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Abstract
We present Parkour, a tool that creates parallel speedup
estimates for unparallelized serial programs. Unlike
previous approaches, it does not require any prior hu-
man analysis or modification of the program. Park-
our automatically quantifies the parallelism of a given
program and provides an approximate upper bound for
performance, modeling fundamental parallelization con-
straints. For the evaluation, Parkour is applied to three
benchmarks from the NAS Parallel benchmark suite run-
ning on a 32-core AMD multicore system, and three
benchmarks running on the fine-grained MIT Raw pro-
cessor. The results are compelling. Parkour is able to
significantly improve the accuracy of parallel speedup
estimates relative to the critical path analysis technique
that it extends.

1 Introduction

As we seek to take advantage of the performance op-
portunities that multicore provides, we are also simul-
taneously faced with an enormous software engineering
challenge. Parallelization of serial code is unpredictable
for even the most expert programmers, generating great
uncertainty that threatens both project feasibility and re-
lease schedules.

These challenges are especially pronounced in high-
performance embedded systems that use large arrays
of cores such as Tilera [6] 100-core systems, Coherent
Logix’s HyperX, and 512-core Nvidia Fermi chips to
meet aggressive performance goals. For the purposes of
planning, there are many details that we would like to
know before we start the laborious task of parallelizing
the code. Will a 64-core or 100-core Tilera chip be suf-
ficient to attain the required speedup for my autonomous
vision system? How many cores should be allocated to
each component? Should a key algorithm be swapped
out because it is inherently serial? What should we tell
a junior engineer to shoot for in terms of speedup for a
target piece of code? These are all challenging questions

$> make CC=parkour-cc
$> ./sha data
$> parkour --openmp
Cores 1 2 4 8 16 32 64
Speedup 1 2 3.8 3.8 3.8 3.8 3.8
(est.)

Figure 1: Parkour’s User Interface. After compiling
and executing the program, Parkour produces estimated
upper bounds on speedups for the program.

that could affect not only how projects are executed but
also whether they are attempted at all.

We introduce Parkour, a parallel speedup estimation
tool, to help users discover the answers to these ques-
tions. Given an unmodified, serial version of a program,
and representative inputs, Parkour automatically gener-
ates approximate upper bounds on the speedup attainable
for a target system. Parkour does this through a combi-
nation of dynamic and static analyses.

Figure 1 depicts the usage of Parkour in greater de-
tail. parkour-cc, a drop-in replacement compiler, is
used to generate an instrumented binary for the serial
program. The program is then run on representative in-
puts, and parallelism-related instrumentation data is col-
lected. parkour is then used to analyze the instrumen-
tation data and produce speedup estimates for varying
quantities of cores.

Parkour produces approximate upper bounds on par-
allel speedup by incorporating the parallelism-related in-
strumentation with machine constraints such as the num-
ber of cores, basic synchronization overhead, and con-
straints from parallelization systems like OpenMP. With
Parkour, the user can quickly and accurately estimate the
potential benefit of parallelizing a program without go-
ing through the difficult process of refactoring the code
for parallelism.

Parkour’s parallelism analysis is based on critical path
analysis (CPA) [13], which dates back to the mid-80’s.
CPA analyzes dynamic dependencies in a program, iden-
tifying the longest dependency chain. This chain is ef-
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Figure 2: Parkour System Architecture. Starting with a program’s source code, Parkour statically instruments the
code to perform HCPA. Running the instrumented binary on the sample input produces a region profile that contains
both the work and the critical path length for each region. Parkour’s speedup predictor utilizes the profile information
to provide estimated upper bounds on speedup for different core counts.

fectively the execution time on a parallel machine with
infinite resources and zero communication costs. CPA
suffers from two major drawbacks that hinder its utility
in predicting speedup. First, its parallel execution time
model is far too optimistic. This results from model-
ing an unrealistic machine with no execution constraints.
Second, it cannot resolve parallelism within the nested
region structure of a program. For instance, it cannot
identify how much parallelism is attributable to the outer
most loop as opposed to the innermost loop. This lim-
itation is a result of ignoring the program’s hierarchical
structure.

Recent work [11, 8] showed that a number of these is-
sues can be addressed through two key mechanisms. The
first mechanism, hierarchical critical path analysis, or
HCPA, measures the critical path across many nested re-
gions. The second mechanism, the self-parallelism met-
ric, provides a heuristic function that allows the paral-
lelism levels in these regions to be effectively subtracted,
providing the basis for parallelism localization. While
this prior work focuses on the creation of a profiling tool,
this paper shows that these techniques can be extended to
estimate performance upper bounds on the paralleliza-
tion of serial code, allowing software engineers to bet-
ter evaluate the potential of parallelization for particular
pieces of serial code.

