INTEGRATED CIRCUITS FOR COMMUNICATIONS

GreenDroid: Exploring the
Next Evolution in Smartphone
Application Processors

Steven Swanson and Michael Bedford Taylor, University of California

ABSTRACT

Mobile application processors are soon to
replace desktop processors as the focus of inno-
vation in microprocessor technology. Already,
these processors have largely caught up to their
more power hungry cousins, supporting out-of-
order execution and multicore processing. In the
near future, the exponentially worsening prob-
lem of dark silicon is going to be the primary
force that dictates the evolution of these designs.
In recent work, we have argued that the natural
evolution of mobile application processors is to
use this dark silicon to create hundreds of auto-
matically generated energy-saving cores, called
conservation cores, which can reduce energy
consumption by an order of magnitude. This
article describes GreenDroid, a research proto-
type that demonstrates the use of such cores to
save energy broadly across the hotspots in the
Android mobile phone software stack.

INTRODUCTION

Mobile devices have recently emerged as the
most exciting and fast-changing segment of com-
puting platforms. A typical high-end smartphone
or tablet contains a panoply of processors,
including a mobile application processor for run-
ning the Android or iPhone software environ-
ments and user applications and games, a
graphics processor for rendering on the user’s
screen, and a cellular baseband processor for
communicating with the cellular networks. In
addition to these flexible processors, there are
more specialized circuits that implement Wi-Fi,
Bluetooth, and GPS connectivity as well as accel-
erator circuits for playing and recording video
and sound.

As a larger percentage of cellular network
traffic becomes data rather than voice, the capa-
bilities of the mobile application processor that
generates this data have become exponentially
more important. In recent years, we have seen a
corresponding exponential improvement in the
capabilities of mobile application processors, so
these processors are now approaching similar
levels of sophistication to those in desktop
machines. In fact, this process parallels similar

progress that happened when desktop processors
mirrored the development of earlier mainframe
computers. Figure 1 shows the deployment of
architectural features in mainframes, desktop
machines, and mobile application processors. As
of 2010, mobile application processors have
already integrated the most significant innova-
tions of processor architectures of the last 50
years, integrating multiple out-of-order, super-
scalar, pipelined cores in a single die.

As Moore’s Law and complementary metal
oxide semiconductor (CMOS) scaling provide
improving energy efficiencies and transistor
counts, cheaper processors eventually are able to
incorporate the features from their older rela-
tives; first, pipelined execution, then superscalar
execution, then out-of-order execution, and
finally, multicore. Today, because sales quanti-
ties are higher, processor features tend to move
from desktop processor designs to mainframe
designs rather than in the opposite direction. As
mobile application processor sales surpass those
of desktops, it is likely that smartphone proces-
sors will become the new nexus of advancement
in processor design.

THE UTILIZATION WALL

Our research at the University of California
(UC) San Diego focuses on understanding the
technological forces that will shape the develop-
ment of these future processors and proposing
architectural approaches that match these forces.
To reduce our proposals to practice, we are
designing and implementing a novel mobile
application processor called GreenDroid [1].
GreenDroid will serve as a prototype for mobile
application processors in the next five to ten
years. In particular, GreenDroid attacks one of
the most important realities of Moore’s Law as it
continues from today into the future, which we
refer to as the utilization wall [2].

The utilization wall dictates that due to poor
CMOS scaling, improvements in processor per-
formance are determined not by improvements
in transistor frequency or transistor count, but
rather by the degree to which each process
shrink reduces the switching energy of the under-
lying transistors. Because transistor counts are
growing much faster than the underlying energy

112

0163-6804/11/$25.00 © 2011 IEEE

IEEE Communications Magazine * April 2011

efficiency is improving, a direct consequence of
this is the phenomenon of dark silicon — that is,
large swaths of a chip’s silicon area that must
remain mostly passive in order to stay within the
chip’s power budget. As we show later in this
article, only 1 percent or so of a modest sized 32
nm mobile chip can switch at full frequency
within a 3 W power budget. The dark silicon
problem is directly responsible for the desktop
processor industry’s decision to stop scaling
clock frequencies and instead build multicore
processors. It will play an equally pivotal role in
shaping the future of mobile processors as well.

