributed protocol. The receiving SIB is at lea
one cycle away from the switch that is sending t
value. This means that the sender does not have pe
information about how much space is available on t
receiver side. As a result, the sender must be conse
tive about when to send data, so as not to overflow
fifo. This can result in suboptimal performance fo
streams of data that are starting out, or are recover
from a blockage in the network. The solution is to add
sufficient number of storage elements to the FIFO.

The worksheets “One Element Fifo” and “Thre
Element Fifo” help illustrate this principle. They show
the state of the system after each cycle. The left bo
are a simplified version of the switch circuit. The righ
boxes are a simplified version of a SIB connected to
remote switch. The top arrow is the ValidIn bit, and
the bottom arrow is the “Yummy” line. The column of
numbers underneath “PB” (perceived buffers) are t
switch’s conservative estimate of the number of e
ments in the remote SIB at the beginning of the cyc
The column of numbers underneath “AB” (actual buf
ers) are the actual number of elements in the fifo at
beginning of the cycle.

The two figures model the “Balanced Produce
Consumer” problem, where the producer is capable
producing data every cycle, and the consumer is capa
of consuming it every cycle. This would correspond to
stream of data running across the Raw tiles. Both figu
show the cycle-by-cycle progress of the communicati
between a switch and its SIB.

We will explain the “One Element Fifo” figure so
the reader can get an idea of how the worksheets wo
In the first cycle, we can see that the switch is assert
its ValidOut line, sending a data value to the SIB. O
the second cycle, the switch stalls because it knows
the Consumer has an element in its buffer, and may
have space if it sends a value. The ValidOut line is
thus held low. Although it is not indicated in the dia
gram, the Consumer consumes the data value from
previous cycle. On the third cycle, the SIB asserts t
YummyOut line, indicating that the value had been co

Write Through
we

d_in

d_outrs ws

Register File

DataVal

ValidIn

YummyOut

Data In[32]

Data
 [32]AvailThanks

Local Switch Processor

Static Input Block

DataOut[32]

ValidOut

YummyIn

Static Input Block Design
20

Bs
-of-
ed
nd
We
en
um
no
ers
d”
p-
sumed. However, the Switch does not receive this value
until the next cycle. Because of this, the switch stalls for
another cycle. On the fourth cycle, the switch finally
knows that there is buffer space and sends the next value
along. The fifth and sixth cycles are exactly like the sec-
ond and third.

Thus, in the one element case, the static switch is
stalling because it cannot guarantee that the receiver
will have space. It unfortunately has to wait until it
receives notification that the last word was consumed.

In the three element case, the static network and
SIBs are able to achieve optimal throughput. The extra
storage allows the sender to send up to three times
before it hears back from the input buffer that the first
value was consumed. It is not a coincidence that this is
also the round trip latency from switch to SIB. In fact, if
Raw were moved to a technology where it took multiple
cycles to cross the pipelined interconnect between tiles
(like for instance, for the Raw multi-chip system), the
number of buffers would have to be increased to match

the new round trip latency. By looking at the diagram,
you may think that perhaps two buffers is enough, since
that is the maximum perceived element size. In actual-
ity, the switch would have to stall on the third cycle
because it perceives 2 elements, and is trying to send a
third out before it received the first positive “Yummy-
Out” signal back.

The other case where it is important that the SI
perform adequately is in the case where there is head
line blocking. In this instance, data is being stream
through a line of tiles, attaining the steady state, a
then one of the tiles at the head becomes blocked.
want the SIB protocol to insure that the head tile, wh
unblocked, is capable of reading data at the maxim
rate. In other words, the protocol should insure that
bubbles are formed later down the pipeline of produc
and consumers. The “Three Element Fifo, continue
figure forms the basis of an inductive proof of this pro
erty.

0

1

0
0

Switch SIB

1

0

1
0

0

0

1
1

0

1

0
0

1

0

1
0

0

0

1
1

PB AB

One Element Fifo

0

1

0
0

Switch SIB

1

1

1
0

1

1

2
1

1

1

2
1

1

1

2
1

1

1

2
1

PB AB

Three Element Fifo

STALL

STALL

STALL

STALL

(Producer) (Consumer) (Producer) (Consumer)
21

all

ck-
 to
for
ts
I will elaborate on “Three Element Fifo, contin-
ued,“some more. In the first cycle, the “BLOCK” indi-
cates that no value is read from the input buffer at the
head of the line on that cycle. After one more BLOCKs,
in cycle three, the switch behind the head of the line
STALLs because it correctly believes that its consumer
has run out of space. This stall continues for three more
cycles, when the switch receives notice that a value has
been dequeued from the head of the queue. These stalls

ripple down the chain of producers and consumers,
offsetted by two cycles.

It is likely that even more buffering will provide
greater resistance to the performance effects of blo
ages in the network. However, every element we add
the FIFO is an element that will have to be exposed
draining on a context switch. More simulation resul
could tell us if increased buffering is worthwhile.

1

1

2
1

Switch

1

1

2
1

1

1

2
1

1

1

2
1

1

1

2
1

2

1

2
0

PB AB

Starts at Steady State, then Head blocks (stalls) for four cycles

1

1

2
1

Switch

1

1

2
1

1

1

2
1

2

1

2
0

3

0

3
0

3

0

3
0

PB AB

1

1

2
1

Switch

2

1

2
0

3

0

3
0

3

0

3
0

3

0

3
0

2

0

3
1

PB AB

BLOCK

BLOCK

BLOCKSTALL

STALL

STALL

STALL

BLOCK

STALL

STALL

3

0

3
0

3

0

3
0

Three Element Fifo, continued

3

0

3
0

2

0

3
1

1

1

2
1

1

1

2
1

STALL

STALL

STALL

STALL

3

0

3
0

1

1

2
1

1

1

2
1

STALL
22

t is
 we
r
eg-
en

sor
or.
nd
n
itch
or-
nal
 to
ere
ill

nd
fi-
xt
 set
nto
the

fi-
t-
to
e
ill
nd
4.0.3 Static Network Summary

The high order bit is that adding flow control to the
network has resulted in a fair amount of additional com-
plexity and architectural state. Additionally, it adds logic
to the path from tile to tile, which could have perfor-
mance implications. With that said, the buffering allows
our compiler writers some room to breath, and gives us
support for events with unpredictable timing.

4.1 THE SWITCH (SLAVE) PROCESSOR

The switch processor is responsible for controlling
the tile’s static crossbar. It has very little functionality --
in some senses one might call it a “slave parallel move
processor,” since all it can do is move values between a
small register file, its PC, and the static crossbar.

One of the main decisions that we made early on
was whether or not the switch processor would exist at
all. Currently, the switch processor is a separately
sequenced entity which connects the main processor to
the static network. The processor cannot access the
static network without the slave processor’s coopera-
tion.

A serious alternative to the slave-processor
approach would have been to have only the main pro-
cessor, with a VLIW style processor word which also
specified the routes for the crossbar. The diagram “The
Unified Approach” shows an example instruction
encoding. Evaluating the trade-offs of the unified and
slave designs is difficult.

A clear disadvantage of the slave design is that i
more complicated. It is another processor design that
have to do, with its own instruction encoding fo
branches, jumps, procedure calls and moves for the r
ister file. It also requires more bits to encode a giv
route.

The main annoyance is that the slave proces
requires constant baby-sitting by the main process
The main processor is responsible for loading a
unloading the instruction memory of the switch o
cache misses, and for storing away the PCs of the sw
on a procedure call (since the switch has no local st
age). Whenever the processor takes a conditio
branches, it needs to forward the branch condition on
the slave processor. The compiler must make sure th
is a branch instruction on the slave processor which w
interpret that condition.

Since the communication between the main a
slave processors is statically scheduled, it is very dif
cult and slow to handle dynamic events. Conte
switches require the processor to freeze the switch,
the PC to an address which drains the register files i
the processor, as well as any data outstanding on
switch ports.

The slave switch processor also makes it very dif
cult to use the static network to talk to the off-chip ne
work at dynamically chosen intervals, for instance,
read a value from a DRAM that is connected to th
static network. This is because the main processor w
have to freeze the switch, change the switch’s PC, a

63 32 route instructionMIPS instruction 0

The Unified Approach

63 48 32 26

63 32

MIPS Instruction

Switch Instruction

The Slave Processor Approach

48

N E S W P

N E S W P

extraimm

imm

op

op

S

S rs rt

rs rt

op imm
23

s-
he
 an

nd
an

l-
e

m-
al

w-
at

uld
s

ch

we
 an
re
c-
l
nto
e-

 is
g
e
uc-
he

e
pt
ich
c-

he
ke
e,
er-

the
ute

d a
m-

e it
then unfreeze it.

The advantages of the switch processor come in tol-
erating latency. It decouples the processing of network-
ing instructions and processor instructions. Thus, if a
processor takes longer to process an instruction than
normal (for instance on a cache miss), the switch
instructions can continue to execute, and visa versa.
However, they will block when an instruction is exe-
cuted that requires communication between the two.
This model is reminiscent of Decoupled-Execute Access
Architectures [Smith82].

The Unified approach does not give us any slack.
The instruction and the route must occur at precisely the
same time. If the processor code takes less time than
expected, it will end up blocked waiting for the switch
route to complete. If the processor code takes more time
than expected, a “through-route” would be blocked up
on unrelated computation. The Unified approach also
has the disadvantage that through route instructions
must be scheduled on both sides of an if-statement. If
the two sides of the if-statement were wildly unbalanced
this would create code bloat. The Slave approach would
only need to have one copy of the corresponding route
instructions.

In the face of a desire for this decoupling property,
we have further entertained the idea of another
approach, called the Decoupled-Unified approach. This
would be like the Unified approach, except it would
involve having a queue through which we would feed
the static crossbar its route instructions. This is attrac-
tive because it would decouple the two processes. The
processor would sequence, and queue up switch instruc-
tions, which would execute when ready.

With this architecture, the compiler would push the
switch instructions up to pair with the processor instruc-
tions at the top of a basic block. This way through-
routes could execute as soon as possible.

Switch instructions that originally ran concurrently
with non-global IF-ELSE statements need some extra
care. Ideally, the instructions would be propagated
above the IF-ELSE statement. Otherwise, the switch
instructions will have to be copied to both sides the IF-
ELSE clause. This may result in code explosion, if the
number of switch instructions propagated into the IF-
ELSE statement is greater than the length of one of the
sides of the statement.

When interrupts are taken into account, the Decou-
pled-Unified approach is a nightmare, because now we

have situations where half of the instruction (the proce
sor part) has executed. We can not just wait for t
switch instructions to execute, because this may take
indefinite amount of time.

To really investigate the relative advantages a
disadvantages of the three methods would require
extensive study, involving modifications of our compi
ers and simulators. To make a fair comparison, w
would need to spend as much time optimizing the co
parison simulators as we did the originals. In an ide
world, we might have pursued this issue more. Ho
ever, given the extensive amount of infrastructure th
had already been built using the Slave model, we co
not justify the time investment for something which wa
unlikely to buy us performance, and would require su
an extensive reengineering effort.

4.1.1 Partial Routes

One idea that our group members had was that
do not need to make sure that all routes specified in
instruction happen simultaneously. They could just fi
off when they are possible, with that part of the instru
tion field resetting itself to the “null route.” When al
fields are set to null, that means we can continue o
the next instruction. This algorithm continues to pr
serves the static ordering property.

From a performance and circuit perspective, this
a win. It will decouple unrelated routes that are goin
through the processor. Additionally, the stall logic in th
switch processor does not need to OR together the s
cess of all of the routes in order to generate t
“ValidOut” signal that goes to the neighboring tile.

The problem is, with partial routes, we again hav
an instruction atomicity problem. If we need to interru
the switch processor, we have no clear sense of wh
instruction we are currently at, since parts of the instru
tion have already executed. We cannot wait for t
instruction to fully complete, because this may ta
indefinite amount of time. In order to make this featur
we would have had to add special mechanisms to ov
come this problem. As a result, we decided to take
simple path and stall until such a point as we can ro
all of the values atomically.

4.1.2 Virtual Switch Instruction Memory

In order to be able to run large programs, we nee
mechanism to page code in and out of the various me
ories. The switch memory is a bit of an issue becaus
24

the
e-
r-
is
r
is
-
ss

to

i-
i2,
he
em-
 for
is

for
s-
ct
ll

, I
se

us
is not coupled directly with the processor, and yet it
does not have the means to write to its own memory.
Thus, we need the processor to help out in filling in the
switch memory.

There are two approaches.

In the first approach, the switch executes until it
reaches a “trap” instruction. This trap instruction indi-
cates that it needs to page in a new section of memory.
The trap causes an interrupt in the processor. The pro-
cessor fetches the relevant instructions and writes it into
the switch processor instruction memory. It then signals
the switch processor, telling it to resume.

In the second approach, we maintain a mapping
between switch and processor instruction codes. When
the processor reaches a junction where it needs to pull in
some code, it pulls in the corresponding code for the
switch. The key issue is to make sure that the switch
does not execute off into the weeds while this occurs.
The switch can very simply do a read from the proces-
sor’s output port into its register set (or perhaps a branch
target.) This way, the processor can signal the switch
when it has finished writing the instructions. When the
switch’s read completes, it knows that the code has been
put in place. Since there essentially has to be a mapping
between the switch code and the processor code if they
communicate, this mapping is not hard to derive. The
only disadvantage is that due to the relative sizes of
basic blocks in the two memories, it may be the case that
one needs to page in and the other doesn’t. For the most
part I do not think that this will be much of a problem. If
we want to save the cost of this output port read after the
corresponding code has been pulled in, we can re-write
that instruction.

In the end, we decided on the second option,
because it was simpler. The only problem we foresee is
if the tile itself is doing a completely unrelated computa-
tion (and communicating via dynamic network.) Then,
the switch, presumably doing through routes, has no
mechanism of telling the local tile that it needs new
instructions. However, presumably the switch is syn-
chronized with at least one tile on the chip. That tile
could send a dynamic message to the switch’s master,
telling it to load in the appropriate instructions. We don’t
expect that anyone will really do this, though.

4.2 STATIC NETWORK BANDWIDTH

One of the questions that needs to be answered is
how much bandwidth is needed in the static switch.
Since a ALU operation typically has two inputs, having

only one $csti port means that one of the inputs to
instruction must reside inside the tile to not be bottl
necked. The amount of bandwidth into the tile dete
mines very strongly the manner in which code
compiled to it. As it turns out, the RAWCC compile
optimizes the code to minimize communication, so it
not usually severely affected by this bottleneck. How
ever, when code is compiled in a pipeline fashion acro
the Raw tiles, more bandwidth would be required
obtain full performance.

A proposed modification to the current Raw arch
tecture is to add the network ports csti2, cNi2, cS
cEi2, and cWi2. It remains to be evaluated what t
speedup numbers and area (both static instruction m
ory, crossbar and wire area) and clock cycle costs are
this optimization. As it turns out, the encoding for th
fits neatly in a 64-bit switch instruction word.

4.3 SUMMARY

The static network design makes a number of
important trade-offs. The network flow control protocol
contains flow-controlled buffers that allow our compiler
writers some room to breath, and gives us support
events with unpredictable timing. This protocol is a di
tributed protocol in which the producers have imperfe
information. As a result, the SIBs require a sma
amount of buffering to prevent delay. In this chapter
presented a simple method for calculating how big the
buffer sizes need to be in order to allow continuo
streams to pass through the network bubble-free.

The static switch design also has some built-in
slack for dynamic timing behaviour between the tile
processor and the switch processor. This slack comes
with the cost of added complexity.

Finally, we raised the issue of the static switch
bandwidth, and gave a simple solution for increasing it.

All in all, the switch design is a success; it provides
an effective low-latency network for inter-tile communi-
cation. In the next section, we will see how the static
network is interfaced to the tile’s processor.
25

 by
en
p

rk.
”
al
ler

or’s

ng
 rel-

i-
ch
of
e. If
 the
he
iple
ort,
ple
rs.

not
ng

age
r-
gh
le.
to
5 DYNAMIC NET-
WORK
5.0 DYNAMIC NETWORK

Shortly after we developed the static network, we
realized the need for the dynamic network. In order for
the static network to be a high performance solution, the
following must hold:

1. The destinations must be known at compile time.

2. The message sizes must be known at compile
time.

3. For any two communication routes that cross, the
compiler must be able generate a switch schedule which
merges those two communication patterns on a cycle by
cycle basis.

The static network can actually support messages
which violate these conditions. However, doing this
requires an expensive layer of interpretation to simulate
a dynamic network.

The dynamic network was added to the architecture
to provide support for messages which do not fulfill
these criteria.

The primary intention of the dynamic network is to
support memory accesses that cannot be statically ana-
lyzed. The dynamic network was also intended to sup-
port other dynamic activities, like interrupts, dynamic I/
O accesses, speculation, synchronization, and context
switches. Finally, the dynamic network was the catch-all
safety net for any dynamic events that we may have
missed out on.

In my opinion, the dynamic network is probably the
single most complicated part of the Raw architecture.
Interestingly enough, the design of the actual hardware
is quite straight-forward. Its interactions with other parts
of the system, and in particular, the deadlock issues, can
be a nightmare if not handled correctly. For more dis-
cussions on the deadlock issues, please refer to the sec-
tion entitled “Deadlock.”