The remainder of this paper proceeds as follow. We
begin by reviewing related work in Section 2. In Sec-
tion 3 we provide a high-level overview of Parkour be-
fore providing more details in Section 4. Results are pre-
sented in Section 5 before concluding in Section 6.

2 Related Work

Parallelism Profiling Critical path analysis (CPA)
dates back to the Kumar’s work in the late 80’s [13]. This
work, along with other early work [3], lays the ground-
work for dynamically measuring the critical path of a
program in order to determine the amount of parallelism
on an unconstrained system. Other works have intro-
duced CPA-related metrics such as smoothability [17]

and slack [15] to understand how parallelism maps to
constrained processors. Parkour extends CPA with hi-
erarchical CPA and self-parallelism in order to localize
parallelism to specific regions of the program rather than
across the whole program. Localized parallelism allows
for speedup predictions that are much more accurate.

Dependence testing is the other major approach to un-
derstanding parallelism in a program. Dependence test-
ing is used to determine if two parts of the code have
dependencies between them; if they do not then they
may be executed in parallel. pp [14] is an early example
of dependence testing, looking at the parallelism in loop
nests to determine the best granularity at which to paral-
lelize loops. More recent approaches to dependency test-
ing include Alchemist [19] and SD3 [12]. Unlike Park-
our, dependence testing approaches do not look to quan-
tify parallelism so much as provide a binary, yes/no an-
swer as to whether parallelism exists. Dependence test-
ing tends to be more pessimistic than CPA, being more
sensitive to program structure. As a result, it can miss
nuanced forms of parallelism that may require program
transformations to enable. Since Parkour is more opti-
mistic, it can identify hidden parallelism opportunities
and provide better speedup predictions, realizing that the
programmer will be able to perform many of the required
transformations.

Performance Prediction There have been recent ef-
forts to predict serial performance including work by
Hoste et al [10]. In theory, these predictions could be
combined with Parkour’s speedup predictions to predict
the parallel execution time of a program

CilkView [9] and Intel Parallel Advisor [1] are recent
tools with features that bear some similarity to Parkour.
Like Parkour, they predict parallel performance on a tar-
get with arbitrary number of cores. Unlike Parkour, how-
ever, CilkView and Parallel Advisor rely on user annota-
tions or code transformations to predict speedup. Park-
our minimizes user effort in prediction by automatically
detecting parallelism in the unmodified serial program.

Several research efforts seek to predict the scalability



int main() {
foo(N);

}

void foo(int size) {
for(i=1 to size) {
// loop a

}
for(i=1 to size) {
// loop b

}
}
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Figure 3: Parkour’s Program Representation. (a) parkour-cc demarcates each function, loop, and loop iteration.
Executing the instrumented binary forms a region tree consisting of dynamic regions. (b) The speedup predictor
transforms the dynamic region tree into a static region tree by merging dynamic regions corresponding to the same
static region, providing the program structure appropriate for speedup prediction.

of parallel programs. They start with a parallel version of
the program, execute it on a small number of cores/pro-
cessors, and predict how it will perform on a large num-
ber of cores/processors. Barnes et al [5] look at extrapo-
lating performance using a number of techniques such as
finding the global critical path. Zhai et al [18] rely on de-
terministic replay to measure the time of each part of the
program on a single node, combining these single-node
runs to determine the multi-node performance. These ef-
forts are based on a pre-existing parallel implementation,
unlike Parkour, which works on an unmodified serial pro-
gram.

3 Parkour Overview

Parkour consists of two general phases: hierarchical crit-
ical path analysis (HCPA) and speedup prediction, which
are depicted in Figure 2. In the following subsections, we
will overview each of these phases in more detail.

3.1 Hierarchical Critical Path Analysis
HCPA [8] is an extension of critical path analysis that
measures the parallelism in each region of the program
rather than the parallelism across the whole program.
HCPA has both a static component—where instrumenta-
tion is inserted into an unmodified, serial program—and
a dynamic component—where the instrumented program
is executed to collect parallelism statistics.