With each process generation, dark silicon is
a resource that gets exponentially cheaper, while
the power budget becomes exponentially more
valuable in comparison.

OUR APPROACH

Our research leverages two key insights. First, it
makes sense to find architectural techniques that
trade this cheap resource, dark silicon, for the
more valuable resource, energy efficiency. Sec-
ond, specialized logic can attain 10-1000 times
better energy efficiency over general-purpose
processors. Our approach is to fill the dark sili-
con area of a chip with specialized cores in order
to save energy on common applications. These
cores are automatically generated from the
codebase the processor is intended to run. In
our case, this codebase is the Android mobile
phone software stack, but our approach could
also be applied to the iPhone OS as well. We
believe that incorporating many automatically
generated, specialized cores for the express pur-
pose of saving energy is the next evolution in
application processors after multicore.

GreenDroid is a 45 nm multicore research
prototype that targets the Android mobile phone
software stack and can execute general-purpose
mobile programs with 11 times less energy than
today’s most energy-efficient designs, at similar
or better levels of performance. It does this
through the use of 100 or so automatically gen-
erated, highly specialized, energy-reducing cores,
called conservation cores, or c-cores [2, 3]. Our
work is novel relative to earlier work on acceler-
ators and high-level synthesis [4, 5] because it
adapts these techniques to work in the context
of large systems (like Android) for which paral-
lelism is limited, and shows that they are a key
tool in attacking the utilization wall CMOS sys-
tems face today. In particular, of note is our use
of techniques that allow the generation of c-
cores to be completely automatic, our introduc-
tion of patching mechanisms and mechanisms
for hiding the existence of the c-cores, and our
results on both attainable coverage and potential
energy savings.

This article continues as follows. First, we
explore the factors that lead to the utilization
wall. We continue by examining how the archi-
tecture of c-cores allows them to take advantage
of the utilization wall. Then we examine trends
in mobile application processors, and show how
the Android operating system lends itself to the
use of c-cores. Finally, we conclude the article by
examining software depipelining, a key micro-
architectural technique that helps save power in
c-cores.

Multicore B825 CoreDuo A9 MPcore
* ——
Out-of-order 36091 686 A9
* - —
Superscalar 6600 586 A8 ¢ Mainframe
* = Mobile
. = Deskto
Pipelined 7030 486 StrongArm P
* -
1955 1975 1995 2015

Figure 1. Evolution of features in mainframe, desktop, and mobile application

processors The evolution of features of mobile application processors (e.g.,

ARM StrongARM, Cortex A8, A9, and A9 MPcore) has mirrored that
of desktop processors (e.g., the Intel 486, 586, 686, and Core Duo), and desk-
top processors in turn have mirrored mainframe processors from the 1960s
(e.g., the IBM 7030, CDC 6600, IBM 360/91, and Burroughs 825). As of the
current date, mobile application processors have largely caught up, and are

soon to enter undiscovered territory.

UNDERSTANDING THE
UTILIZATION WALL

Historically, Moore’s Law has been the engine
that drives growth in the underlying computing
capability of computing devices. Although we
continue to have exponential improvements in
the number of transistors we can pack into a sin-
gle chip, this is not enough to maintain historic
growth in processor performance. Dennard’s
1974 paper [6] detailed a roadmap for scaling
CMOS devices, which, since the middle of the
last decade, has broken down. This breakdown
has fundamentally changed the way that all high-
performance digital devices are designed today.
One consequence of this breakdown was the
industry-wide transition from single-core proces-
sors to multicore processors. The consequences
are likely to be even more far-reaching going
into the future.

In this subsection, we outline a simple argu-
ment [2] that shows the difference between his-
torical CMOS scaling and today’s CMOS scaling.
The overall consequence is that, although tran-
sistors continue to get exponentially more
numerous and exponentially faster, overall sys-
tem performance of current architectures is
largely unaffected by these factors. Instead, sys-
tem performance is driven by the degree to
which transistors get more energy efficient with
each process generation — approximately at the
same rate at which the capacitance of those tran-
sistors drops as they shrink.