5.1 DYNAMIC ROUTER

The dynamic network is a dimension-ordered,
wormhole routed flow-controlled network [Dally86].
Each dynamic network message has a header, followed

by a number of datawords. The header is constructed
the hardware. The router routes in the X direction, th
in the Y direction. We implemented the protocol on to
of the SIB protocol that was used for the static netwo
The figure entitled “The Dynamic Network Router
illustrates this. The dynamic network device is identic
to the static network, except it has a dynamic schedu
instead of the actual switch processor. The process
interface is also slightly different.

The scheduler examines the header of incomi
messages. The header contains a route encoded by a
ative X position and a relative Y position. If the X pos
tion is non zero, then it initializes a state machine whi
will transfer one word per cycle of the message out
the west or east port, based on the sign of the distanc
the X position is zero, then the message is sent out of
south or north ports. If both X and Y are zero, then t
message is routed into the processor. Because mult
input messages can contend for the same output p
there needs to be a priority scheme. We use a sim
round robin scheduler to select between contende
This means that an aggressive producer of data will
be able to block other users of the network from getti
their messages through.

Because the scheduler must parse the mess
header, and then modify it to forward it along, it cu
rently takes two cycles for the header to pass throu
the network. Each word after that only takes one cyc
It may be possible to redesign the dynamic router

...

Dynamic Scheduler

The Dynamic Network Router

Control

Out

XBar

SIBs
26

pack the message parsing and send into one cycle. How-
ever, we did not want to risk the dynamic network
becoming a critical path in our chip, since it is in many
senses a backup network. It may also be possible that we
could have a speculative method for setting up dynamic
channels. With more and more Raw tiles (and the more
hops to cross the chip), the issue of dynamic message
latency becomes increasingly important. However, for
the initial prototype, we decided to keep things simple.

5.2 SUMMARY

The dynamic network design leveraged many of the
same underlying hardware components as the static
switch design. Its performance is not as good as the
static network’s because the route directions are not
known a priori. A great deal more will be said on the
dynamic network in the Deadlock section of this thesis.
27

 if
ut-
is
p it
e
ne.
he

rt

 is
tic

i-
ng
 it

 of
ter
ves
g

6 TILE PROCESSOR
DESIGN

 When we first set out to define the architecture, we
chose the 5-stage MIPS R2000 as our baseline processor
for the Raw tile. We did this because it has a relatively
simple pipeline, and because many of us had spent hun-
dreds of hours staring at that particular pipeline. The
R2000 is the canonical pipeline studied in 6.823, the
graduate computer architecture class at MIT. The dis-
cussion that follows assumes familiarity with the R2000
pipeline. For an introduction, see [Hennessey96]. (Later,
because of the floating point unit, we expanded the pipe-
line to six stages.)

6.0 NETWORK INTERFACE

The most important part of the main processor deci-
sion is the way in which it interfaces with the networks.
Minimizing the latency from tile to tile (especially on
the static network) was our primary goal. The smaller
the latency, the greater the number of applications that
can be effectively parallelized on the Raw chip.

Because of our desire to minimize the latency from
tile to tile, we decided that the static network interface
should be directly attached to the processor pipeline. An
alternative would have been to have explicit MOVE
instructions which accessed the network ports. Instead,
we wanted a single instruction to be able to read a value
from the network, operate on it, and write it out in the
same cycle.

We modified the instruction encodings in two ways
to accomplish this magic.

For writes to the network output port SIB, $csto, we
modified the encoding the MIPS instruction set to
include what we call the “S” bit. The S bit is set to true
the result of the instruction should be sent out to the o
put port, in addition to the destination register. Th
allows us to send a value out of the network and kee
locally. Logically, this is useful when an operation in th
program dataflow graph has a fanout greater than o
We used one of the bits from the opcode field of t
original MIPS ISA to encode this.

For the input ports, we mapped the network po
names into the register file name space:

This means, for instance, that when register $24
referenced, it actually takes the result from the sta
network input SIB.

With the current 5-bit addressing of registers, add
tional register names would only be possible by addi
one more bit to the register address space. Aliasing
with an existing register name allows us to leave most
the ISA encodings unaffected. The choice of the regis
numbers was suggested by Ben Greenwald. He belie
that we can maximize our compatibility with existin

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csto, Bypass, and Writeback Networks

$csti $cdni

$csto

RF

Thanks

Reg Alias Usage

$24 $csti Static network input port.

$25 $cdn[i/o] Dynamic network input
port.
28

in
ruc-
as a

 a
des
pt

-
m-

-
eir
ro-

the
ly,
he
n
to,
it is
.

s-
e to
or
e-
e
de

ly,
e

e
fin-
d

n
tall

ss
m in
use
uch
the
or
s,
-
e

MIPS tools by reserving that particular register because
it has been designated as “temporary.”

6.1 SWITCH BYPASSING

The diagram entitled “$csto, Bypass and Writeback
Networks” shows how the network SIBs are hooked up
to the processor pipeline. The three muxes are essen-
tially bypass muxes. The $csti and $cdni SIBs are logi-
cally in the decode/register fetch (RF) stage.

In order to reduce the latency of a network send, it
was important that an instruction deliver its result to the
$csto SIB as soon as the value was available, rather than
waiting until the writeback stage. This can change the
tile-to-tile communication latency from 6 cycles to 3
cycles.

The $csto and $cdno SIBs are connected to the pro-
cessor pipeline in much the same way that register
bypasses are connected. Values can be sent to $csto after
the ALU stage, after the MEMORY stage, after the FPU
stage, and at the WB stage. This gives us the minimum
possible latency for all operations whose destination is
the static network. The logic is very similar to the
bypassing logic; however the priority of the elements is
reversed: $csto wants the OLDEST value from the pipe-
line, rather than the newest one.

 When a instruction that writes to $csto is executed,
the S bit travels with it down the pipeline. A similar
thing happens with a write to $cdno, except that the “D”
bit is generated by the decode logic. Each cycle, the
$csto bypassing logic finds the oldest instruction which
has the S bit set. If that instruction is not ready, then the
valid bit connecting to the output SIB is not asserted. If
the oldest instruction has reached its stage of maturation
(i.e., the stage at which the result of the computation is
ready), then the value is muxed into the $csto port regis-
ter, ready to enter into an input buffer on the next cycle.
The S bit of that instruction is cleared, because the
instruction has sent its value. When the instruction
reaches the Writeback stage, it will also write its result
into the register file.

 It is interesting to note that the logic for this proce-
dure is exactly the same as for the standard bypass logic,
except that the priorities are reversed. Bypass logic
favors the youngest instruction that is writing a particu-
lar value. $csto bypassing logic looks for the oldest
instruction with the S bit set because it wants to guaran-
tee that values are sent out of the network in order that
the instructions were issued.

The $cdni and $csti network ports are muxed
through the bypass muxes. In this case, when an inst
tion in the decode stage uses registers $24 or $25
source, it checks if the DataAvail signal of the SIB is
set. If it is not, then the instruction stalls. This mirrors
hardware register interlock. If the decode stage deci
it does not have to stall, it will acknowledge the recei
of the data value by asserting the appropriate Thanks
line.

6.1.1 Instruction Restartability

The addition of the tightly coupled network inter
faces does not come entirely for free. It imposes a nu
ber of restrictions on the operation of the pipeline.

The main issue is that of restartability. Many pro
cessor pipelines take advantage of the fact that th
instruction sets are restartable. This means that the p
cessor can squash the instruction at any point in
pipeline before the writeback stage. Unfortunate
instructions which access $csti and $cdni modify t
state of the networks. Similarly, when an instructio
issues an instruction which writes to $cdno or $cs
once the result has been sent out to the switch’s SIB,
beyond the point of no return and cannot be restarted

Because of this, the commit point of the tile proce
sor is right after it passes the decode stage. We hav
be very careful about instructions that write to $csto
$cdno because the commit point is so early in the pip
line. If we allow the instructions to stall (because th
output queues are full) in a stage beyond the deco
stage, then the pipeline could be stalled indefinite
This is because it is programmatically correct for th
output queue to be full indefinitely. At that point, th
processor cannot take an interrupt, because it must
ish all of the “committed” instructions that passe
decode.

Thus, we must also insure that if an instructio
passes decode, it must not be possible for it to s
indefinitely.

To avoid these stalls, we do not let instruction pa
decode unless there is guaranteed to be enough roo
the appropriate SIB. As you might guess, we need to
the same analysis as we used to calculate how m
buffer space we needed in the network SIBs. Having
correct number of buffers will ensure that the process
is not too conservative. Looking at the “$csto, Bypas
and Writeback Networks”, diagram, we count the num
ber of pipeline registers in the longest cycle from th
29

he

h.
. It
nd

to
h’s
ich

C
tic

e
n

to
es
p-
ion
the
he
o

m-
es

ot
 in
m
e,
ns
ll
 a
e

e
dd
e

in
dy
y
tan-

ard
al
is
decode stage through the Thanks line, back to the
decode stage. Six buffers are required.

An alternative to this subtle approach is that we
could modify the behaviour of the SIBs. We can keep
the values in the input SIB FIFOs until we are sure we
do not need them any more. Each SIB FIFO will have
three pointers: one marks the place where data should be
inserted, the next marks where data should be read from,
and the final one marks the position of the next element
that would be committed. If instructions ever need to be
squash, the “read” pointer can be reset to equal the
“commit” pointer. I do not believe that this would affect
the critical paths significantly, but the $csti and $cdni
SIBs would require nine buffers each instead of three.

For the output SIB, creating restartability is a
harder problem. We would have to defer the actual
transmittal of the value through the network until the
instruction has hit WRITEBACK. However, that would
mean that we could not use our latency reducing bypass-
ing optimization. This approach mirrors what some con-
ventional microprocessors do to make store instructions
restartable -- the write is deferred until we are absolute
sure we need it. An alternative is to have some sort of
mechanism which overrides a message that was already
sent into the network. That sounded complicated.

6.1.2 Calculating the Tile-to-Tile
Communication Latency

A useful exercise is to examine the tile-to-tile
latency of the network send. The figure “Processor-
Switch-Switch-Processor” path helps illustrate it. It
shows the pipelines of two Raw tiles, and the path over
the static network between them. The relevant path is in
bold. As you can see, it takes three cycles for nearest
neighbor communication.

It is possible that we could reduce the cost down to
two cycles. This would involve removing the register in
front of the $csti SIB, and rearranging some of the logic.
We can do this because we know that the path between
the switch’s crossbar and the SIB is on the same tile, and
thus short. However, it is not at all clear that this will not
lengthen the critical path in the tile design. Whether we
will be able to do this or not will become more apparent
as we come closer to closing the timing issues of our
verilog.

6.2 MORE STATIC SWITCH INTERFACE GOOK

A number of other items are required to make the
static switch and main processor work together.

The first is a mechanism to write and read from t
static network instruction memory. The sload and
sstore operations stall the static switch for a cycle.

Another mechanism allows us to freeze the switc
This lets the processor inspect the state at its leisure
also simplifies the process of loading in a new PC a
NPC.

During context switches and booting, it is useful
be able to see how many elements are in the switc
SIBs. There is a status register in the processor wh
can be read to attain this information.

Finally, there is a mechanism to load in a new P
and NPC, for context switches, or if we want the sta
switch to do something dynamic on our behalf.

6.3 MECHANISM FOR READING AND WRITING
INTO INSTRUCTION MEMORY

In order for us to change the stored program, w
need some way of writing values into the instructio
memory. Additionally, however, we want to be able
read all of the state out of the processor (which includ
the instruction memory state), and we would like to su
port research into a sophisticated software instruct
VM system. As such, we need to be able to treat
instruction memory as a true read-write memory. T
basic thinking on this issue is that we will support tw
new instructions -- “iload” and “istore” -- which mimic
the data versions but which access the instruction me
ory. The advantage of these instructions is that it mak
it very explicit when we are doing things which are n
standard, both in the hardware implementation and
debugging software. These instructions will perfor
their operations in the “memory” stage of the pipelin
stealing a cycle away from the “fetch” stage. This mea
that every read or write into instruction memory wi
cause a one cycle stall. Since this is not likely to be
common event, we will not concern ourselves with th
performance implications.

Associated with an instruction write will be som
window of time (i.e. two or three cycles unless we a
in some sort of instruction prefetch, then it would b
more) where an instruction write will not be reflected
the processor execution. I.E., instructions alrea
fetched into the pipeline will not be refetched if the
happen to be the ones that were changed. This is a s
dard caveat made by most processor architectures.

We also considered the alternative of using stand
“load” and “store” instructions, and using a speci
address range, like for instance (“0xFFFFxxxx”). Th
30

id
 It
on
ved
el

-
er,

e

e,
approach is entirely valid and has the added benefit that
standard routines (“memcpy”) will be able to modify
instruction memory without having special version. (If
we wanted true transparency, we’d have to make sure
that instruction memory was accessible by byte
accesses.) We do not believe this to be a crucial require-
ment at this time. If needbe, the two methods could also
easily co-exist.

6.4 RANDOM TWEAKS

Our baseline processor was the MIPS R2000. We
added load interlocks into the architecture, because they
aren’t that costly. Instead of a single multi-cycle multi-
ply instruction, there are three low-latency pipelined

instructions, MULH, MULHU, and MULLO which
place their results in a GPR instead of HI/LO. We d
this because our 32-bit multiply takes only two cycles.
didn’t make sense to treat it as a multi cycle instructi
when it has no more delay than a load. We also remo
the SWL and SWR instructions, because we didn’t fe
they were worth the implementation complexity.

We have a 64 bit cycle counter which lists the num
ber of cycles since reset. There is also a watchdog tim
which is discussed in the DEADLOCK section of th
thesis.

Finally, we decided on a Harvard style architectur

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csti $cdni

$csto

RF

Thanks

Fetch

Decode/RF

Execute

Memory

Floating

Writeback

$csti$cdni

$csto

RF

Thanks

The Processor-Switch-Switch-Processor path
31

at
ect

nt.
me
g
e
ul-
e
is-

of
ve
n

a
s
es,
uc-

ce
stall

 as
c-

one

t-
ge

O

 is
rch
be
to

-
el
ay
ber

at
ns
.

with separate instruction and data memories; because
the design of the pipeline was more simple. See the
Appendage entitled “Raw User’s Manual” for a descrip-
tion of the instruction set of the Raw prototype. The first
Appendage shows the pipeline of the main processor.

6.5 THE FLOATING POINT UNIT

In the beginning, we were not sure if we were going
to have a floating point unit. The complexity seemed
burdensome, and there were some ideas of doing it in
software. One of our group members, Michael Zhang,
implemented and parallelized a software floating point
library [Zhang99] to evaluate the performance of a soft-
ware solution. Our realization was that many of our
applications made heavy use of floating point, and for
that, there is no subsitute for hardware. We felt that the
large dynamic range offered by floating point would fur-
ther the ease of writing signal processing applications --
an important consideration for enticing other groups to
make user of our prototype. This was an important con-
sideration To simplify our task, we relaxed our compli-
ance of the IEEE 754 standard. In particular, we do not
implement gradual underflow. We decided to support
only single-precision floating point operations so we
would not need to worry about how to integrate a 64 bit
datapath into the RAW processor. All of the network
paths are 32bits, so we would have package up values
and route them, reassemble them and so on. However, if
we were building an industrial version, we would proba-
bly have a 64 bit datapath throughout the chip, and dou-
ble precision would be easier to realize.

It was important that the FPU be as tightly inte-
grated with the static network as the ALU. In terms of
floating point, Raw had the capability of being a super-
computer even as an academic project. With only a little
extra effort in getting the floating point right, we could
make Raw look very exciting.

We wanted to be able to send data into the FPU in a
pipelined fashion and have it stream out of the tile just
as we would do with a LOAD instruction. This would
yield excellent performance with signal processing
codes, especially with the appropriate amount of switch
bandwidth. The problem that this presented was with the
$csto port. We need to make sure that values exit the
$csto port in the correct order from the various floating
point functional units, and from the ALU.

The other added complexity with the floating point
unit is the fact that its pipeline is longer than the corre-
sponding ALU pipeline. This means that we needed to
do some extra work in order to make sure that items are

stored back correctly in the writeback phase, and th
they are transferred into the static network in the corr
order.

The solution that we used was simple and elega
After researching FPU designs [Oberman96], it beca
increasingly apparent that we could do both floatin
point pipelined add and multiply in three cycles. Th
longest operation in the integer pipeline is a load or m
tiply, which is two cycles. Since they are so close, w
discovered that we could solve both the $csto and reg
ter file writeback problems by extending the length
the overall pipeline by one cycle. As a result, we ha
six pipeline stages: instruction fetch(IF), instructio
decode(ID), execution(EXE), memory(MEM), floating
point (FPU) and write-back(WB). See Appendix B for
diagram of the pipeline. The floating point operation
execute during the Execute, Memory, and FPU stag
and write back at the same stage as the ALU instr
tions.

This solves the writeback and $csto issues -- on
the pipelines are merged, the standard bypass and
logic can be used to maintain sanity in the pipeline.

This solution becomes more and more expensive
the difference in actual pipeline latencies of the instru
tions grows. Each additional stage requires at least
more input to the bypass muxes.

As it turns out, this was also useful for implemen
ing byte and half-word loads, which use an extra sta
after the memory stage.