HCPA’s static component utilizes a drop-in compiler
replacement, parkour-cc, that produces an instru-
mented binary. The dynamic component consists of
a special HCPA library—linked into the instrumented
binary—that tracks dynamic data and control dependen-
cies, while uncovering the program’s structure. The
HCPA runtime library uses a sophisticated shadow-
memory implementation that concurrently tracks the
control and data dependencies in multiple levels of the
program hierarchy. HCPA tracks only true dependen-
cies, leveraging LLVM’s capabilities to avoid output de-

pendencies and to break false-dependencies introduced
through the use of induction and reduction variables.
HCPA provides the critical path length and amount of
work done in each nested dynamic program region.

Parkour’s implementation of HCPA creates regions
from every function, loop, and loop iteration; these re-
gion types were chosen because they to correspond to
the unit of parallelization. Figure 3(a) shows an example
of how the region structure looks during runtime. The
number of dynamic regions could quickly explode when
there are many nested loops. To avoid huge profile sizes,
Parkour uses a dictionary-based compression technique
to combine identical regions. The compression technique
is highly effective, reducing the profile output size by
119,000X—to an average size of 150KB— on NPB [4].

3.2 Speedup Predictor
Parkour’s speedup predictor estimates the upper bound
on parallel performance. This prediction is based on both
the specified system constraints and the parallelism pro-
file data produced during HCPA.

Since programmers parallelize static regions
rather than dynamic regions—e.g. using OpenMP’s
parallel for pragma to parallelize a loop—profile
data should be oriented towards static regions. Parkour
converts the runtime region tree into a static region
tree by merging all dynamic instances of a static region
into a single node as shown in Figure 3(b). Each static
node will contain the average parallelism across all
corresponding dynamic nodes.

Leveraging the program structure exposed during
HCPA and the calculated self-parallelism, the speedup
predictor employs a region execution time model to esti-
mate the parallel execution time of each region. In addi-
tion to program structure and self-parallelism, the model
incorporates other key factors that impacts parallel ex-
ecution time including number of cores and paralleliza-
tion overhead. We will discuss this model in more detail
in the next section.



Given the profiled information and the execution time
model, the predictor provides a speedup upper bound by
finding the parallelization plan that minimizes the execu-
tion time. A parallelization plan abstracts how a program
is parallelized by allocating available cores to each node
in the static region tree. A parallelization planner strives
to find the best parallelization plan while honoring paral-
lelization constraints.

4 Parkour Details

In this section, we will describe in more detail how Park-
our builds upon HCPA to predict parallel speedup.

4.1 Self-Parallelism Calculation
While HCPA provides the amount of parallelism in each
region of a program, it does not differentiate between the
parallelism that is local to that region and the parallelism
that is inherited from child regions. Parkour localizes
parallelism by calculating self-parallelism, a metric that
estimates the maximum amount of parallel speedup ob-
tainable from a region.

Self-parallelism subtracts the children’s parallelism
from region R by assuming the children have been fully
parallelized. This reduces the time spent in R, thus reduc-
ing the ratio of work to critical path length. The follow-
ing equation shows how the self-parallelism of R, SP(R),
is calculated:

SP(R) = ∑
n
k=1 cp(child(R,k))+SW (R)

cp(R)
(1)

where n is the number of children of R, child(R,k) is the
kth child of R, and cp() is the critical path length of the
region. SW (R) represents self-work: the total work in R
less the total work in all of R’s children.

4.2 Modeling Parallel Execution Time
With HCPA and self-parallelism, Parkour can begin to
estimate the execution time of the program when only a
subset of regions are parallelized. Parkour incorporates
not only self-parallelism but also program structure, the
number of cores allocated to a region, and the overhead
of parallelization. Parkour calculates the execution time
of region R, ET (R), according to the following equation:

ET (R) =
SW (R)+∑

n
k=1 ET (child(R,k))

min(SP(R),A(R))
+O(R) (2)

where A(R) is the number of cores allocated to R and
O(R) is the target-dependent parallelization overhead.

The time model relies on the program structure in that
each region’s execution time is impacted not only by it’s
self-work but also the time spent in its children. The

speedup from parallelization is limited by either the lack
of self-parallelism (SP(R)) or the lack of allocated cores
(A(R)), whichever is smaller.

The overhead function O(R) impacts the profitable
parallelization granularity; larger overhead requires a
region with enough time reduction through parallel
speedup to offset the overhead. For example, conven-
tional multicore processors have large overhead in the
form of communication costs, greatly limiting the set of
regions that can be profitably parallelized.