Each transistor transition imparts an energy
cost, and the sum of all of these transitions must
stay within the active power budget of the sys-
tem. This power budget is set by either thermal
limitations (e.g., the discomfort of placing a 100
W device next to your face) or battery limita-
tions (e.g., a 6 Wh battery that must last for 8
hours of active use can only average 750 mW
over that time period.) As we see shortly, in cur-
rent systems, it is easy to exceed this budget with
only a small percentage of the total transistors
on a chip.

IEEE Communications Magazine * April 2011

113

|
CMOS scaling theory
predicts exponential
decreases in the
amount of non-dark
silicon with each
process generation.
To adapt, we need
to create
architectures that
can leverage many,
many transistors
without actually
actively switching
them all.

Transistor property Classical :‘ii:]:::ge-
A Quantity s2 S2

A Frequency S S

A Capacitance 1/S 1/S

A Ve 1/52 1

= A Power = A QFCV2 1 S2

= A Utilization = 1 152

1/Power

Table 1. Classical vs. leakage-limited scaling. In
contrast to the classical regime proposed by
Denard, under the leakage-limited regime, the
total chip utilization for a fixed power budget
drops by a factor of S? with each process genera-
tion.

This argument is summarized in Table 1,
which takes as input variable a scaling factor S,
which describes the ratio between the feature
sizes of two processes (e.g., S = 45/32 = 1.4x
between 45 nm and 32 nm technology). In “clas-
sical” (i.e., pre-2005) scaling proposed by
Denard, we are able to scale the threshold volt-
age and operating voltage together. Currently,
we are in a “leakage-limited” regime where we
cannot decrease lower threshold and operating
voltages without exponentially increasing either
transistor delay or leakage.

In both regimes, full-chip transistor counts
increase by S2, the native switching frequency of
transistors increases by §, and capacitance
decreases by 1/S. However, the two cases differ
in operating voltage (V,,) scaling: with classical
scaling, V;,; decreases by 1/S, but with leakage-
limited scaling, V, stays fixed. When transition-
ing to another process generation, the change in
power consumption is the product of these terms
and an additional factor of V.

Thus, currently, the only factor decreasing
power consumption as we move to a new process
generation is the reduction of capacitance per
transistor, at a rate of 1/S, while the other fac-
tors are increasing it by S3.

As shown in Table 1, in classical scaling,
using all of the chip area for transistors running
at maximum frequency would result in constant
power between process generations, and we
retain the ability to utilize all of the chip
resources. Today, doing the same would increase
power consumption by S2. Since power budgets
are constrained in real systems, we must instead
reduce utilization of chip resources by 1/52 (i.e.,
2x with each process generation). Effectively, a
greater and greater fraction of the silicon chip
will have to be dark silicon.

EXPERIMENTAL VERIFICATION
To validate these scaling theory predictions, we
performed several experiments targeting cur-
rent-day fabrication processes. A small datapath

— an arithmetic logic unit (ALU) sandwiched
between two registers — was replicated across a
40-mm? chip in a 90 nm Taiwan Semiconductor
Manufacturing Corporation (TSMC) genera-
tion. We found that a 3 W power budget would
allow only 5 percent of the chip to run at full
speed. In a 45 nm TSMC process, this percent-
age drops to 1.8 percent, a factor of 2.8x. Apply-
ing the International Technology Roadmap for
Semiconductors (ITRS) for 32 nm suggests uti-
lization would drop to 0.9 percent. These mea-
surements confirm that the trend is upon us,
although it has been mitigated slightly by one-
off improvements to process technology (e.g.,
strained silicon).

REAL WORLD OBSERVATIONS

The real world also provides direct evidence of
the utilization wall. Desktop and laptop proces-
sor frequencies have increased very slowly for
the better part of a decade, and chip core
counts have scaled much more slowly than the
increase in transistor count. Increasing fractions
of the chips are used for cache or low-activity
“uncore” logic like memory controllers and
chipsets. Recently, Intel and AMD have adver-
tised a “turbo mode” that runs some cores
faster if the others are switched off. We can
expect similar trends for the future of mobile
processors as well.