Finally, for floating point division, our non-pipe-
lined 11-cycle divider uses the same decoupled HI/L
interface as the integer divide instruction.

A secondary goal we had in designing an FPU
that we make the source available for other resea
projects to use. Our design is constructed to
extremely portable, and will probably make its way on
the web in the near future.

6.6 RECONFIGURABLE LOGIC

Originally, each Raw tile was to have reconfig
urable logic inside, to support bit-level and byte-lev
computations. Although no research can definitely s
that this is a bad idea, we can say that we had a num
of problems realizing this goal. The first problem is th
we had trouble finding a large number of applicatio
that benefited enormously from this functionality
Median filter and Conway’s “game of life”
32

f
ut.

o
iv-
les
the
 is
at
r-

he
n

lled
[Berklekamp82] were the top two contenders. Although
this may seem surprising given RawLogic’s impressive
results on many programs, much of RawLogic’s perfor-
mance came from massive parallelism, which the Raw
architecture leverages very capably with tile-level paral-
lelism. Secondly, it was not clear if a reconfigurable fab-
ric could be efficiently implemented on an ASIC. Third,
interfacing the processor pipeline to the reconfigurable
logic in a way that effectively used the reconfigurable
logic proved difficult. Fourth, it looked as if a large area
would need to be allocated to each reconfigurable logic
block to attain appreciable performance gains. Finally,
and probably most fundamentally for us, the complexity
of the reconfigurable logic, its interface, and the soft-
ware system was an added burden to the implementation
of an already quite complicated chip.

For reference, here is the description of the recon-
figurable logic interface that we used in the first simula-
tor:

The pipeline interface to the reconfigurable logic
mimiced the connection to the dynamic network ports.
There were two register mapped ports, RLO (output to
RL) and RLI (input from RL to processor). These were
aliased with register 30. There was a two element buffer
on the RLI connection on the processor pipeline side,
and a two element buffer on the reconfigurable logic
input side.

6.7 DYNAMIC NETWORK INTERFACE

The processor initiates a dynamic network send by
writing the destination tile number, writing the message
into the $cdno commit buffer and then executing the
dlaunch instruction [Kubiatowicz98]. $cdno is differ-
ent than other SIBs because it buffers up an entire mes-
sage before a dlaunch instruction causes it to trickle
into the network. If we were to allow the messages to be
injected directly into the network without queueing
them up into atomic units, we could have a phenomenon
we call dangling. This means that a half-constructed
message is hanging out into the dynamic network. Dan-
gling becomes a problem when interrupts occur. The
interrupt handler may want to use the dynamic network
output queue; however, there is a half-completed mes-
sage that is blocking up the network port. The message
cannot be squashed because some of the words have
already been transmitted. A similar problem occurs with
context switches -- to allow dangling, the context switch
routine would need to save and restore the internal state
of the hardware Dynamic scheduler -- a prospect we do
not relish. The commit buffer has to be of a fixed size.
This size imposes a maximum message size constraint
on the dynamic network. To reduce the complexity of

the commit buffer, a write to $cdno blocks until all o
the elements of the previous message have drained o

One alternative to the commit buffer would be t
require the user to enclose their dynamic network act
ity to constrained regions surround by interrupt enab
and disables. The problem with this approach is that
tile may block indefinitely because the network queue
backed up (and potentially for a legitimate reason.) Th
would make the tile completely unresponsive to inte
rupts.

$cdni, on the other hand, operates exactly like t
$csti port. However, there is a mask which, whe
enabled, causes a user interrupt routine to be ca
when the header of a message arrives at the tile.

6.8 SUMMARY

The Raw tile processor design descended from the
MIPS R2000 pipeline design. The most interesting
design decisions involved the integration of the network
interfaces. It was important that these interfaces (in par-
ticular the static network interface) provide the minimal
possible latency to the network so as to support as fine-
grained parallelism as possible.
33

 all
 that
le
d-
s
of
p

al
an
ks.
hip
ata

se,
 on-

er
net-
ad
rt

ch
er-
ath

ent
me
the
es

 of
nly
 be
s,
sed
it,
ed
r,
ic

xi-
ic-
ill

 I/
e
/O
ed
r-
7 I/O AND MEMORY
SYSTEM
7.0 THE I/O SYSTEM

The I/O system of a Raw processor is a crucial but
up until now mostly unmentioned aspect of Raw. The
Raw I/O philosophy mirrors that of the Raw parallelism
philosophy. Just as we provide a simple interface for the
compiler to exploit the gobs of silicon resources, we
also have a simple interface for the compiler to exploit
and program the gobs of pins available. Once again, the
Raw architecture proves effective not because it allo-
cates the raw pin resources to special purpose tasks, but
because it exposes them to the compiler and user to
meet the needs of application. The interface that we
show scales with the number of pins, and works even
though pin counts are not growing as fast as logic den-
sity.

An effective parallel I/O interface is especially
important for a processor with so many processing
resources. To support extroverted computing, a Raw
architecture’s I/O system must be able to interface to, at
high-speed, a rich variety of input and output devices,
like PCI, DRAM, SRAM, video, RF digitizers and
transmitters and so on. It is likely, that in the future, a
Raw device would also have direct analog connections -
RF receivers and transmitters, and A/D and D/A con-
verters, all exposed to the compiler. However, the inte-
gration of analog devices onto a silicon die is the subject
of another thesis.

For the Raw prototype, we will settle for being able
to interface to some helper chips which can speak these
dialects on our behalf.

 Recently, there has been a proliferation of high
speed signalling technologies like that chips SSTL,
HSTL, GTL, LVTTL, and PCI. For our chip, we have
been looking at SSTL and HSTL as potential candi-
dates.

We expect to use the Xilinx Vertex parts to convert
from our high-speed protocol of choice to other signal-
ing technologies. These parts have the exciting ability to
configurably communicate with almost all of the major
signaling technologies. Although, in our prototype,
these chips are external, I think that it is likely config-
urable I/O cells will find their way into the new extro-
verted processors. This is because it will be so crucial

for these processors to be able to communicate with
shapes and forms of devices. It may also be the case
extroverted processors will have bit-wise configurab
FPGA logic near the I/O pins, for gluing together har
ware protocols. After all, isn’t glue logic what FPGA
were invented for? Perhaps our original conception
having fine-grained configurable logic on the chi
wasn’t so wrong; we just had it in the wrong place.

7.0.1 Raw I/O Model

I/O is a first-class software-exposed architectur
entity on Raw. The pins of the Raw processor are
extension of both the mesh static and dynamic networ
For instance, when the west-most tiles on a Raw c
route a dynamic or static message to the west, the d
values appear on the corresponding pins. Likewi
when an external device asserts the pins, they appear
chip as messages on the static or dynamic network.

For the Raw prototype, the protocol spoken ov
the pins is the same static and dynamic handshaking
work protocols spoken between tiles. If we actually h
the FPGA glue logic on chip, the pins would suppo
arbitrary handshaking protocols, including ones whi
require the pins to be bidirectional. Of course, for sup
high speed I/O connections, there could be a fast-p
straight to the pins.

The diagram “Logical View of a Raw Chip” illus-
trates the pin methodology. The striped lines repres
the static and dynamic network pipelined buses. So
of them extend off the edge of the package, onto
pins. The number of static and dynamic network bus
that are exposed off-chip is a function of the number
I/O pins that makes sense for the chip. There may o
be one link, for ultra-cheap packages, or there may
total connectivity in a multi-chip module. In some case
the number of static or dynamic buses that are expo
could be different. Or there may be a multiplex b
which specifies whether the particular word transferr
that cycle is a dynamic or static word. The compile
given the pin image of the chip, schedules the dynam
and static communication on the chip such that it ma
mizes the utilization of the ports that exist on the part
ular Raw chip. I/O sends to non-existent ports w
disappear.

The central idea is that the architecture facilitates
O flexibility and scalability. The I/O capabilities can b
scaled up or down according to the application. The I
interface is a first-class citizen. It is not shoehorn
through the memory hierarchy, and it provides an inte
34

 I/
ve
e
tter
nd
e
d.

d
on
ly

e
at
e-
o a
ol
a-

It
not
ly;

his
 in
ill
 on

 of
m.
n

-
tile
w

g
ry.
ry
tag
tee
en
ip
face which gives the compiler the access to the full
bandwidth of the pins.

Originally, only the static network was exposed to
the pins. The reasoning was that the static network
would provide the highest bandwidth interface into the
Raw tiles. Later, however, we realized that, just as the
internal networks require support for both static and
dynamic events, so too do the external networks. Cache
line fills, external interrupts, and asynchronous devices
are dynamic, and cannot be efficiently scheduled over
the static network. On the other hand, the static network
is the most effective method for processing a high band-
width stream coming in at a steady rate from an outside
source.

7.0.2 The location of the I/O ports (Perimeter
versus Area I/O)

Area I/O is becoming increasingly common in
today’s fabrication facilities. In fact, in order to attain
the pincounts that we desire on the SA-27E process, we
have to use area I/O. This creates a bit of a problem,
because all of our I/O connections are focused around
the outside of the chip. IBM’s technology allows us to
simulate a peripheral I/O chip with area I/O. However,
this may not be an option in the future. In that event, it is

possible to change the I/O model to match. In the Area
O model, each switch and dynamic switch would ha
an extra port, which could potentially go in/out to th
area I/O pads. This arrangement would create be
locality between the source of the outgoing signal a
the position of the actual pad on the die. Like in th
peripheral case, these I/Os could be sparsely allocate

7.0.3 Supporting Slow I/O Devices

In communicating with the outside world, we nee
to insure that we support low-speed devices in additi
to the high-speed devices. For instance, it is unlike
that the off-the-shelf Virtex or DRAM parts will be able
to clock as fast as the core logic of our chip. And w
may have trouble finding a RS-232 chip which clocks
250 Mhz! As a result, the SIB protocol needs to be r
examined to see if it still operates when connected t
client with a lesser clock speed. Ideally, the SIB protoc
will support a software-settable clock speed divider fe
ture, not unlike found on DRAM controllers for PCs.
is not enough merely to program the tiles so they do
send data words off the side of the chip too frequent
the control signals will still be switching too quickly.

7.1 THE MEMORY SYSTEM

The Raw memory system is still much in flux. A
number of group members are actively researching t
topic. Although our goal is to do as much as possible
software, it is likely that some amount of hardware w
be required in order to attain acceptable performance
a range of codes.

What I present in this section is a sketch of some
the design possibilities for a reasonable memory syste
This sketch is intended to have low implementatio
cost, and acceptable performance.

7.1.1 The Tag Check

The Raw compiler essentially partitions the mem
ory objects of a program across the Raw tiles. Each
owns a fraction of the total memory space. The Ra
compiler currently does this with the underlyin
abstraction that each Raw tile has an infinite memo
After the Raw compiler is done, our prototype memo
system compiler examines the output and inserts
checks for every load or store which it cannot guaran
resides in the local SRAM. If these tag checks fail, th
the memory location must be fetched from an off-ch
DRAM.

Static and/or Dynamic Network

Package

Logical View of a Raw Chip

Pins
35

Because these tag checks can take from between 3
and 9 cycles to execute [Moritz99], the efficiency of this
system depends on the compiler’s ability to eliminate
the tag checks. Depending on the results of this
research, we may decide to add hardware tag checks to
the architecture. This will introduce some complexity
into the pipeline. However, the area impact will proba-
bly be neglible -- the tags will simply move out of the
SRAM space into the dedicated tag SRAM. There
would still be the facility to turn off the hardware tag
checks for codes which do not require it, or for research
purposes.

7.1.2 The Path to Copious Memory

We also need to consider the miss case. We need to
have a way to reach the DRAMs residing outside of the
Raw chip.This path is not as crucial as the Tag Check;
however it still needs to be fairly efficient.

For this purpose, we plan to use a dynamic network
to access the off-chip DRAMs. Whether this miss case
is handled in software or hardware will be determined
when we have more performance numbers.

7.2 SUMMARY

The strength of Raw’s I/O architecture comes from
the degree and simplicity with which the pins are
exposed to the user as a first class resource. Just as the
Raw tile expose the parallelism of the underlying silicon
to the user, the Raw I/O architecture exposes the paral-
lelism and bandwidth of the pins. It complements the
key Raw goal -- to provide a simple interface to as much
of the raw hardware resources to the user as possible.
36

8 DEADLOCK

In my opinion, the deadlock issues of the dynamic
network is probably the single most complicated part of
the Raw architecture. Finding a deadlock solution is
actually not all that difficult. However, the lack of
knowledge of the possible protocols we might use, and
the constant pressure to use as little hardware support as
possible makes this quite a challenge.

In this section, I describe some conditions which
cause deadlock on Raw. I then describe some
approaches that can be used to attack the deadlock prob-
lem. Finally, I present Raw’s deadlock strategy.

8.0 DEADLOCK CONDITIONS

For the static network, it is the compiler’s responsi-
bility to ensure that the network is scheduled in a way
that doesn’t jam. It can do this because all of the interac-
tions between messages on the network have been spec-
ified in the static switch instruction stream. These
interactions are timing independent.

The dynamic network, however, is ripe with poten-
tial deadlock. Because we use dimension-ordered
wormhole routing, deadlocks do not actually occur
inside the network. Instead, they occur at the network
interface to the tile. These deadlocks would not occur if
the network had unlimited capacity. In every case, one
of the tiles, call it tile A, has a dynamic message waiting
at its input queue that is not being serviced. This mes-
sage is flow controlling the network, and messages are
getting backed up to a point where a second tile, B, is
blocked trying to write into the dynamic network. The
deadlock occurs when tile A is dependent on B’s for-
ward progress in order to get to the stage where it reads
the incoming message and unblocks the network.

Below is an enumeration of the various deadlock
conditions that can happen. Most of them can be
extended to multiple party deadlocks. See the figure
entitled “Deadlock Scenarios.”

8.0.1 Dynamic - Dynamic

Tile A is blocked trying to send a dynamic message
to Tile B. It was going to then read the message arriving
from B. Tile B is blocked trying to send to Tile A. It was
going to then receive from A. This forms a dependency
cycle. A is waiting for B and B is waiting for A.

A B

static network

dynamic network

A B

Message One
Message Two
Message Three

1

2

blockage

A B

3

5A

B

C

D

Message Four

Deadlock
Scenarios
37

e
ble
y
 to

-
s a
e

e

s
e

y
ro-

es
ue
er

upt
lag
he
8.0.2 Dynamic - Static

Tile A is blocked on $csto because it wants to stati-
cally communicate with processor B. It has a dynamic
message waiting from B. B is blocked because it is try-
ing to finish the message going out to A.

8.0.3 Static - Dynamic
Tile A is waiting on $csti because it is waiting for a

static message from B. It has a dynamic message wait-
ing from B.

Tile B is waiting because it is trying to send to tile
C which is blocked by the message it sent to A. It was
then going to write to processor A over the static net-
work.

8.0.4 Static - Static

Processor A is waiting for a message from Proces-
sor B on $csti. It was then going to send a message.

Processor B is waiting for a message from Proces-
sor B on $csti. It was then going to send a message.

This is a compiler error on Raw.

8.0.5 Unrelated Dynamic-Dynamic

In this case, tile B is performing a request, and get-
ting a long reply from D. C is performing a request, and
getting a long message from A. What is interesting is
that if only one or the other request was happening,
there may not have been deadlock.

8.0.6 Deadlock Conditions - Conclusions

An accidental deadlock can exist only if at least one
tile has a waiting dynamic network in-message and is
blocked on either the $cdno, $csti, or $csto. Actually,
technically, the tile could be polling either of those three
ports. So we should rephrase that: the tile can only be
deadlocked if there is a waiting dynamic message com-
ing in and one of {$cdno is not empty, $csti does not
have data available, or $csto is full}.

In all of these cases, the deadlock could be allevi-
ated if the tile would read the dynamic message off of its
input port. However, there may be some very good rea-
sons for why the tile does not want to do this.

8.1 POSSIBLE DEADLOCK SOLUTIONS

The key two deadlock solutions are deadlock avoid-
ance and deadlock recovery. These will be discussed in
the next two sections.

8.2 DEADLOCK AVOIDANCE

Deadlock avoidance requires that the user restrict
their use of the dynamic network to a certain pattern
which has been proven to never deadlock.

The Deadlock avoidance disciplines that we gener-
ally arrive at are centered around two principles:

8.2.1 Ensuring that messages at the tail of all
dependence chain are always sinkable.

In this discipline, we guarantee that the tile with the
waiting dynamic message is always able to “sink” th
waiting message. This means that the tile is always a
to pull the waiting words off the network and break an
cycles that have formed. The processor is not allowed
block while there are data words waiting.

These disciplines typically rely on an interrupt han
dler being fired to receive messages, which provide
high-priority receive mechanism that will interrupt th
processor if it is blocked.

Alternatively, we could require that polling code b
placed around every send.

Two examples disciplines which use that “alway
sinkable” principal are “Send Only” and “Remot
Queues.”

Send Only

For send-only protocols; like protocols which onl
store values, the interrupt handler can just run and p
cess the request. This is an extremely limited model.

Remote Queues

For request-reply protocols, Remote Queu
[Chong95], relies on an interrupt handler to deque
arriving messages as they arrive. This handler will nev
send messages.