4.3 Parallelization Planner

Parkour attempts to provide an approximate upper bound
on speedup by finding the allocation of parallel resources
that minimizes parallel execution time. The mapping of
resources to program regions is the parallelization plan.
To determine the best plan, Parkour incorporates tar-
get constraints such as the maximum number of cores
available, parallelizable regions, and nested paralleliza-
tion. As a planner incorporates more parallelization con-
straints, Parkour’s speedup estimation will become more
accurate.

Parkour includes planners for two different platforms:
“Raw” and “Multicore”. The Raw platform is a tiled pro-
cessor with an automatically parallelizing compiler [16],
while the Multicore platform models a large x86 multi-
core processor system programmed with OpenMP.

The main parallelization constraint in the Raw plat-
form is that it exploits only fine-grained parallelism that
exists within unrolled basic blocks. To incorporate this
constraint, the Raw planner parallelizes only unrolled
versions of leaf regions in the static region tree, as they
approximately represent instruction-level parallelism in
basic blocks after the Raw compiler has unrolled and par-
allelized them.

On the other hand, the Multicore platform favors loop
regions (whether inner or outer), and nested paralleliza-
tion is rare due to excessive synchronization cost. Due
to these restrictions on nested parallelism, either a region
R or some subset of its descendant regions will be paral-
lelized. Parkour uses its parallel execution time model to
determine whether it is more profitable to parallelize R or
its descendants. This decision requires a bottom-up ap-
proach, starting with the childless leaves and moving up
the tree. The decision whether to parallelize a region is
based on whether the execution time is lower when that
region or when its descendants are parallelized.

5 Experimental Results

Methodology To evaluate the effectiveness of Parkour,
we compared Parkour’s estimated speedup against actual
speedup on the Raw and Multicore platforms. For the
Raw platform, we selected three benchmarks from [16]
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Figure 4: Predicted and Measured Speedup. The graphs in the upper row and in the lower row show predicted and
measured speedup for Raw and Multicore platforms, respectively. In all six benchmarks on two platforms, Parkour
successfully provides tight speedup upperbounds.

and compared the estimated speedup with numbers re-
ported in the paper. For the Multicore platform, we used
NAS Parallel Bench [4] with ’W’ input to get speedup
estimation and measured the speedup with a third-party
parallelized version [2] on actual 32-core (8 X Quad-core
AMD 8380) system. Parallelization overhead for Raw is
specified as 3+2∗ logN cycles, modeling Raw’s end-to-
end barrier cost; the overhead for Multicore is measured
on the target 32-core system with microbenchmarks [7],
which ranges from 2k cycles for two cores to 30k cycles
for 32 cores.

Discussion We show predicted and measured speedups
on Raw and Multicore in Figure 4. The upper row shows
results on Raw, while the lower row shows results on
Multicore. Parkour performs well across the spectrum
for both Multicore and Raw. For Multicore, ep is de-
tected as being embarrassingly parallel, with near lin-
ear speedup, while sp and is have more modest paral-
lelism that taps out for larger numbers of cores. On the
Raw side, life is detected as being highly parallel, while
both sha and unstruct encounter limits at around 4X
speedup. These preliminary results suggest that Park-
our’s speedup prediction is effective.

Table 1 compares the predicted speedup from CPA and
Parkour (64 core). As expected, CPA prediction results
are often too optimistic to be of use, except for the case
of ultra-low-parallelism sha. Parkour’s prediction pro-
vides much tighter speedup upperbounds, by 1085X on
average.

Platform Bench CPA Parkour Ratio
Raw sha 4.8 4.0 1.2

unstruct 3447 3.7 934
life 116278 40.0 2906

Multicore sp 189928 7.9 24195
is 1300216 9.5 136865
ep 9722 63.9 152

Geomean 12905 11.9 1085

Table 1: Speedup Prediction Comparison Between
CPA and Parkour (64 core).
CPA provides unrealistic speedup estimates as it can-
not incorporate parallelization constraints. As HCPA’s
region profiling enables the incorporation of those con-
straints, Parkour reduces the speedup upperbound by
1085X on average.

6 Conclusion
In this paper we have presented Parkour, a tool for esti-
mating the parallel speedup of serial programs. Parkour
automatically identifies the parallelism existing in a pro-
gram and combines this with parallelization constraints
to provide an upper bound for the parallel speedup on a
specified system. Our preliminary results on six bench-
marks and two classes of machines (AMD Opteron and
a tiled processor) demonstrate Parkour’s effectiveness
at providing accurate upper bounds across diverse pro-
grams and machine architectures.
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