
Conservation Cores:
Energy-Saving Coprocessors
for Nasty Real-World Code

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta,
Saturnino Garcia, Manish Aurora, Siddhartha Nath, Vikram Bhatt,

Steven Swanson+ and Michael Bedford Taylor+

Department of Computer Science and Engineering,
University of California, San Diego

+joint project leaders

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency
 (Conservation Cores)

 The GreenDroid Mobile Application Processor

Where does dark silicon come from?
And how dark is it going to be?

The Utilization Wall:

With each successive process generation, the
percentage of a chip that can actively switch
drops exponentially due to power constraints.

[Venkatesh, Chakraborty]

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

 Classical scaling
Device count S2

Device frequency S
Device cap (power) 1/S
Device Vdd (power) 1/S2

Utilization ?

 Leakage-limited scaling
Device count S2

Device frequency S
Device cap->power 1/S
Device Vdd (power) ~1
Utilization ?

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

1

S2

 Classical scaling
Device count S2

Device frequency S
Device cap (power) 1/S
Device Vdd (power) 1/S2

Utilization ? 1

 Leakage-limited scaling
Device count S2

Device frequency S
Device cap->power 1/S
Device Vdd (power) ~1
Utilization ? 1/S2

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

1

S2

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2x

2x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2.8x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

The utilization wall will change the way
everyone builds processors.

11

Utilization Wall: Dark Silicon Leads to
Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm  32 nm (S = 2)

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency
 (Conservation Cores)

 The GreenDroid Mobile Application Processor

13

What do we do with Dark Silicon?
  Idea: Leverage dark silicon to “fight” the

utilization wall

  Insights:
–  Power is now more expensive than area
–  Specialized logic has been shown as an effective way

to improve energy efficiency (10-1000x)

  Our Approach:
–  Fill dark silicon with specialized energy-saving
 coprocessors that save energy on common apps
–  Only turn on the cores as you need them
–  Power savings can be applied to other programs,

increasing throughput

  Energy saving coprocessors provide an architectural way
to trade area for an effective increase in power budget!

Dark Silicon

Example: Today's smartphone

  Consumers demand rich functionality (desktop  mobile)

  Utilization Wall still applies
–  Active Power budget is set by

(battery capacity) / (# hrs active use between recharges)
rather than thermal design point.

  Still need to reduce computation energy

Using accelerators to reduce energy

  Smartphones already combine a general-purpose processor
with specialized coprocessors known as accelerators

  Accelerators usually speed up computation and reduce energy

  Accelerators exist for “easy-to-parallelize”, or regular, code
–  Well-structured
–  Moderate or High Parallelism
–  Predictable memory accesses and branch directions
–  Relatively small # of lines of code
–  Often requires human guidance to create (#pragmas or worse)

Audio Video Images Graphics

  Many applications use irregular, difficult-to-parallelize code,
for which no accelerators exist

  Amdahl's Law: Overall energy efficiency depends on the
fraction of the total code that is optimized!

  To gain large energy savings through specialization:
–  We need energy-saving coprocessors that target irregular code, and
–  We need many, many such coprocessors to get high coverage

•  need to solve both design effort and architectural scalability problems

regular regular

But what about irregular code?

irregular

100x better

only 1.25x overall

Conservation Cores (C-cores)

  Specialized coprocessors for
reducing energy in irregular code
–  Hot code implemented by c-cores,

cold code runs on host CPU;
–  Shared D-cache
–  Patching support for hardware

  Fully-automated toolchain
–  No “deep” analysis or

transformations required
–  C-cores automatically generated

from hot program regions
–  Drop-in replacements for code
–  Design-time scalable

  Energy-efficient
–  Up to 18x for targeted hot code

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,
ASPLOS '10

C-core

The C-core Life Cycle

Constructing a C-core
  C-cores start with source code

–  Irregular or regular programs
–  Parallelism-agnostic

  Supports essentially all of C:
–  Complex control flow

e.g., goto, switch, function calls
–  Arbitrary memory structures

e.g., pointers, structs, stack, heap
–  Arbitrary operators

e.g., floating point, divide
–  Memory coherent with host CPU

sumArray(int *a, int n)
{
 int i = 0;
 int sum = 0;

 for (i = 0; i < n; i++) {
 sum += a[i];
 }

 return sum;
}

Constructing a C-core
  Compilation

–  C-core selection
–  SSA, infinite register,

3-address code
–  Direct mapping from

CFG and DFG
–  Scan chain insertion

  Verilog  Synthesis, P&R
–  45 nm process
–  Synopsys CAD flow

•  Synthesis
•  Placement
•  Clock tree generation
•  Routing

0.01 mm2, 1.4 GHz

C-cores Experimental Data
  We automatically built 21 c-cores for 9 "hard"

applications

–  45 nm TSMC

–  Vary in size from
0.10 to 0.25 mm2

–  Frequencies from
1.0 to 1.4 GHz

Application #
C-cores

Area
(mm2)

Frequency
(MHz)

 bzip2 1 0.18 1235
 cjpeg 3 0.18 1451
 djpeg 3 0.21 1460
 mcf 3 0.17 1407
 radix 1 0.10 1364
 sat solver 2 0.20 1275
 twolf 6 0.25 1426
 viterbi 1 0.12 1264
 vpr 1 0.24 1074

C-core Energy Efficiency:
Non-cache Operations

  Up to 18x more energy-efficient (13.7x on average),
compared to running on an efficient MIPS processor

  Performance is also better (e.g. 1.3x)

D-cache
6% Datapath

3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Where do the energy savings
come from?

MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.

Supporting Software Changes

  Software may change – HW must remain usable
–  C-cores unaffected by changes to cold regions

  Can support any changes, through patching
–  Arbitrary insertion of code – software exception

mechanism
–  Changes to program constants – configurable registers
–  Changes to operators – configurable functional units

  Software exception mechanism
–  Scan in values from c-core
–  Execute in processor
–  Scan out values back to c-core to resume execution

Patchability Payoff: Longevity

  Graceful degradation
–  Lower initial efficiency
–  Much longer useful lifetime

  Increased viability
–  With patching, utility

lasts ~10 years for
4 out of 5 applications

–  Decreases risks of
specialization

This Talk

 The Dark Silicon Problem

 How to use Dark Silicon to improve energy efficiency

 The GreenDroid Mobile Application Processor

Mobile Application Processors
Face the Utilization Wall
  The evolution of mobile application processors mirrors

that of microprocessors

  Application processors
face the utilization wall

–  Growing performance
demands

–  Extreme energy/power
constraints

 (mostly battery)

1985 1990 1995 2000 2005 2010 2015

Intel
ARM

pipelining

superscalar

out-of-order

multicore

StrongARM

Core Duo

486

586

686

Cortex-A8

Cortex-A9

Cortex-A9
MPCore

Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

  Google’s OS + app. environment for mobile devices

  Java applications run on the
Dalvik virtual machine

  Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)

Applying C-cores to
Android
  Android is well-suited for c-cores

–  Core set of commonly used applications
–  Libraries are hot code
–  Dalvik virtual machine is hot code
–  Libraries, Dalvik, and kernel &

application hotspots  c-cores

–  Relatively short hardware
replacement cycle

Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores

Targeted

Broad-based

  Profiled common Android apps to find the hot spots, including:
–  Google: Browser, Gallery, Mail, Maps, Music, Video
–  Pandora
–  Photoshop Mobile
–  Robo Defense game

  Broad-based c-cores
–  72% code sharing

  Targeted c-cores
–  95% coverage with just

43,000 static instructions
(approx. 7 mm2)

Android Workload Profile

GreenDroid: Using c-cores to reduce energy
in mobile application processors

Android
workload

Automatic
c-core
generator

C-cores
Placed-and-routed chip
with 9 Android c-cores 31

"The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future,"
Goulding-Hotta et al., IEEE Micro Mar./Apr. 2011

GreenDroid Tiled Architecture
  Tiled lattice of 16 cores
 (arch. scalability)
  Each tile contains

–  6-10 Android c-cores
(~125 total)

–  32 KB D-cache
(shared with CPU)

–  MIPS processor
•  32 bit, in-order,

7-stage pipeline
•  16 KB I-cache
•  Single-precision FPU

–  On-chip network router

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1
C

P
U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

GreenDroid:
Energy per Instruction
  More area dedicated to c-cores yields higher execution

coverage and lower energy per instruction (EPI)

  7 mm2 of c-cores provides:
–  95% execution coverage
–  8x energy savings over MIPS core

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

En
er

gy
 p

er

In
st

ru
ct

io
n

(p
J)

C-core Area (mm2)

What kinds of hotspots turn into
GreenDroid c-cores?

C-core Library #
Apps

Coverage
(est., %)

Area
(est., mm2)

Broad-
based

dvmInterpretStd libdvm 8 10.8 0.414 Y

scanObject libdvm 8 3.6 0.061 Y

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y

src_aligned libc 8 2.3 0.005 Y

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N

less_than_32_left libc 7 1.7 0.013 Y

cached_aligned32 libc 9 1.5 0.004 Y

.plt <many> 8 1.4 0.043 Y

memcpy libc 8 1.2 0.003 Y

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y

DiagonalInterpMC libomx 1 1.1 0.054 N

blitRect libskia 1 1.1 0.008 N

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N

inflate libz 4 0.9 0.055 Y

.

GreenDroid: Projected Energy
Aggressive mobile application processor
(45 nm, 1.5 GHz)

GreenDroid c-cores

GreenDroid c-cores + cold code (est.)

  GreenDroid c-cores use 11x less energy per instruction
than an aggressive mobile application processor

  Including cold code, GreenDroid will still save ~7.5x energy

91 pJ/instr.

8 pJ/instr.

12 pJ/instr.

Conclusions
  The utilization wall leads to exponential worsening of

the dark silicon problem and forces us to change
how we build processors

  Conservation cores use dark silicon to attack
the utilization wall by reducing energy across all hot
code, including irregular code.

  GreenDroid will demonstrate the benefits of c-cores
for mobile application processors

  We are developing GreenDroid, a 45 nm tiled
prototype, at UCSD

For the details:
  Conservation Cores: Reducing the Energy of Mature

Computations, ASPLOS 2010.

  GreenDroid: A Mobile Application Processor for a Future of
Dark Silicon, HOTCHIPS 2010.

  Efficient Complex Operators for Irregular Codes, HPCA 2011.

  GreenDroid: An Architecture for Silicon’s Dark Future,
 IEEE Micro 2011. (Out this month!)

greendroid.org