If this request was for the user process, the interr
handler will place the message in memory, and set a f
which tells the user process that data is available T
user process then accesses the queue.
38

ver

ing
ad-
er,
nts
ly
eir
 is
le
r,

rate,
s,

et-
ed
 a
ip.

e
ver
m

ts.
e

t if
ies
e
v-
of

to
-
me

et-
be
 of

et-
m-
e
sts
te-
Alternatively, if the request is to be processed inde-
pendently of the user process, the interrupt handler can
drop down to a lower priority level, and issue a reply.
While it does this will remain ready to pop up the higher
priority level and receive any incoming messages.

Both of these methods have some serious disadvan-
tages. First of all, the model is more complicated and
adds software overhead. The user process must synchro-
nize with the interrupt handler, but at the same time,
make sure that it does not disable interrupts at an inop-
portune time. Additionally, we have lost that simple and
fast pipeline-coupled interface that the network ports
originally provided us with.

The Remote Queue method assumes infinite local
memories, unless an additional discipline restricting the
number of outstanding messages is imposed. Unfortu-
nately, for all-to-all communication, each tile will have
to reserve enough memory to handle the worst case -- all
tiles sending to the same tile. This memory overhead
can take up a significant portion of the on-tile SRAM.

8.2.2 Limit the amount and directions of data
injected into the network.

The idea here is that we make sure that we never
block trying to write to our output queue, making us
available to read our input queue. Unless there is a huge
amount of buffering in the network, this usually requires
that we know a priori that there is some limit on the
number of tiles that can send to us (and require replies)
at any point, and that there is a limited on the amount of
data in those messages. Despite this heavy restriction,
this is nonetheless a useful discipline.

The Matt Frank method

One discipline which we developed uses the effects
of both principles. I called it the Matt Frank method. (It
might also be called the client-server method, or the two
party protocol.) In this example, there are two disjoint
classes of nodes, the clients and the servers, which are
connected by separate “request” and “reply” networks.
The clients send a message to the servers on the request
network, and then the servers send a message back on
the reply network. Furthermore, each client is only
allowed to have one outstanding message, which will fit
entirely in its commit buffer. This guarantees that it will
never be blocked sending.

Since clients and servers are disjoint, we know that
when a client issues a message, it will not receive any
other messages except for its response, which it will be

waiting to dequeue. Thus, the client nodes could ne
be responsible for jamming up the network.

The server nodes are receiving requests and send
replies. Because of this, they are not exempt from de
lock in quite the same way as the client nodes. Howev
we know that the outgoing messages are going to clie
which will always consume their messages. The on
possibility is that the responses get jammed up on th
way back through the network by the requests. This
exactly what happened in the fifth dead-lock examp
given in the diagram “Deadlock Scenarios.” Howeve
in this case, the request and reply networks are sepa
so we know that they cannot interact in this way. Thu
the Matt Frank method is deadlock free.

One simple way to build separate request-reply n
works on a single dimension-ordered wormhole rout
dynamic network is to have all of the server nodes on
separate side of the chip; say, the south half of the ch
With X-first dimension-ordered routing, all of the
requests will use the W-E links on the top half of th
chip, and then the S links on the way down to the ser
nodes. The replies will use the W-E links on the botto
half of the chip, and the N links back up to the clien
We have effectively created a disjoint partition of th
network links between the requests and the replies.

For the Matt Frank protocol, we could lift the
restriction of only one outstanding message per clien
we guaranteed that we would always service all repl
immediately. In particular, the client cannot block whil
writing a request into the network. This could be achie
able via an interrupt, polling, or a dedicated piece
hardware.

8.2.3 Deadlock Avoidance - Summary

Deadlock avoidance is an appealing solution
handling the dynamic network deadlock issue. How
ever, each avoidance strategy comes with a cost. So
strategies reduce the functionality of the dynamic n
work, by restricting the types of protocols that can
used. Others require the reservation of large amounts
storage, or cause a low utilization of the underlying n
work resources. Finally, deadlock avoidance can co
plicate and slow down the user’s interface to th
network. Care must be made to weigh these co
against the area and implementation cost of more bru
force hardware solutions.
39

e
es
ed
es
es
ss-

ncy

d

is
r
o

the

at
or
he
er-
a

es
ere
nu-
ery
er
r
d-
ve
gu
8.3 DEADLOCK RECOVERY

An alternative approach to deadlock avoidance is
deadlock recovery. In deadlock recovery, we do not
restrict the way that the user employs the network ports.
Instead, we have a recovery mode that rescues the pro-
gram from deadlock, should one arise. This recovery
mode does not have to be particularly fast, since dead-
locks are not expected to be the common case. As with a
program with pathological cache behaviour, a program
that deadlocks frequently may need to be rewritten for
performance reasons.

Before I continue, I will introduce some terminolo-
gies. These are useful in evaluating the ramifications of
the various algorithms on the Raw architecture.

Spontaneous Synchronization is the ability of a
group of Raw chips to suddenly (not scheduled by com-
piler) stop their current individual computations and
work together. Normally, a Raw tile could broadcast a
message on the dynamic network in order to synchro-
nize everybody. However, we obviously cannot use the
dynamic network if it is deadlocked. We cannot use the
static network to perform this synchronization, because
the tiles would have to spontaneously synchronize
themselves (and clear out any existing data) in order to
communicate over that network!

We could have a interrupting timer which is syn-
chronized across all of the Raw tiles to interrupt all of
the tiles simultaneously, and have them clear out the
static network for communication. If we could guaran-
tee that they would all interrupt simultaneously, then we
could clear out the static network for more general com-
munication. Unfortunately, this would mean that the
interrupt timer would have to be a non maskable inter-
rupt, which seems dangerous.

In the end, it may be that the least expensive way to
achieve spontaneous synchronization is to have some
sort of non-deadlocking synchronization network which
does it for us. It could be a small as one bit. For instance,
the MIT-Fugu machine had such a one bit rudimentary
network [Mackenzie98].

Non-destructive observability requires that a tile
be able to inspect the contents of the dynamic network
without obstructing the computation. This mechanism
could be implemented by adding some extra hardware
to inspect the SIBs. Or, we could drain the dynamic net-
work, store the data locally on the destination nodes,
and have a way of virtualizing the $cdni port.

8.3.1 Deadlock Detection

In order to recover from deadlock, we first need to
detect deadlock. In order to determine if a deadlock
truly exists, we would need to analyze the status of each
tile, and the network connecting them, looking for a
cyclic dependency.

One deadlock detection algorithm follows:

The user would not be allowed to poll the network
ports, otherwise, the detection algorithm would have no
way of knowing of the program’s intent to access th
ports. The detection algorithm runs as follows: The til
would synchronize up, and run a statically schedul
program (that uses the static network) which analyz
the traffic inside the dynamic network, and determin
whether the each tile was stalled on a instruction acce
ing $csto, $csti, or $cdno. It can construct a depende
graph and determine if there is a cycle.

However, the above algorithm requires both spon-
taneous synchronization and non-destructive observ-
ability. Furthermore, it is extremely heavy-weight, an
could not be run very often.

8.3.2 Deadlock Detection Approximation

In practice, a deadlock detection approximation
often sufficient. Such an approximation will neve
return a false negative, and ideally will not return to
many false positives. The watchdog timer, used by
MIT-Alewife machine [Kubiatowicz98] for deadlock
detection is one such approximation.

The operation is simple: each tile has a timer th
counts up every cycle. Each cycle, if $cdni is empty,
if a successful read from $cdni is performed, then t
counter is reset. If the counter hits a predefined us
specified value, then a interrupt is fired, indicating
potential deadlock.

This method requires neither spontaneous synchro-
nization nor non-destructive observability. It also is very
lightweight.

It remains to be seen what the cost of false positiv
is. In particular, I am concerned about the case wh
one tile, the aggressive producer, is sending a conti
ous stream of data to a tile which is consuming at a v
slow rate. This is not truly a deadlock. The consum
will be falsely interrupted, and will run even slowe
because it will be the tile who will be running the dea
lock recovery code. (Ideally, the producer would ha
been the one running the deadlock code.) Fu
40

m
are

to
e-

he
his
ing
be

of
S
n-

ent
to

 I
ur

the
on
nd-
i-
 the

i-

ti-
e
al-
uld
o-
rk.
[MacKenzie98] dealt with these sorts of problems in
more detail. At this point in time, we stop by saying that
the user or compiler may have to tweak the deadlock
watchdog timer value if they run into problems like this.
Alternatively, if we had the spontaneous synchroniza-
tion and non-destructive observability properties, we
could use the expensive deadlock detection algorithm to
verify if there was a true deadlock. If it was a false posi-
tive, we could bump up the counter.

8.3.3 Deadlock recovery

Once we have identified a deadlock, we need to
recover from the deadlock. This usually involves drain-
ing the blockage from the network and storing it in
memory. When the program is resumed, a mechanism is
put in place so that when the user reads from the net-
work port, he actually gets the values stored in memory.

To do this, we have a bit that is set which indicates
that we are in this “dynamic refill” mode. A read from
$cdni will return the value stored in the special purpose
register, “DYNAMIC_REFILL.” It will also cause an
interrupt on the next instruction, so that a handler can
transparently put a new value into the SPR. When all of
the values have been read out of the memory, the mode
is disabled and operation returns to normal.

An important issue is where the dynamic refill val-
ues are stored in memory. When a tile’s watchdog
counter goes off, it can store some of the words locally.
However, it may not be expedient to allocate significant
amounts of buffer space for what is a reasonably rare
occurrence. Additionally, since the on-chip storage is
extremely finite, in severe situations, we eventually will
need to get out to a more formidable backing store. We
would need spontaneous synchronization to take over
the static network and attain the cooperation of other
tiles, or a non-deadlocking backup network to perform
this. [Mackenzie98]

8.3.4 More deadlock recovery problems

Most of the deadlock problems describe here have
been encountered by the Alewife machine, which used a
dynamic network for its memory system. However,
those machines have the fortunate property that they can
put large quantities of RAM next to each node. This
RAM can be accessed without using the dynamic net-
work. On Raw, we have a very tiny amount of RAM that
can be accessed without travelling through the network.
Unless we can access a large bank of memory deadlock-
free, the deadlock avoidance and detection code must
take up precious instruction SRAM space on the tile.

Ironically, a hardware deadlock avoidance mechanis
may have a lesser area cost than the equivalent softw
ones.

8.3.5 Deadlock Recovery - Summary

Deadlock recovery is also an appealing solution
handling the deadlock problem. It allows the user unr
stricted use of the network. However, it requires t
existence of a non-deadlockable path to memory. T
can be attained by using the static network and add
the ability to spontaneously synchronize. It can also
realized by adding another non-deadlocked network.

8.4 DEADLOCK ANALYSIS

The issue of deadlock in the dynamic network is
serious concern. Our previous solutions (like the NEW
single bit interrupt network) have had serious disadva
tages in terms of complexity, and the size of the resid
code on every SRAM. For brevity, I have opted not
list them here.

In this section, I propose a new solution, which
believe offers extremely simple hardware, leverages o
existing dynamic network code base, and solves
deadlock problem very solidly. It creates an abstracti
which can be used to solve a variety of other outsta
ing issues with the Raw design. Since this is prelim
nary, the features described here are not described in
“User’s View of Raw” section of the document.

First, let us re-examine the dynamic network man
festo:

The primary intention of the
dynamic network is to support memory
accesses that cannot be statically
analyzed. The dynamic network was also
intended to support other dynamic
activities, like interrupts, dynamic
I/O accesses, speculation, synchroni-
zation, and context switches.
Finally, the dynamic network was the
catch-all safety net for any dynamic
events that we may have missed out on.

Even now, the Raw group is very excited about u
lizing deadlock avoidance for the dynamic network. W
argue that we were not going to be supporting gener
purpose user messaging on the Raw chip, so we co
require the compiler writers and runtime system pr
grammers to use a discipline when they use the netwo
41

and
is
id-

-
it
ed
o-
r.
et-
re
in
ed

g
ser
s in
ise
di-
h
m

-
the
r-

e
ck

ip
es
e

-
c-
n
ld
-

a
s
s,

-
n

its
The problem is, the dynamic network is really the
extension mechanism of the processor. Its strength is in
its ability to support protocols that we have left out of
the hardware. We are using the dynamic network for
many protocols, all of which have very different proper-
ties. Modifying each protocol to be deadlock-free is
hard enough. The problem comes when we attempt to
run people’s systems together. We then have to prove
that the power set of the protocols is deadlock free!

Some of the more flexible deadlock avoidance
schemes allow near-arbitrary messaging to occur.
Unfortunately, these schemes often result in decreased
performance, or require large buffer space.

The deadlock recovery schemes provide us with the
most protocol flexibility. However, they require a dead-
lock-free path to outside DRAM. If this is implemented
on top of the static network, then we have to leave a
large program in SRAM just in case of deadlock.

8.5 THE RAW DEADLOCK SOLUTION

Thinking about this, I realized that the dynamic net-
work usage falls into two major groups: memory
accesses and essentially random unknown protocols.
These two groups of protocols have vastly different
properties.

My solution is to have two logically disjoint
dynamic networks. These networks could be imple-
mented as two separate networks, or they could be
implemented as two logical networks sharing the same
physical wires. In the latter case, one of the networks
would be deemed the high priority network and would
always have priority.

The high priority network would implement the
Matt Frank deadlock avoidance protocol. The off-chip
memory accesses will easily fit inside this framework.
In this case, the processors are the “clients” and the
DRAMS, hanging off the south side of the chip, are the
“servers.” Interrupts will be disabled during outstanding
accesses. Since the network is deadlock free, and guar-
anteed to make forward progress, this is not a problem.
This also means that we can dangle messages into the
network without worry, improving memory system per-
formance. This network will enforce a round-robin pri-
ority scheme to make sure that no tile gets starved. This
network can also be used for other purposes that involve
communication with remote devices and meet the
requirements. For instance, this mechanism can be used
to notify the tiles of external interrupts. Since the net-
work cannot deadlock, we know that we will have a rel-
atively fast interrupt response time. (Interrupts would be

implemented as an extra bit in the message header,
would be dequeued immediately upon arrival. Th
guarantees that they will not violate the deadlock avo
ance protocol.)

The more general user protocols will use the low
priority dynamic network, which would have a comm
buffer, and will have the $cdno/$cdni that we describ
previously. They will use a deadlock recovery alg
rithm, with a watchdog deadlock detection time
Should they deadlock, they can use the high priority n
work to access off-chip DRAM. In fact, they can sto
all of the deadlock code in the DRAM, rather than
expensive SRAM. Incidentally, the DRAMs can be us
to implement spontaneous synchronization.

One of the nice properties that comes with havin
the separate deadlock-avoidance network is that u
codes do not have to worry about having a cache mis
the middle of sending a message. This would otherw
require loading and unloading the message queue. Ad
tionally, since interrupt notifications come on the hig
priority network, the user will not have to process the
when they appear on the input queue.

8.6 THE HIGH-PRIORITY DYNAMIC NETWORK

Since the low-priority dynamic network corre
sponds exactly to the dynamic network described in
previous dynamic network section, it does not merit fu
ther discussion.

The use of the high-priority network needs som
elaboration, especially with respect to the deadlo
avoidance protocol.

The diagram “High-Priority Memory Network Pro-
tocol” helps illustrate. This picture shows a Raw ch
with many tiles, connected to a number of devic
(DRAM, Firewire, etc.) The protocol here uses only on
logical dynamic network, but partitions it into two dis
joint networks. To avoid deadlock, we restrict the sele
tion of external devices that a given tile ca
communicate with. For complete connectivity, we cou
implement another logical network. The rule for con
nectivity is:

Each tile is not allowed to communicate with
device which is NORTH or WEST of it. This guarantee
that all requests travel on the SOUTH and EAST link
and all replies travel on the NORTH and WEST links.

Although this is restrictive, it retains four nice prop
erties. First, it provides high bandwidth in the commo
case, where the tile is merely communicating with
42

m
uth-
m

fi-
ill
as
e
y-
-
nd

he
t
-

e
ill
or-
ely.
tly

le
c-

et-
s

partner DRAM. The tile’s partner DRAM is a DRAM
that has been paired with the tile to allocate the network
and DRAM bandwidth as effectively as possible. Most
of the tile’s data and instructions are placed on the tile’s
partner DRAM.

The second property, the memory maintainer prop-
erty, is that the northwest tile can access all of the
DRAMs. This will be extremely useful because the non-
parallelizeable operating system code can run on that
tile and operate on all of the other tile’s memory spaces.
Note that with strictly dimensioned-ordered routing, the
memory maintainer cannot actually access all of the
devices on the right side of the chip. This problem will
be discussed in the “I/O Addressing” section.

The third property, the memory dropbox property, is
that the southeast DRAM is accessible by all of the tiles.
This means that non performance-critical synchroniza-
tion and communication can be done through a common
memory space. (We would not want to do this in perfor-
mance critical regions of the program, because of the
limited bandwidth to a single network port.)

These last two properties are not fundamental to the
operation of a Raw processor; however they make writ-
ing setup and synchronization code a lot easier.

Finally, the fourth nice property is that the syste
scales down. Since all of the tiles can access the so
east-most DRAMs, we can build a single DRAM syste
by placing the DRAM on the southeast tile.

We also can conveniently place the interrupt noti
cation on one of the southeast links. This black box w
send a message to a tile informing it that an interrupt h
occurred. The tile can then communicate with th
device, possibly but not necessarily in a memor
mapped fashion. Additionally, DMA ports can be cre
ated. A device would be hooked up to these ports, a
would stream data through the dynamic network into t
DRAMs, and visa versa. Logically, the DMA port is jus
like a client tile. I do not expect that we will be imple
menting this feature in the prototype.

Finally, this configuration does not require that th
devices have their own dynamic switches. They w
merely inject their messages onto the pins, with the c
rect headers, and the routes will happen appropriat
This means that the edges of the network are not stric
wormhole routed. However, in terms of the wormho
routing, these I/O pins look more like another conne
tion to the processor than an actually link to the n
work. Furthermore, the logical network remain

High Priority Memory Network Protocol

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Requests

Replies

DRAM

DRAM

DRAM

DRAM

Device

Interrupts

Dynamic

DMA port

DMA port
43

be

r
. To
ess
the
is

se
hed
A

-
la-

 the
fe

tra
of

in
o
ry,

e
i-
’s

-
l.”
to
ed
-

r
, it
m
rts

n-
d-
e

s

partitioned because requests are on the outbound links
and the replies are inbound.

8.7 PROBLEMS WITH I/O ADDRESSING

One of the issues with adding I/O devices to the
periphery of the dynamic network is the issue of
addressing. When the user sends a message, they first
inject the destination tile number (the “absolute
address”), which is converted into a relative X and Y
distance. When we add I/O devices to the periphery, we
suddenly need to include them in the absolute name
space.

However, with the addition of the I/O nodes, the X
and Y dimensions of the network are no longer powers
of two. This means that it will be costly to convert from
an absolute address to a relative X and Y distance when
the message is sent.

Additionally, if we place devices on the left or top
of the chip, the absolute addresses of the tiles will no
longer start at 0. If we place devices on the left or right,
the tile numbers will no longer be consecutive. For pro-
grams whose tiles use the dynamic network to commu-
nicate, this makes mapping a hash key to a tile costly.

Finally, I/O addressing has a problem because of
dimension ordered routing. Because dimension ordered
routing routes X, then Y, devices on the left and the right
of the chip can only be accessed by tiles that are on the
same row, unless there is an extra row of network that
links all of the devices together.

8.8 THE “FUNNY BITS”

All of these problems could be solved by only plac-
ing devices on the bottom of the chip.

However, the “funny bits” solution which I propose
allows us full flexibility in the placement of I/O devices,
and gives us a unique name space.

The “funny bit” concept is simple. An absolute
address still has a tile number. However, the four highest
order bits of the address, previously unused, are
reserved for the funny bits. These bits are preserved
upon translation of the absolute address to relative
address. These funny bits, labelled North, South, East,
and West, specify a final route that should be done after
all dimensioned ordered routing has occurred. These
funny bits can only be used to route off the side of the
chip. It is a programmer error to use the funny bits when

to send to a tile. No more than one funny bit should
set at a time.

With this mechanism, the I/O devices no longe
need to be mapped into the absolute address space
route to an I/O device, one merely specifies the addr
of the tile that the I/O device is attached to, and sets
bit corresponding to the direction that the device
located at relative to the tile.

The funny bits mechanism is deadlock free becau
once again, it acts more like another processor attac
to the dynamic network than a link on the network.
more rigorous proof will follow in subsequent theses.

An alternative to the funny bits solution is to pro
vide the user with the ability to send messages with re
tive addresses, and to add extra network columns to
edge of the tile. This solution was used by the Alewi
project [Kubiatowicz98]. Although the first half of this
alternative seemed palatable, the idea of adding ex
hardware (and violating the replicated uniform nature
the raw chip) was not.

8.9 SUMMARY

In this section, I discussed a number of ways
which the Raw chip could deadlock. I introduced tw
solutions, deadlock avoidance and deadlock recove
which can be used to solve this problem.

I continued by re-examining the requirements of th
dynamic network for Raw. I showed that a pair of log
cal dynamic networks was an elegant solution for Raw
dynamic needs.

The high-priority network uses a deadlock-avoid
ance scheme that I labelled the “Matt Frank protoco
Any users of this network must obey this protocol
ensure deadlock-free behaviour. This network is us
for memory, interrupt, I/O, DMA and other communica
tions that go off-chip.

The high-priority network is particularly elegant fo
memory accesses because, with minimal resources
provides four properties: First, the memory syste
scales down. Second, the high-priority network suppo
partner memories, which means that each tile is
assigned to a particular DRAM. By doing the assig
ments intelligently, the compiler can divide the ban
width of the high-priority network evenly among th
tiles. Third, this system allows the existence of a mem-
ory dropbox, a DRAM which all of the tiles can acces
directly. Lastly, it allows the existence of a memory
44

maintainer; which means at least one tile can access all
of the memories.

The low-priority network uses deadlock recovery
and has maximum protocol flexibility and places few
restrictions on the user. The deadlock recovery mecha-
nism makes use of the high-priority network to gain
access to copious amounts of memory (external
DRAM). This memory can be used to store both the
instructions and the data of the deadlock recovery mech-
anism, so that precious on-chip SRAM does not need to
be reserved for rare deadlock events.

This deadlock solution is effective because it pre-
vents deadlock and provides good performance with lit-
tle implementation cost. Additionally, it provides an
abstraction layer on the usage of the dynamic network
that allows us to ignore the interactions of the various
clients of the dynamic network.

Finally, I introduced the concept of “funny bits”
which provides us with some advantages in tile address-
ing. It also allows all of the tiles to access the I/O
devices without adding extra network columns.

With an effective solution to the deadlock problem,
we can breath easier.
45

di-
et-
ic
e

 the
-

re
y.
are
e

ting
ite

the
re
ft-
n a
as

ge,
on-
is
he
en
res
n-
ge

d in
ext
ay
not

i-

ter-
that
-

e
use
h.
9 MULTITASKING
9.0 MULTITASKING

One of the many big headaches in processor design
is enabling multitasking -- the running of several pro-
cesses at the same time. This is not a major goal of the
Raw project. For instance, we do not provide a method
to protect errant processes from modify memory or
abusing I/O devices. It is nonetheless important to make
sure that our architectural constructs are not creating
any intractable problems. Raw could support both spa-
tial and temporal multitasking.

In spatial multitasking, two tiles could be running
separate processes at the same time. However, a mecha-
nism would have to be put in place to prevent spurious
dynamic messages from obstructing or confusing unre-
lated processes. A special operating system tile could be
used to facilitate communication between processes.

9.1 CONTEXT SWITCHING

Temporal multitasking creates problems because it
requires that we be able to snapshot the state of a Raw
processor at an unknown location in the program and
restore it back later. Such a context switch would pre-
sumably be initiated by a dynamic message on the high
priority network. Saving the state in the main processor
would be much like saving the state of a typical micro-
processor. Saving the state of the switch involves freez-
ing the switch, and loading in a new program which
drain all of the switch’s state into the processor.

The dynamic and static networks present more of a
challenge. In the case of the static network, we can
freeze the switches, and then inspect the count of values
in the input buffers. We can change the PC of the switch
to a program which routes all of the values into the pro-
cessor, and then out to the southeast shared DRAM over
the high-priority dynamic network. Upon return from
interrupt, that tile’s neighbor can route the elements
back into the SIBs. Unfortunately, this leaves no
recourse for tiles on the edges of the chip, which do not
have neighbor tiles. This issue will be dealt with later in
the section.

The dynamic network is somewhat easier. In this
case, we can assume command of all of the tiles so that
we know that no new messages are being sent. Then we
can have all of the tiles poll and drain the messages out
of the network. The tiles can examine the buffer counts
on the dynamic network SIBs to know when they are

done. Since they can’t use the dynamic network to in
cate when they are done (they’re trying to drain the n
work!) they can use the common DRAM, or the stat
network to do so. Upon return, it will be as if the til
was recovering from deadlock; the DYNAMIC REFILL
mechanism would be used. For messages that are in
commit buffer, but have not been LAUNCHed, we pro
vide a mechanism to drain the commit buffer.

9.1.1 Context switches and I/O Atomicity

One of the major issues with exposing the hardwa
I/O devices to the compiler and user is I/O atomicit
This is a problem that occurs any time resources
multiplexed between clients. For the most part, w
assume that a higher-order process (like the opera
system) is ensuring that two processes don’t try to wr
the same file or program the same sound card.

However, since we are exposing the hardware to
software, there is another problem. Actions which we
once performed in hardware atomically are now in so
ware, and are suddenly not atomic. For instance, o
request to a DRAM, getting interrupted before one h
read the last word of the reply could be disastrous.

The user may be in the middle of issuing a messa
but suddenly get swapped out due to some sort of c
text switch or program exit. The next program that
running may initiate a new request with the device. T
hardware device will now be thoroughly confused. Ev
if we are fortunate enough that it just resets and igno
the message, the programs will probably blithely co
tinue, having lost (or gained) some bogus messa
words. I call this the I/O Message Atomicity problem.

There is also the issue that a device may succee
issuing a request on one of the networks, but cont
switch before it gets the reply. The new program m
then receive mysterious messages that were
intended for it. I call this the I/O Request Atomicity
problem.

The solution to this problem is to impose a disc
pline upon the users of the I/O devices.

9.1.1.1 Message atomicity on the static network

To issue a message, enclose the request in an in
rupt disable/enable pair. The user must guarantee
this action will cause the tile to stall with interrupts dis
abled for at most a small, bounded period of time.

This may entail that the tile synchronize with th
switches to make sure that they are not blocked beca
they are waiting for an unrelated word to come throug
46

It also means that the message size must not over-
flow the buffer capacity on the way to the I/O node, or if
it does, the I/O device must have the property that it
sinks all messages after a small period of time.

9.1.1.2 Message atomicity on the dynamic
network

If the commit buffer method is used for the high-or-
low priority dynamic networks, then the message send is
atomic. If the commit buffer method is not used, then
again, interrupts must be disabled, as for the static net-
work. Again, the compiler must guarantee that it will
not block indefinitely with interrupts turned off. It must
also guarantee that sending the message will not result
in a deadlock.

9.1.1.3 Request Atomicity

Request atomicity is more difficult, because it may
not feasible to disable interrupts, especially if the time
between a request and a reply is long.

However, for memory accesses, it is reasonable to
turn off interrupts until the reply is received, because we
know this will occur in a relatively small amount of
time. After all, standard microprocessors ignore inter-
rupts when they are stalled on a memory access.

For devices with longer latencies (like disk drives!),
it is not appropriate to turn off interrupts. In this case,
we really are in the domain of the operating system. One
or more tiles should be dedicated to the operating sys-
tem. These tiles will never be context switched. The
disk request can then be proxied through this OS tile.
Thus, the reply will go to the OS tile, instead of the
potentially swapped out user tile. The OS tile can then
arrange to have the data transferred to the user’s DRAM
space (possibly through the DMA port), and potentially
wake up the user tile so it can operate on the data.

9.2 SUMMARY

In this section, I showed a strategy which enables
us to expose the raw hardware devices of the machine to
the user and still support multi-tasking context switches.
This method is deadlock free, and allows the user to
keep the hardware in a consistent state in the face of
context switches.
47

rk.
r,
the
e
-

ys-

e
gh

k,
nly,
at
e
to
10 THE MULTICHIP
PROTOTYPE
10.0 THE RAW FABRIC / SUPERCOMPUTER

The implementation of the larger Raw prototype
creates a number of interesting challenges, mostly hav-
ing due to with the I/O requirements of such a system.
Ideally, we would be able to expose all of the networks
of the peripheral tiles to the pins, so that they could con-
nect to an identical neighbor chip, creating the image of
a larger Raw chip. Just as we tiled Raw tiles, we will tile
Raw chips! To the programmer, the machine would look
exactly like a 256 tile Raw chip. However, some of the
network hops may have an extra cycle of latency.

10.1 PIN COUNT PROBLEMS AND SOLUTIONS

Our package has a whopping 1124 signal pins. This
in itself is a bit of a problem, because building a board
with 16 such chips is non-trivial. Fortunately, our mesh
topology makes building such a board easier. Addition-
ally, the possibility of ground bounce due to simulta-
neously switching pins is sobering.

For the ground bounce problem, we have a poten-
tial solution which reduces the number of pins that
switch simultaneously. It involves sending the negation
of a signal vector in the event that more than half of the
pins would change values. Unfortunately, this technique
requires an extra pin for every thirty-two pins, exacer-
bating our pin count problem.

Unfortunately, 1124 pins is also not enough to
expose all of the peripheral networks to the edges of the
chip so that the chips can be composed to create the illu-
sion of one large tile. The table entitled “Pin Count -
ideal” shows the required number of pins. In order to
build the Raw Fabric, we needed to find a way to reduce
the pin usage.

We explored a number of options:

10.1.1 Expose only the static network

One option was to expose only the static netwo
Originally, we had opted for this alternative. Howeve
over time, we became more and more aware of
importance of having a dynamic I/O interface to th
external world. This is particularly important for sup
porting caching. Additionally, not supporting the
dynamic network means that many of our software s
tems would not work on the larger system.

10.1.2 Remove a subset of the network links

For the static network, this is not a problem -- th
compiler can route the elements accordingly throu
network to avoid the dead links.

For a dimension ordered wormhole routed networ
a sparse mesh created excruciating problems. Sudde
we have to route around the “holes”, which means th
the sophistication of the dynamic network would hav
to increase drastically. It would be increasingly hard
remain deadlock free.

TABLE 3. Pin Count - ideal

Purpose Count

Testing, Clocks, Resets, PSROs 10

Dynamic Network Data 32x2x16

Dynamic Network Thanks Pins 2x2x16

Dynamic Network Valid Pins 1x2x16

Dynamic Network Mux Pins 1x2x16

Static Network Data 32x2x16

Static Network Thanks Pins 1x2x16

Static Network Valid Pins 1x2x16

Total 70*32+10

= 2250

TABLE 4. Pin Count - with muxing

Purpose Count

Testing, Clocks, Resets, PSROs 10

Network Data 32x2x16

Dynamic Network Thanks 2x2x16

Dynamic Network Valid 1x2x16

Mux Pins 2x2x16

Static Network Thanks 1x2x16

TABLE 3. Pin Count - ideal

Purpose Count
48

ot

ive
 of
e
be
ill
IB

 the

16
if
,
on

ed
e
nd
re
he
t
or
ler
ll
2],
es
10.1.3 Do some more muxing

The alternative is to retain all of the logical links
and mux the data pins. Essentially, the static, dynamic
and high-priority dynamic networks all become logical
channels. We must add some control pins which select
between the static, dynamic and high-priority dynamic
networks. See the Table entitled “Pin Count - with mux-
ing.”

10.1.4 Do some encoding

The next option is to encoding the control signals:

This encoding combines the mux and valid bits.
Individual thanks lines are still required.

At this point, we are only 70 pins over budget. At
this point, we can:

10.1.5 Pray for more pins

The fates at IBM may smile upon us and provide us

with a package with even better pin counts. We’re n
too far off.

10.1.6 Find a practical but ugly solution

As a last resort, there are some skanky but effect
techniques that we can use. We can multiplex the pins
two adjacent tiles, creating a lower bandwidth strip
across the Raw chip. Since these signals will not
coming from the same area of the chip, the latency w
probably increase (and thus, the corresponding S
buffers). Or, we can reduce the data sizes of some of
paths to 16 bits and take two cycles to send a word.

More cleverly, we can send the value over as a
bit signed number, along with a bit which indicates
the value fit entirely within the 16 bit range. If it did not
the other 16 bits of the number would be transmitted
the next cycle.

10.2 SUMMARY

Because of the architectural headaches involv
with exposed only parts of the on chip networks, w
have decided to use a variety of muxing, encoding a
praying to solve our pin limitations. These problems a
however, just the beginning of the problems that t
multi-chip Raw system of 2007 would encounter. A
that time, barring advances in optical interconnects
optical interconnects, there will have an even smal
ratio of pins to tiles. At that time, the developers wi
have to derive more clever dynamic networks [Glass9
or will have to make heavy use of the techniqu
described in the “skanky solution” category.

Static Network Valid Pins 1x2x16

Total 39*32+10

= 1258

TABLE 5. States -- encoded

State Value

No value 0

Static Value 1

High Priority Dynamic 2

Low Priority Dynamic 3

TABLE 6. Pin Count - with muxing and encoding

Purpose Count

Testing, Clocks, Resets, PSROs 10

Network Data 32x2x16

Dynamic Network Thanks 2x2x16

Encoded Mux Pins 2x2x16

Static Network Thanks 1x2x16

Total 37*32+10

= 1194

TABLE 4. Pin Count - with muxing

Purpose Count
49

e
ic
de
n-

te
r-

PS
ed

e

-
e

g

n

ri-
u-
e.
has
w.

].

 I
to
r a
11 CONCLUSIONS
11.0 CURRENT PROGRESS ON THE
PROTOTYPE

We are fully in the midst of the implementation
effort of the Raw prototype. I have written a C++ simu-
lator named btl, which corresponds exactly to the proto-
type processor that we are building. It accurately models
the processor on a cycle-by-cycle basis, at a rate of
about 8000 cycles per second for a 16 tile machine. My
pet multi-threaded, bytecode compiled extension lan-
guage, bC, allows the user to quickly prototype external
hardware devices with cycle accurate behaviour. The bC
environment provides a full-featured programmable
debugger which has proven very useful in finding bugs
in the compiler and architecture. I have also written a
variety of graphic visualization tools in bC which allow
the user to gain a qualitative feel of the behaviour of a
computation across the Raw chip. See the Appendages
entitled “Graphical Instruction Trace Example” and
“Graphical Switch Animation Example.” Running
wordcount reveals that the simulator, extension lan-
guage, debugger and user interface code total 30,029
lines of.s,.cc,.c,.bc, and.h files. This does not
include the 20,000 lines of external code that I inte-
grated in.

(More along the lines of anti-progress, Jon Babb
and I reverse-engineered the Yahoo chess protocol, and
developed a chess robot which became quite a sensation
on Yahoo. To date, they still believe that the Chesspet is
a Russian International Master whose laconic disposi-
tion can be attributed to his lack of English. The chess-
pet is 1831 lines of Java, and uses Crafty as its chess
engine. It often responds with a chess move before the
electron gun has refreshed the screen with the oppo-
nent’s most recent move.)

Rajeev Barua and Walter Lee’s parallelizing com-
piler, RawCC, has been in development for about two
years. It compiles a variety of benchmarks to the Raw
simulators. There are several ISCA and ASPLOS papers
that describe these efforts.

Matt Frank and I have ported a version of GCC for
use on serial and operating system code. It uses inline
macros to access the network ports.

Ben Greenwald has ported the GNU binutils to sup-
port Raw binaries.

Jason Kim, Sam Larsen, Albert Ma, and I hav
written synthesizeable verilog for the static and dynam
networks, and the processors. It runs our current co
base, but does not yet implement all of the interrupt ha
dling and deadlock recovery schemes.

Our testing effort is just beginning. We have Krs
Asanovic’s automatic test vector generator, called To
ture, which generates random test programs for MI
processors. We intend to extend it to exert the add
functionality of the Raw tile.

We also have plans to emulate the Raw verilog. W
have a IKOS logic emulator for this purpose.

Jason Kim and I have attended IBM’s ASIC train
ing class in Burlington, VT. We expect to attend th
Static Timing classes later in the year.

A board for the Raw handheld device is bein
developed by Jason Miller.

This document will form the kernel of the desig
specification for the Raw prototype.

11.1 PRELIMINARY RESULTS

We have used the Raw compiler to compile a va
ety of applications to the Raw simulator, which is acc
rate to within %10 of the actual Raw hardwar
However, in both the base and parallel case, the tile
unlimited local SRAM. Results are summarized belo

More information on these results is given in [Barua99

Mark Stephenson, Albert Ma, Sam Larsen, and
have all written a variety of hand-coded applications
gain an idea of the upper bound on performance fo

TABLE 7. Preliminary Results - 16 tiles

Benchmark

Speedup
versus one
tile

Cholesky 10.30

Matrix Mul 12.20

Tomcatv 9.91

Vpenta 10.59

Adpcm-encode 1.26

SHA 1.44

MPEG-kernel 4.48

Moldyn 4.48

Unstructured 5.34
50

Raw architecture. Our applications have included
median filter, DES, software radio, and MPEG encode.
My hand-coded application, median filter, has 9 sepa-
rate interlocking pipeline programs, running on 128
tiles, and attains a 57x speedup over a single issue pro-
cessor, compared to the 4x speedup that a hand-coded
dual-issue Pentium with MMX attains. Our hope is that
the Raw supercomputer, with 256 MIPS tiles, will
enable us to attain similarly outrageous speedup num-
bers.

11.2 EXIT

In this thesis, I have traced the design decisions that
we have made along the journey to creating the first
Raw prototype. I detail how the architecture was born
from our experience with FPGA computing. I familiar-
ize the reader with Raw by summarizing the program-
mer’s viewpoint of the current design. I motivate our
decision to build a prototype. I explain the design deci-
sions we made in the implementation of the static and
dynamic networks, the processor, and the prototype sys-
tems. I finalize by showing some results that were gen-
erated by our compiler and run on our simulator.

The Raw prototype is well on its way to becoming a
reality. With many of the key design decisions deter-
mined, we now have a solid basis for finalizing the
implementation of the chip. The fabrication of the chip
and the two systems will aid us in exploring the applica-
tion space for which Raw processors are well suited. It
will also allow us to evaluate our design and prove that
Raw is, indeed, a realizable architecture.
51

11.3 REFERENCES

J.L. Hennessey, “The Future of Systems Research,”
IEEE Computer Magazine, August 1999. pp. 27-33.

D. L. Tennenhouse and V. G. Bose, “SpectrumWare -
A Software-Oriented Approach to Wireless Signal
Processing,” ACM Mobile Computing and Networking
95, Berkeley, CA, November 1995.

R. Lee, “Subword Parallelism with MAX- 2” , IEEE
Micro, Volume 16 Number 4, August 1996, pp. 51-59.

 J. Babb et al. “The RAW Benchmark Suite: Compu-
tation Structures for General Purpose Computing,”
IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 1997.

Agarwal et al. “The MIT Alewife Machine: Architec-
ture and Performance,” Proceedings of ISCA ‘95,
Italy, June, 1995.

Waingold et al. “Baring it all to Software: Raw
Machines,” IEEE Computer, September 1997, pp. 86-
93.

Waingold et al. “Baring it all to Software: Raw
Machines,” MIT/LCS Technical Report TR-709, March
1997.

Walter Lee et al. “Space-Time Scheduling of Instruc-
tion-Level Parallelism on a Raw Machine,” Proceed-
ings of ASPLOS-VIII, San Jose, CA, October 1998.

R. Barua et al. “Maps: A Compiler Managed Memory
System for Raw Machines,” Proceedings of the
Twenty-Sixth International Symposium on Computer
Architecture (ISCA), Atlanta, GA, June, 1999.

T. Gross. “A Retrospective on the Warp Machines,”
25 Years of the International Symposia on Computer
Architecture, Selected Papers. 25th Anniversary Issue.
1998. pp 45-47.

J. Smith. “Decoupled Access/Execute Computer
Architectures,” 25 Years of the International Symposia
on Computer Architecture, Selected Papers. 25th Anni-
versary Issue. 1998. pp 231-238. (Originally in ISCA 9)

W. J. Dally. “The torus routing chip,” Journal of Dis-
tributed Computing, vol. 1, no. 3, pp. 187-196, 1986.

J. Hennessey, and D. Patterson “Computer Architec-
ture: a Quantitative Approach (2nd Ed.)”, Morgan
Kauffman Publishers, San Francisco, CA, 1996.

M. Zhang. “Software Floating-Point Computation on

Parallel Machines,” Master’s Thesis, Massachusetts
Institute of Technology, 1999.

S. Oberman. “Design Issues in High Performance
Floating Point Arithmetic Units,” Ph.D. Dissertation,
Stanford University, December 1996.

E. Berlekamp, J. Conway, R. Guy, “Winning Ways for
Your Mathematical Plays,” vol. 2, chapter 25, Aca-
demic Press, New York, 1982.

John D. Kubiatowicz. “Integrated Shared-Memory
and Message-Passing Communication in the Alewife
Multiprocessor,” Ph.D. thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering
and Computer Science, February 1998.

C. Moritz et al. “Hot Pages: Software Caching for
Raw Microprocessors,” MIT CAG Technical Report,
Aug 1999.

Fred Chong et al. “Remote Queues: Exposing Mes-
sage Queues for Optimization and Atomicity,” Sym-
posium on Parallel Algorithms and Architecture (SPAA)
Santa Barbara, July 1995.

K. Mackenzie et al. “Exploiting Two-Case Delivery
for Fast Protected Messaging.” Proceedings of 4th
International Symposium on High Performance Com-
puter Architecture Feb. 1998.

C. J. Glass et al. “The Turn Model for Adaptive Rout-
ing,” 25 Years of the International Symposia on Com-
puter Architecture, Selected Papers. 25th Anniversary
Issue. 1998. pp 441-450. (Originally in ISCA 19)
52

12 APPENDAGES

Packaging list:

Raw pipeline diagrams

Graphical Instruction Trace Example

Graphical Switch Animation Example

Raw user’s manual
53

This page intended to be replaced by printed color schematic.
54

55

This page is intended to be replaced by a printed color copy of a schematic.

56

This page blank, unless filled in by a printed color copy of a schematic.

Graphical Instruction Trace Example

A section of a graphical instruction trace of median filter running on a 128 tile raw processor.

RED: proc blocked on $csti
BLUE: tile blocked on $csto
WHITE: tile doing useful work
BLACK: tile halted

Each horizontal stripe is the status of a tile processor over ~500 cycles.
The graphic has been clipped to show only 80-odd tiles.

58

Graphical Switch Animation Example

Shows the Data Values Travelling through
the Static Switches on a 14x8 Raw processor on each cycle.
Each group of nine squares corresponds to a switch. The
west square corresponds to the contents of the $cWi SIB, etc.
The center square is the contents of the $csto SIB.

Massachusetts Institute of Technology
Laboratory of Computer Science

RAW Prototype Chip
User’s Manual

Version 1.2
October 6, 1999 7:23 pm
59

.)
Foreword
This document is the ISA manual for the Raw prototype processor. Unlike other Raw documents,
it does not contain any information on design decisions, rather it is intended to provide all of the
information that a software person would need in order to program a Raw processor. This docu-
ment assumes a familiarity with the MIPS architecture. If something is unspecified, one should
assume that it is exactly the same as a MIPS R2000.
(See http://www.mips.com/publications/index.html, “R4000 Microprocessor User’s Manual”
60

ich is

, then
eference,

f the
 the
ws:

d.
Processor
Each Raw Processor looks very much like a MIPS R2000.

The follow items are different:

0. Registers 24, 25, and 26 are used to address network ports and are not available as GPRs.
1. Floating point operations use the same register file as integer operations.
2. Floating point compares have a destination register instead of setting a flag.
3. The floating point branches, BC1T and BC1F are removed, since the integer versions have equivalent functionality.
4. Instead of a single multiply instruction, there are three low-latency instructions, MULH, MULHU, and MULLO
which place their results in a GPR instead of HI/LO.
5. The pipeline is six stage pipeline, with FETCH, RF, EXE, MEM, FPU and WB stages.
6. Floating point divide uses the HI/LO registers instead of a destination register.
7. The instruction set, the timings and the encodings are slightly different. The following section lists all of the
instructions available in the processor. There are some omissions and some additions. For actual descriptions of the
standard computation instructions, please refer to the MIPS manual. The non-standard raw instructions (marked with
823) will be described later in this document.
8. A tile has no cache and can address 8K - 16k words of local data memory.
9. cvt.w does round-to-nearest even rounding (instead of a “current rounding mode”). the trunc operation (wh
the only one used by GCC) can be used to round-to-zero.
10. All floating point operations are single precision.
11. The Raw prototype is a LITTLE ENDIAN processor. In other words, if there is a word stored at address P
the low order byte is stored at address P, and the most significant byte is stored at address P+3. (Sparc, for r
is big endian.)
12. Each instruction has one bit reserved in the encoding, called the S-bit. The S-bit determines if the result o
instruction is written to static switch output port, in addition to the register file. If the instruction has no output,
behaviour of the S-bit is undefined. The S-bit is set by using an exclamation point with the instruction, as follo

and! $3,$2,$0 # writes to static switch and r3

13. All multi-cycle non-branch operations (loads, multiplies, divides) on the raw processor are fully interlocke
61

Register Conventions

 The following register convention map has been modified for Raw from page D-2 of the MIPS
manual). Various software systems by the raw group may have more restrictions on the registers.

Table 1: Register Conventions

reg alias Use

$0 Always has value zero.

$1 $at Reserved for assembler

$2..$3 Used for expression evaluation and to hold procedure return values.

$4..$7 Used to pass first 4 words of actual arguments. Not preserved across
procedure calls.

$8..$15 Temporaries. Not preserved across procedure calls

$16..$23 Callee saved registers.

$24 $csti Static network input port.

$25 $cdn[i/o]

$26 $cst[i/o]2

$27 Temporary. Not preserved across procedure calls.

$28 $gp Global pointer.

$29 $sp Stack pointer.

$30 A callee saved register.

$31 The link register.
62

Sample Instruction Listing:

1 10 11

31

5 5

25 21 20 16 15 0

base rtRAW
Offset

165

2627

s

1

LDV ldv rt, base(offs)
3

1

occupancyencoding

latencyusageopcode

823
instruction behaviour is different than MIPS version
63

Integer Computation Instructions

0 1 0 0 1

31

5 5 5

25 21 20 16 15 0

rs rtADDIU

2627

s

1 16

immediateADDIU ADDIU rt, rs, imm 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 0 0 1

ADDUSPECIAL

2627

s

1

ADDU ADDU rd, rs, rt 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 10 0

ANDSPECIAL

2627

s

1

AND rd, rs, rtAND 1

0 1 1 0 0

31

5 5 5

25 21 20 16

rs rtANDI

2627

s

1 16

15 0

immediateANDI ANDI rs, rt, imm 1

0 0 1 0 0

31

5 5 5

25 21 20 16

rs rtBEQ

2627

s

1 16

15 0

offsetBEQ BEQ rs, rt, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BGEZREGIMM

2627

s

1 16

15 0

offset
0 0 0 1 0BGEZ BGEZ rs, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BGEZALREGIMM

2627

s

1 16

15 0

offset
1 0 0 1 0BGEZAL BGEZAL rs, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BGTZREGIMM

2627

s

1 16

15 0

offset
0 0 0 1 1BGTZ BGTZ rs, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BLEZREGIMM

2627

s

1 16

15 0

offset
0 0 0 0 1BLEZ BLEZ rs, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BLTZREGIMM

2627

s

1 16

15 0

offset
0 0 0 0 0BLTZ BLTZ rs, offs 2d

0 0 0 0 1

31

5 5 5

25 21 20 16

rs BLTZALREGIMM

2627

s

1 16

15 0

offset
1 0 0 0 0BLTZAL BLTZAL rs, offs 2d
64

0 0 1 0 1

31

5 5 5

25 21 20 16

rs rtBNE

2627

s

1 16

15 0

offsetBNE BNE rs, rt, offs 2d

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 1 0

DIVSPECIAL

2627

s

1 5

15 11

0 0 0 0 0DIV DIV rs, rt 36?

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 1 1

DIVUSPECIAL

2627

s

1 5

15 11

0 0 0 0 0 DIVU rs, rtDIVU 36?

J 2d
0 0 0 0 1

31

5 5 5

25 21 20 16

JREGIMM

2627

s

1 16

15 0

offset
1 1 0 0 0

J offs0 0 0 0 0

JAL 2d
0 0 0 0 1

31

5 5 5

25 21 20 16

JALREGIMM

2627

s

1 16

15 0

offset
1 1 0 0 1

JAL offs0 0 0 0 0

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1

JALRSPECIAL

2627

s

1

JALR JALR rs 2d

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0

JRSPECIAL

2627

s

1

JR JR rs 2d

1 0 0 0 0

31

5 5

25 21 20 16 15 0

base rtLB
Offset

165

2627

s

1

LB LB rt, base(offs)
3

1

1 0 1 0 0

31

5 5

25 21 20 16 15 0

base rtLBU
Offset

165

2627

s

1

LBU LBU rt, base(offs)
3

1

1 0 0 0 1

31

5 5

25 21 20 16 15 0

base rtLH
Offset

165

2627

s

1

LH LH rt, base(offs)
3

1

1 0 1 0 1

31

5 5

25 21 20 16 15 0

base rtLHU
Offset

165

2627

s

1

LHU LHU rt, base(offs)
3

1

1 0 0 1 1

31

5 5

25 21 20 16 15 0

base rtLW
Offset

165

2627

s

1

LW LW rt, base(offs)
2

1

65

The contents of register rs and rt are multiplied as signed values to obtain a 64-bit result.
The high 32 bits of this result is stored into register rd.

Operation: [rd] ([rs]*s[rt])63..32

The contents of register rs and rt are multiplied as unsigned values to obtain a 64-bit result.
The high 32 bits of this result is stored into register rd.
Operation: [rd] ([rs]*u[rt])63..32

The contents of register rs and rt are multiplied as signed values to obtain a 64-bit result.
The low 32 bits of this result is stored into register rd.

Operation:[rd] ([rs]*[rt])31..0

0 1 1 1 1

31

5 5 5

25 21 20 16 15

0 rtLUI

2627

s

1

0

16

immediate LUI rt, immLUI 1

0 0 0 0 0

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 rd 0 0 0 0 0
0 1 0 0 0 0

MFHISPECIAL

2627

s

1

MFHI MFHI rd 1

0 0 0 0 0

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 rd 0 0 0 0 0
0 1 0 0 1 0

MFLOSPECIAL

2627

s

1

MFLO MFLO rd 1

0 0 0 0 0

31

5 5 15 6

25 21 20 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1

MTHISPECIAL

2627

s

1

MTHI MTHI rs 1

0 0 0 0 0

31

5 5 15 6

25 21 20 6 5 0

rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1

MTLOSPECIAL

2627

s

1

MTLO MTLO rs 1

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
1 0 1 0 0 0

MULHSPECIAL

2627

s

1 5

15 11

rd MULH rd, rs, rtMULH 2

823

←

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
1 0 1 0 0 1
MULHUSPECIAL

2627

s

1 5

15 11

MULHU MULHU rd, rs, rtrd 2

823

←

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 0 0
MULLOSPECIAL

2627

s

1 5

15 11

MULLO MULLO rd, rs, rtrd 2

823

←

66

The contents of register rs and rt are multiplied as unsigned values to obtain a 64-bit result.
The low 32 bits of this result is stored into register rd.
Operation: [rd] ([rs]*u[rt])31..0

0 0 0 0 0

31

5 5 5 5 6

25 21 20 16 10 6 5 0

rs rt 0 0 0 0 0
0 1 1 0 0 1
MULLUSPECIAL

2627

s

1 5

15 11

MULLU MULLO rd, rs, rtrd 2

823

←

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 1 1

NORSPECIAL

2627

s

1

NOR NOR rd, rs, rt 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 0 1

ORSPECIAL

2627

s

1

OR OR rd, rs, rt 1

0 1 1 0 1

31

5 5 5

25 21 20 16

rs rtORI

2627

s

1 16

15 0

immediateORI ORI rt, rs, imm 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt sa
0 0 0 0 0 0

SLLSPECIAL

2627

s

1

SLL SLL rd, rt, sa0 0 0 0 0 1rd

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
0 0 0 1 0 0

SLLVSPECIAL

2627

s

1

SLLV SLLV rd, rt, rs 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 1 0 1 0

SLTSPECIAL

2627

s

1

SLT SLT rd, rs, rt 1

0 1 0 1 0

31

5 5 5 16

25 21 20 16 15 0

rs rt immediateSLTI

2627

s

1

SLTI SLTI rt, rs, imm 1

0 1 0 1 1

31

5 5 5 16

25 21 20 16 15 0

rs rt immediate
SLTIU

2627

s

1

SLTIU SLTIU rt, rs, imm 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 1 0 1 1

SLTUSPECIAL

2627

s

1

SLTU SLTU rd, rs, rt 1
67

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt rd sa
0 0 0 0 1 1

SRASPECIAL

2627

s

1

SRA SRA rd, rt,sa0 0 0 0 0 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd
0 0 0 1 1 1

SRAVSPECIAL

2627

s

1

SRAV SRAV rd, rt, rs0 0 0 0 0 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rt rd sa
0 0 0 0 1 0

SRLSPECIAL

2627

s

1

SRL SRL rd, rt, sa0 0 0 0 0 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd
0 0 0 1 1 0

SRLVSPECIAL

2627

s

1

SRLV SRLV rd, rt,rs0 0 0 0 0 1

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 0 1 1

SUBUSPECIAL

2627

s

1

SUBU SUBU rd, rs, rt 1

1 1 0 0 0

31

5 5

25 21 20 16 15 0

base rtSB
Offset

165

2627

s

1

SB 1SB rt, offset(base)

1 1 0 0 1

31

5 5

25 21 20 16 15 0

base rtSH
Offset

165

2627

s

1

SH 1SH rt, offset (base)

1 1 0 1 1

31

5 5

25 21 20 16 15 0

base rtSW
Offset

165

2627

s

1

SW rt, offset(base) 1SW

0 0 0 0 0

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd 0 0 0 0 0
1 0 0 1 1 0

XORSPECIAL

2627

s

1

XOR XOR rd, rs, rt 1

0 1 1 1 0

31

5 5 5

25 21 20 16

rs rtXORI

2627

s

1 16

15 0

immediateXORI XORI rt, rs, imm 1
68

Floating Point Computation Instructions

Description: Precisely like MIPS but the result is stored in rt, instead of a flags register.

Description: Precisely like MIPS but always uses round to nearest even rounding mode.

Description: Precisely like MIPS but the result is stored in the HI register, instead of a FPR.

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rt
0 0 0 1 0 1

ABSFPU

2627

s

1

ABS.s ABS.s rd, rs, rt
3

1
fmt

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 0 0

ADDFPU

2627

s

1

ADD.s ADD.s rd, rs, rt
3

1

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
1 1 x x x x

condFPU

2627

s

1

C.xx.s C.xx.s rd, rs, rt
3

1
823

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
1 0 0 0 0 0

CVT.SFPU

2627

s

1

CVT.s.w CVT.s.w rd, rt
3

1

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
1 0 0 1 0 0
CVT.W.sFPU

2627

s

1

CVT.w.s CVT.w.s rd, rt
3

1
823

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt fmt
0 0 0 0 1 1

DIV.sFPU

2627

s

1

DIV.s DIV.s rs, rt 10?0 0 0 0 0

823

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 1 0

MULT.sFPU

2627

s

1

MUL.s MUL.s rd, rs, rt
3

1

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0 rd fmt
0 0 0 1 1 1

NEG.sFPU

2627

s

1

NEG.s NEG.s rd, rs
3

1

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt rd fmt
0 0 0 0 0 1

SUB.sFPU

2627

s

1

SUB.s SUB.s rd, rs, rt
3

1

1 0 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rd fmt
0 0 1 1 0 1
TRUNC.w.sFPU

2627

s

1

TRUNC.w.s TRUNC.w.s rd, rt
3

1
0 0 0 0 0
69

Floating Point Compare Options

Table 2: Floating Point Comparison Condition (for c.xxx.s)

Predicate Relations(Results) Invalid operation
exception if
unorderedCond Mnemonic Definition Greater Than Less Than Equal Unordered

0 F False F F F F No

1 UN Unordered F F F T No

2 EQ Equal F F T F No

3 UEQ Unordered or Equal F F T T No

4 OLT Ordered Less Than F T F F No

5 ULT Onordered or Less Than F T F T No

6 OLE Ordered Less Than or Equal F T T F No

7 ULE Unordered or Less Than or
Equal

F T T T No

8 SF Signaling False F F F F Yes

9 NGLE Not Greater Than or Less
Than or Equal

F F F T Yes

10 SEQ Signaling Equal F F T F Yes

11 NGL Not Greater Than or Less
Than

F F T T Yes

12 LT Less Than F T F F Yes

13 NGE Not Greater Than or Equal F T F T Yes

14 LE Less Than or Equal F T T F Yes

15 NGT Not Greater Than F T T T Yes
70

Administrative Instructions

Returns from an interrupt, JUMPs through EPC.

Returns from an interrupt, JUMPs through ENPC, enables interrupts in EXECUTE stage.
Placed in delay slot of DRET instruction.

Launches a constructed dynamic message into the network. See Dynamic network section for more detail.

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The word at that
effective address in the instruction memory is loaded into register rt. Last two bits of the effective address must be
zero.

Operation: Addr ((offset15)16 || offset15..0) + [base]
 [rt] IMEM[Addr]

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The contents of rt
are stored at the effective address in the instruction memory.

Operation: Addr ((offset15)16 || offset15..0) + [base]
IMEM[Addr] [rt]

Loads a word from a status register. See “status and control register” table.

Operation: [rd] = SR[rs]

1 1 1 1 1

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

DRET COMM

2627

s

1

DRET DRET 10 0 0 0 0

823

1 1 1 1 1

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0

DRET2 COMM

2627

s

1

DRET2 DRET2 10 0 0 0 0

823

31

5 10 55 6

25 16 15 11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

DLNCH COMM

2627

s

1

DLNCH DLNCH 10 0 0 0 01 1 1 1 1
823

1 0 0 1 0

31

5 5

25 21 20 16 15 0

base rtILW
Offset

165

2627

s

1

ILW ILW rt, base(offs)
2

1
823

←
←

1 1 0 1 0

31

5 5

25 21 20 16 15 0

base rtISW
Offset

165

2627

s

1

ISW ISW rt, base(offs)
2

1
823

←
←

1 1 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs 0 0 0 0 0
0 1 0 0 0 0

MFSRCOMM

2627

s

1

MFSR 1rd MFSR rd,rs0 0 0 0 0

823

1 1 1 1 1

31

5 5 5 55 6

25 21 20 16 15 11 10 6 5 0

rs rt 0 0 0 0 0
0 1 0 0 0 1

MTSRCOMM

2627

s

1

MTSR 10 0 0 0 0 MTSR rt ,rs

823
71

 page.

 page.

o.

ents of
Loads a word into a control register, changing the behaviour of the Raw tile. See “status and control register”

Operation: SR[rt] = [rs]

Loads a word into a control register, changing the behaviour of the Raw tile. See “status and control register”

Operation: SR[rt] = 016 || imm

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The word at that
effective address in the switch memory is loaded into register rt. Last two bits of the effective address must be zer

Operation: Addr ((offset15)16 || offset15..0) + [base]

[rt] SWMEM[Addr]

The 16-bit offset is sign-extended and added to the contents of base to form the effective address. The contrt
are stored at the effective address in the switch memory.

Operation: Addr ((offset15)16 || offset15..0) + [base]
SWMEM[Addr] [rt]

0 1 0 0 0

31

5 5 5

25 21 20 16 15 11 10 6 5 0

0 0 0 0 0 rtMTSRi

2627

s

1

MTSRi 1MTSRi rt ,imm

823 16

immediate

1 0 1 1 0

31

5 5

25 21 20 16 15 0

base rtSWLW Offset

165

2627

s

1

SWLW SWLW rt, base(ofs)
3

1
823

←
←

11 1 1 0

31

5 5

25 21 20 16 15 0

base rtSWSW Offset

165

2627

s

1

SWSW SWSW rt, base(ofs)
3

1
823

←
←

72

Opcode Map
This map is for the first five bits of the instruction (the “opcode” field.)

Special Map
This map is for the last six bits of the instruction when opcode == “SPECIAL”.

REGIMM Map
This map is for the rt field of the instruction when opcode == “REGIMM.”

instruction[29..27]

000 001 010 011 100 101 110 111

00 SPECIAL REGIMM BEQ BNE

01 MTSRI ADDIU SLTI SLTIU ANDI ORI XORI LUI

10 LB LH ILW LW LBU LHU SWLW FPU

11 SB SH ISW SW SWSW COM

instruction[2..0]

000 001 010 011 100 101 110 111

000 SLL SRL SRA SLLV SRLV SRAV

001 JR JALR

010 MFHI MTHI MFLO MTLO

011 MULL MULLU DIV DIVU

100 ADDU SUBU AND OR XOR NOR

101 MULH MULHU SLT SLTU

110

111

instruction[18..16]

000 001 010 011 100 101 110 111

00 BLTZ BLEZ BGEZ BGTZ

01

10 BLTZAL BGEZAL

11 J JAL
73

FPU Function map
This opcode map is for the last six bits of the instruction when the opcode field is FPU.

COM Function map
This opcode map is for the last six bits of the instruction when the opcode field is COM.

instruction[2..0]

000 001 010 011 100 101 110 111

000 ADD.s SUB.s MUL.s DIV.s SQRT.s ? ABS.s NEG.s

001 TRUNC.s

010

011

100 CVT.S CVT.W

101

110 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

instruction[2..0]

000 001 010 011 100 101 110 111

000 DRET DLNCH

001 DRET2

010 MFSR MTSR

011

100

101

110

111
74

ver
Status and Control Registers (very preliminary)

Status Register
Name

Purpose

0 FREEZE RW Switch is frozen (1, 0)

1 SWBUF1 R Number of elements in switch buffers (NNN EEE SSS WWW III OOO)

2 SWBUF2 R Number of elements in switch buffers pair 2 (nnn eee sss www iii 000)

3

4 SW_PC RW Switch’s PC (write first)

5 SW_NPC RW Switch’s NPC (write second)

6

7 WATCH_VAL RW 32 bit Timer count up 1 per cycle

8 WATCH_MAX RW value to reset/interrupt at

9 WATCH_SET RW mode for watchdog counter (S D I)

10 CYCLE_HI R number of cycles from bootup (hi 32 bits) (read first)

11 CYCLE_LO R number of cycles from bootup (low 32 bits) (read second, subtract 1)

12

13 DR_VAL RW Dynamic refill value

14 DYNREFILL RW Whether dynamic refill interrupt is turned on (1,0)

15

16 D_AVAIL R Data Available on Dynamic network?

17

18 DYNBUF R Number of sitting elements in dynamic network queue not triggered

19

20 EPC RW PC where exception occurred

21 ENPC RW NPC where exception occurred

22 FPSR RW Floating Point Status Register (V Z O U I)
(Invalid, Div by Zero, Overflow, underflow, Inexact Operation)
These bits are sticky, ie a floating point operation can only set the bits, ne
clear. However, the user can both set and clear all of the bits.

23 Exception Acknowledges

24 Exception Masks

25 Exception Blockers
75

These status and control registers are accessed by the MTSR and MFSR instructions.

26

27

28

Status Register
Name

Purpose
76

Exception Vectors (very preliminary)

The exceptions vectors are stored in IMEM. One of the main concerns with storing vectors in
unprotected memory is that they can be easily overwritten by data accesses, resulting in an unsta-
ble machine. Since we are a Princeton architecture, however, the separation of the instruction
memory from the data memory affords us a small amount of protection. Another alternative is use
a register file for this purposes. Given the number of vectors we support, this is not so exciting.
The ram requirements of this vectors is 2 words per vector.

Vector Name
Imem Addr

>> 3
Purpose

0 EX_FATAL 0 Fatal Exception

1 EX_PGM 1 Fatal Program Exception Vector

2 EX_DYN 2 Dynamic Network Exception Vector

3

4

5

6

7 EX_DYN_REF 7 Dynamic Refill Exception

8 EX_TIMER 8 Timer Went Off

9

10

11

12

13

14

15

16

17

18

19

20
77

Switch Processor

The switch processor is responsible for routing values between the Raw tiles. One might view it
as a VLIW processor which can execute a tremendous number of moves in parallel. The assembly
language of the switch is designed to minimize the knowledge of the switch microarchitecture
needed to program it while maintaining the full functionality.

The switch processor has three structural components:

1. A 1 read port, 1 write port, 4-element register file.
2. A crossbar, which is responsible for routing values to neighboring switches.
3. A sequencer which executes a very basic instruction set.

A switch instruction consists of a processor instruction and a list of routes for the crossbar.
All combinations of processor instructions and routes are allowed subject to the following restric-
tions:

1. The source of a processor instruction can be a register or a switch port but the destination must
be a register.
2. The source of a route can be register or a switch port but the destination must always be a
switch port.
3. Two values can not be routed to the same location.
4. If there are multiple reads to the register file, they must use the same register number. This is
because there is only one read port.

For instance,

MOVE $3,$2 ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo
MOVE $3,$csto ROUTE $2->$csti, $2->$cNo, $2->$cSo, $cSi->$cEo

are legal because they read exactly one register (r2) and write one register (r3).

JAL $3, myAddr ROUTE $csto->$2

is illegal because the ROUTE instruction is trying to use r2 as a destination.

JALR $2,$3 ROUTE $2->$csti

is illegal because two different reads are being initiated to the register file (r2,r3).

JALR $2,$3 ROUTE $2->$csti, $cNi->$csti

is illegal because two different writes are occurring to the same port.
78

Switch Processor Instruction Set

BEQZ <rp>, ofs16
823

beqz $cEi, myRelTarget

op = 0, imm = (ofs16 >> 3), rego = <rp>

BLTZ <rp>, ofs16
823

bltz $cNi, myRelTarget
op = 1, imm = (ofs16 >> 3), rego = <rp>

BNEZ <rp>, ofs16
823

bneqz $2, myRelTarget
op = 2, imm = (ofs16 >> 3), rego = <rp>

BGEZ <rp>, ofs16
823

bgez $cSti, myRelTarget

op = 3, imm = (ofs16 >> 3), rego = <rp>

JAL <rd>, ofs16
823

jal $2, myAbsTarget
op = 4, imm = (ofs16 >> 3), rego = “none”, rdst = <rd>

JALR <rd>, <rp>
823

jalr $2, $cWi
op = 7 (“other”), ext_op = 3, rego = <rp>, rdst = <rd>

J ofs16
823

j myAbsTarget
op =5, imm = (ofs16 >> 3), rego = “none”

JR <rp>
823

jr $cWi
op =7 (“other”), ext_op = 2, rego = <rp>

MOVE <rd>, <rp>
823

move $1, $cNi
op =7 (“other”), ext_op = 0, rego = <rp>, rdst = <rd>

MUX <rd>, <rpA>,<rpB>,<rpC>
823

mux $1, $cNi, $cSi, $cEi
op =6, muxB = <rpB>, muxA = <rpA>, rego = <rpC>, rdst = <rd>

NOP
823

nop
op =7(“other”), ext_op = 1, rego = <none>
79

Beastly switch instruction formats

63 45 44 4348 47 46 41

2 2 33

61 60

op imm rdst rsrc rego
13

40 38

3

cNo

37 35

3

cEo

34 32

3

cSo

31 29

3

cWo

28 26

3

csti

25 0

op =7, imm = (0), rego = <rp>, rdst = <rd>

register number, if a register is read

route instruction source

63 45 44 4348 47 46 41

2 2 33

61 60

000 rdst rsrc rego

40 38

3

cNo

37 35

3

cEo

34 32

3

cSo

31 29

3

cWo

28 26

3

csti

25 057 56

ext_op
4 9

0000 0 0000

63 45 44 4348 47 46 41

2 2 33

61 60

110 rdst rsrc rego

40 38

3

cNo

37 35

3

cEo

34 32

3

cSo

31 29

3

cWo

28 26

3

csti

25 054 53

MuxB

51 50

3

MuxA
37

0000000

Mux instruction format

“Other” instruction format

Default instruction format
80

Opcode Map (bits 63..61)

“Other” Map (bits 60..57)

Port Name Map

Quick Lookup by first two digits

instruction[61..61]

0 1

00 OTHER BLTZ

01 BNEZ BGEZ

10 JAL J

11 MUX BEQZ

instruction[58..57]

00 01 10 11

00 NOP MOVE JR JALR

01

10

11

Port

000 001 010 011 100 101 110 111

none csto
csti

cWi
cWo

cSi
cSo

cEi
cEo

cNi
cNo

---- regi
rego

0 4 BNEZ 8 JAL C MUX 00 MOVE

1 BEQZ 5 BNEZ 9 JAL D MUX 02 NOP

2 BLTZ 6 BGEZ A J E BEQZ 04 JR

3 BLTZ 7 BGEZ B J F BEQZ 06 JALR
81

Administrative Procedures

Interrupt masking

To be discussed at a later date.

Processor thread switch (does not include switch processor)

EPC and ENPC must be saved off and new values put in place. A DRET
will cause an atomic return and interrupt enable.

mfsr $29, EPC
sw $29, EPC_VAL($0)
mfsr $29, ENPC
sw $29, ENPC_VAL($0)
lw $29, NEW_EPC_VAL($0)
mtsr EPC, $29
lw $29, NEW_ENPC_VAL($0)
mtsr ENPC, $29
dret # return and enable interrupt bits
lw $29, OLD_R29($0)

Freezing the Switch

The switch may be frozen and unfrozen at will by the processor.
This is useful for a variety of purposes. When the switch is frozen,
it ceases to sequence the PC, and no routes are performed. It will indicate
to its neighbors that it is not receiving any data values.

Reading or Write the Switch’s PC and NPC

In order to write the PC and NPC of the switch, two conditions must hold:

1. the switch processor must be “frozen”,
2. the SW_PC is written, followed by SW_NPC, in that order

set switch to execute at address in $2

addi $3,$2,8 # calculate NPC value
mtsri FREEZE, 1# freeze the switch
mtsr SW_PC, $2# set new switch PC to $2
mtsr SW_NPC, $3# set new switch PC to $2+8
mtsri FREEZE, 0# unfreeze the switch
82

The PC and NPC of the switch may be read at any time, in any order. However, we imagine that
this operation will be most useful when the switch is frozen.

mtsri FREEZE, 1# freeze the switch
mfsr $2, SW_PC# get PC
mfsr $2, SW_NPC# get NPC
mtsri FREEZE, 0 # unfreeze the switch

Reading or Writing the Processors’s IMEM

This will stall the processor for one cycle per access. The read or write will cause
the processor to stall for one cycle. Addresses are multiples of 4. Any low bits will
be ignored.

ilw $3, 0x160($2)# load a value from the proc imem
isw $5, 0x168($2)# store a value into the proc imem

Reading or Writing the Switch’s IMEM

The switch can be frozen or unfrozen. The read or write will cause
the switch processor to stall for one cycle. Addresses are multiples of 4. Any low bits will
be ignored. Note that instructions must be aligned to 8 byte boundaries.

swlw $3, 0x160($2) # load a value from the switch imem
swsw $5, 0x168($2) # store a value into the switch imem

Determining how many elements are in a given switch buffer

At any point in time, it is useful to determine how many elements are waiting in the buffer of a
given switch. There are two SRs used for this purpose, SWBUF1, which is for the first set of input
an output ports, and SWBUF2, which is for double-bandwidth switch implementations. The for-
mat of these status words is as follows:

to discover how many elements are waiting in csto queue

mfsr $2, SWBUF1 # load buffer element counts
andi $2, $2, 0x7# get $csto count

31 15 14 11 5 2 017

SWBUF1
3

csto

6

csti

9 8

cWicSi

12

cEicNi
3 3 3 3 3314

0

16

status reg
31 15 14 11 5 2 0

SWBUF2
3

0

6

csti2

9 8

cWi2cSi2

12

cEi2cNi2
3 3 3 3 3314

0

1617

status reg
83

Using the watchdog timer

The watchdog timer can be used to monitor the dynamic network and determine if a deadlock
condition may have occurred. WATCH_VAL is the current value of the timer, incremented every
cycle, regardless of what is going on in the processor.
WATCH_MAX is the value of the timer which will cause a watch event to occur:

There are several bits in WATCH_SET which determine when WATCH_VAL is reset and if an
interrupt fires (by default, these values are all zero):

code to enable watch dog timer for dynamic network deadlock

mtsr WATCH_MAX, 0xFFFF # 65000 cycles
mtsr WATCH_VAL, 0x0 # start at zero
mtsr WATCH_SET, 0x3 # interrupt on stall and no

dynamic network activity
jr 31
nop

watchdog timer interrupt handler
pulls as much data off of the dynamic network as
possible, sets the DYNREFILL bit and then
continues

sw $2, SAVE1($0) # save a reg
(not needed
if reserved regs for handlers)

sw $3, SAVE2($1) # save a reg
lw $2, HEAD($0) # get the head index
lw $3, TAIL($0) # get the tail index

Bit Name effect

0 INTERRUPT interrupt when WATCH_VAL reaches WATCH_MAX?

1 DYN_MOVE reset WATCH_VAL when a data element is removed from dynamic network
(or refill buffer), or if no data is available on dynamic network ?

2 NOT_STALLED reset WATCH_VAL if the processor was not stalled ?

3

4

5

31 5 2 0

WATCH_SET
3

I

6

D
1 1 1 1 11status reg 11

147

0 S0 0 0 0 0
84

add $3, $2,1
and $3, $3, 0x1F # thirty-one element queue
beq $2, $3, dead # if queue full, we need some serious work
nop
blop:
lw $2, TAIL($0)
sw $3, TAIL($0) # save off new tail value
sw $cdni, $2(BUFFER) # pull something out of the network
mfsr $2, D_AVAIL # stuff on the dynamic network still?
beqz $2, out # nothing on, let’s progress
lw $2, SAVE1($0) # restore register (delay slot)

otherwise, let’s try to save more
move $2, $3
add $3, $2, 1
and $3, $3, 0x1F # thirty-one el queue
bne $2, $3, blop # if queue not full, we process another
lw $2, SAVE1($0) # restore register (delay slot)

out:
mtsr DYNREFILL, 1 # enable dynamic refill
dret
lw $3, SAVE2($1) # restore register

Setting or Reading an Exception Vector

Exception vectors are instructions located at predefined locations in memory to which the proces-
sor should branch when an exceptional case occurs. They are typically branches followed by
delay slots. See the Exceptions sections for more information on this.

ILW $2, ExceptionVectorAddress($0) # save old interrupt instruction
ISW $3, ExceptionVectorAddress(40) # set new interrupt instruction
85

er
ill be
sert
Using Dynamic Refill (DYNREFILL/EX_DYN_REF/DR_VAL)

Dynamic refill mode allows us to virtualize the dynamic network input port. This functionality is
useful if we find ourselves attempt to perform deadlock recovery on the dynamic network.
When DYNREFILL is enabled, a dynamic read will take its value from the “DR_VAL” regist
and cause a EX_DYN_REF immediately after. The deadlock countdown timer (if enabled) w
reset as with an dynamic read. This will give the runtime system the opportunity to either in
another value into the refill register, or to turn off the DYNREFILL mode.

enable dynamic refill

mtsri DYNREFILL, 1 # enable dynamic refill
mtsr DR_VAL, $2 # set refill value
dret # return to user

drefill exception vector
removes an element off of a circular fifo and places it in DR_VAL
if the circular fifo is empty, disable DYNREFILL
if (HEAD==TAIL), fifo is empty
if ((TAIL + 1) % size == HEAD), fifo is full

sw $2, SAVE1($0) # save a reg (not needed if
reserved regs for handlers)

sw $3, SAVE2($1) # save a reg
lw $2, HEAD($0) # get the head index
lw $3, $2(BUFFER) # get next word
mtsr DR_VAL, $3 # set DR_VAL
add $2, $2, 1 # increment head index
and $2, $2, 0xF # buffer is 32 (31 effective) entries big
lw $3, TAIL($0) # load tail
sw $2, HEAD($0) # save new head
bne $2,$3, out # if head == tail buffer is empty
lw $2, SAVE1($0) # restore register (delay slot)
mstri DYNREFILL, 0 # buffer is empty, turn off DYNREFILL

out:
dret
lw $3, SAVE2($1) # restore register
86

Raw Boot Rom

The RAW BOOT Rom
Michael Taylor
Fri May 28 11:53:42 EDT 1999
#
This is the boot rom that resides on
each raw tile. The code is identical on
every tile. The rom code loops, waiting
for some data show up on one of the static network ports.
Any of North, West, East or South is fine.
(Presumably this data is initially streamed onto the side of the
chip by a serial rom. Once the first tile is booted, it can
stream data and code into its neighbors until all of the tiles
have booted.)
#
When it does, it writes some instructions
into the switch instruction memory which will
repeatedly route from that port into the processor.

At this point, it unhalts the switch, and processes
the stream of data coming in. The data is a stream of
8-word packets in the following format:
#
<imem address> <imem data> <data address> <data word>
<switch address> <switch word> <switch word> <1=repeat,0=stop>
#
The processor repeatedly writes the data values into
appropriate addresses of the switch, data, and instruction
memories.

At the end of the stream, it expects one more value which
tells it where to jump to.

.text
.set noreorder

wait until data shows up at the switch

sleep:

mfsr $2, SWBUF1 # num elements in switch buffers
beqz $2, sleep

there is actually data available on
the static switch now

we now write two instructions into switch -
instruction memory. These instructions
form an infinite loop which routes data
from the port with data into the processor.

$0 = NOP
87

$6 = JMP 0
$5 = ROUTE to part of instruction

lui $6,0xA000 # 0xA000,0000 is JUMP 0

compute route instruction
$2 = values in switch buffers.
lui $7,0x0400 # 000 001 [ten zeros]b
lui $5,0x1800 # 000 110 [ten zeros]b
sll $3,$2,14 # position north bits at top of word

#
in this tricky little loop, we repeatedly shift the status
word until it drops to zero. at that point, we know that we just
passed the field which corresponds to the port with data available
as we go along, we readjust the value that we are going to write
into the switch memory accordingly.

top:

sll $3,$3,3 # shift off three bits
bnez $3,top # if it’s zero, then we fall through
subu $5,$5,$7 # readjust route instruction word

setup_switch:
remember, the processor imem
is little endian

swsw $0,12($0) # 0008: NOP route c(NW)i->csti
swsw $5,8($0)
swsw $6,4($0) # 0000: JMP 0 route c(NW)i->csti
swsw $5,0($0)

reload the switch’s PC.
(this refetch the instructions that we have written)

MTSRi SW_PC, 0x0 # setup switch pc and npc
MTSRi SW_NPC, 0x8 #

MTSRi FREEZE, 0x0 # unfreeze the switch

it took 19 instructions to setup the switch

DMA access type format
<imem address> <imem data> <data address> <data word>

 # <switch address> <switch word> <1=repeat,0=stop>

or $3,$0,$csti

copy_instructions:

isw $csti,0($3)
or $4,$0,$csti
sw $csti,0($4)
or $5,$0,$csti
88

swsw $csti,0($5)
swsw $csti,4($5)
bnez $csti, copy_instructions
or $3,$0,$csti

stop:

jr $3
nop

it took 11 instructions to copy in the program
and jump to it.
89

90

	1 INTRODUCTION
	1.0 MANIFEST
	1.1 MOTIVATION FOR A NEW TYPE OF PROCESSOR
	1.1.1 The sign of the times
	1.1.2 An old problem: SpecInt
	1.1.3 A new problem: Extroverted computing
	1.1.4 New problem, old processors?
	1.1.5 New problems, new processors.

	1.2 MY THESIS AND HOW IT RELATES TO RAW
	1.2.1 Thesis statement
	1.2.2 The goals of the prototype
	1.2.3 The Billion Transistor Question
	1.2.4 The “all-software hardware” question

	1.3 SUMMARY

	2 EARLY DESIGN DECISIONS
	2.0 THE BIRTH OF THE FIRST RAW ARCHITECTURE
	2.0.1 RawLogic, the first Raw prototype
	2.0.2 Our Conclusions, based on Raw logic
	2.0.3 Our New Concept of a Raw Processor

	3 WHAT WE’RE BUILDING
	3.0 THE FIRST RAW ARCHITECTURE
	3.0.1 A mesh of identical tiles
	3.0.2 The tile
	3.0.3 The tile processor
	3.0.4 The switch processor
	3.0.5 Putting it all together

	3.1 RAW MATERIALS
	3.1.1 The ASIC choice
	3.1.2 IBM: Our ASIC foundry
	Table 1: SA-27E Process

	3.1.3 Back of the envelope: A 16 tile Raw chip
	Table 2: Ballpark clock calculation

	3.2 THE TWO RAW SYSTEMS
	3.2.1 A Raw Handheld Device
	3.2.2 A Multi-chip Raw Fabric, or Supercomputer

	3.3 SUMMARY

	4 STATIC NETWORK DESIGN
	4.0 STATIC NETWORK
	4.0.1 Flow Control
	4.0.2 The Static Input Block
	4.0.3 Static Network Summary

	4.1 THE SWITCH (SLAVE) PROCESSOR
	4.1.1 Partial Routes
	4.1.2 Virtual Switch Instruction Memory

	4.2 STATIC NETWORK BANDWIDTH
	4.3 SUMMARY

	5 DYNAMIC NETWORK
	5.0 DYNAMIC NETWORK
	5.1 DYNAMIC ROUTER
	5.2 SUMMARY

	6 TILE PROCESSOR DESIGN
	6.0 NETWORK INTERFACE
	6.1 SWITCH BYPASSING
	6.1.1 Instruction Restartability
	6.1.2 Calculating the Tile-to-Tile Communication Latency

	6.2 MORE STATIC SWITCH INTERFACE GOOK
	6.3 MECHANISM FOR READING AND WRITING INTO INSTRUCTION MEMORY
	6.4 RANDOM TWEAKS
	6.5 THE FLOATING POINT UNIT
	6.6 RECONFIGURABLE LOGIC
	6.7 DYNAMIC NETWORK INTERFACE
	6.8 SUMMARY

	7 I/O AND MEMORY SYSTEM
	7.0 THE I/O SYSTEM
	7.0.1 Raw I/O Model
	7.0.2 The location of the I/O ports (Perimeter versus Area I/O)
	7.0.3 Supporting Slow I/O Devices

	7.1 THE MEMORY SYSTEM
	7.1.1 The Tag Check
	7.1.2 The Path to Copious Memory

	7.2 SUMMARY

	8 DEADLOCK
	8.0 DEADLOCK CONDITIONS
	8.0.1 Dynamic - Dynamic
	8.0.2 Dynamic - Static
	8.0.3 Static - Dynamic
	8.0.4 Static - Static
	8.0.5 Unrelated Dynamic-Dynamic
	8.0.6 Deadlock Conditions - Conclusions

	8.1 POSSIBLE DEADLOCK SOLUTIONS
	8.2 DEADLOCK AVOIDANCE
	8.2.1 Ensuring that messages at the tail of all dependence chain are always sinkable.
	8.2.2 Limit the amount and directions of data injected into the network.
	8.2.3 Deadlock Avoidance - Summary

	8.3 DEADLOCK RECOVERY
	8.3.1 Deadlock Detection
	8.3.2 Deadlock Detection Approximation
	8.3.3 Deadlock recovery
	8.3.4 More deadlock recovery problems
	8.3.5 Deadlock Recovery - Summary

	8.4 DEADLOCK ANALYSIS
	8.5 THE RAW DEADLOCK SOLUTION
	8.6 THE HIGH-PRIORITY DYNAMIC NETWORK
	8.7 PROBLEMS WITH I/O ADDRESSING
	8.8 THE “FUNNY BITS”
	8.9 SUMMARY

	9 MULTITASKING
	9.0 MULTITASKING
	9.1 CONTEXT SWITCHING
	9.1.1 Context switches and I/O Atomicity
	9.1.1.1 Message atomicity on the static network
	9.1.1.2 Message atomicity on the dynamic network
	9.1.1.3 Request Atomicity

	9.2 SUMMARY

	10 THE MULTICHIP PROTOTYPE
	10.0 THE RAW FABRIC / SUPERCOMPUTER
	10.1 PIN COUNT PROBLEMS AND SOLUTIONS
	TABLE 3. Pin Count - ideal
	10.1.1 Expose only the static network
	10.1.2 Remove a subset of the network links
	TABLE 4. Pin Count - with muxing

	10.1.3 Do some more muxing
	10.1.4 Do some encoding
	TABLE 5. States -- encoded
	TABLE 6. Pin Count - with muxing and encoding

	10.1.5 Pray for more pins
	10.1.6 Find a practical but ugly solution

	10.2 SUMMARY

	11 CONCLUSIONS
	11.0 CURRENT PROGRESS ON THE PROTOTYPE
	11.1 PRELIMINARY RESULTS
	TABLE 7. Preliminary Results - 16 tiles

	11.2 EXIT
	11.3 REFERENCES

	12 APPENDAGES
	Foreword
	Processor
	Table 1: Register Conventions
	Table 2: Floating Point Comparison Condition (for c.xxx.s)