DESIGNING NEW ARCHITECTURES FOR THE
UTILIZATION WALL

These observations show that the utilization wall
is a fundamental first order constraint for pro-
cessor design. CMOS scaling theory predicts
exponential decreases in the amount of non-dark
silicon with each process generation. To adapt,
we need to create architectures that can leverage
many, many transistors without actually actively
switching them all. In the following section, we
describe GreenDroid’s design, and show how c-
cores have these exact qualities and can employ
otherwise unused dark silicon to mitigate the
extreme power constraints that the utilization
wall imposes.

THE GREENDROID ARCHITECTURE

A GreenDroid processor combines general-pur-
pose processors with application-specific co-
processors that are very energy efficient. These
conservation cores, or c-cores [2], execute most
of an application’s code and will account for
well over 90 percent of execution time. Green-
Droid is a heterogeneous tiled architecture.
Figure 2a illustrates how it uses a grid-based
organization to connect multiple tiles. Figure
2b show the floor plan for one of the tiles. It
contains an energy-efficient 32-bit 7-stage in-
order pipeline that runs at 1.5 GHz in a 45 nm
process technology. It includes a single-preci-
sion floating point unit (FPU), multiplier, 16-
kbyte I-cache, translation lookaside buffer
(TLB), and 32-kbyte banked L1 data cache.
The architecture also includes a mesh-based
on-chip network (OCN). The OCN carries
memory traffic and supports fast synchroniza-
tion primitives, similar to the Raw scalable tiled

114

IEEE Communications Magazine * April 2011

\Q/ \Q/ Tile
* I\’ : : : OCN c OiﬁJ
— | 4 1 1| L]
v H B L AL cl | ¢ D
S I S |6 NS l-cache D-cache
’ >@- /?\ €
[] T [[1 1'$ i
o o Y o 1 o o [
’ >C> >@< SQ< 1 mm D$
| | | [[[9)
-]] — C T o
§L‘I_§L1_§L1_§L‘I - EE
ST ST N BT TSI 2 CcPU o
(V] RS
U H L HEL Y LB
5 S 15 ThNAS
1Tmm ——>
(a) (b) (c)

Figure 2. The GreenDroid architecture. The GreenDroid mobile application processor (a) is made up of 16 non-identical tiles. Each tile
(b) holds components common to every tile — the CPU, on-chip network (OCN), and shared L1 data cache — and provides space for
multiple c-cores (labeled C) of various sizes. c) shows connections among these components and the c-cores.

architecture [7]. The tiles’ caches are kept
coherent through a simple cache coherence
scheme that allows the level 1 (L1) caches of
inactive tiles to be collectively used as a level 2
(L2) cache.

Unlike Raw, however, GreenDroid tiles are
not uniform. Each of them contains a unique col-
lection of 8-15 c-cores. The c-cores communicate
with the general-purpose processor via an L1
data cache and specialized register-mapped inter-
face (Fig. 2c). Together, these two interfaces sup-
port argument passing and context switches for
the c-cores. The register-mapped interface also
supports a specialized form of reconfiguration
called patching that allows c-cores to adapt to
small changes in application code.

C-cores are most useful when they target code
that executes frequently. This means we can let
the Android code base determine which portions
of Android should be converted into GreenDroid
c-cores. We use a system-wide profiling mecha-
nism to gather an execution time breakdown for
common Android applications (e.g., web brows-
ing, media players, and games). The c-core tool
chain transforms the most frequently executed
code into c-core hardware. Subject to area con-
straints, the tools then assign the c-cores to tiles
to minimize data movement and computation
migration costs. To support this last step, the
profiler collects information about both control
flow and data movement between code regions.
Related c-cores end up on the same or nearby
tiles, and cache blocks can migrate automatically
between them via cache coherence. In some
cases, c-cores are replicated to avoid hotspotting.
If a given c-core is oversubscribed, the c-cores
have the option of running the software equiva-
lent version of the code.

Internally, c-cores mimic the structure of the
code on which they are based. There is one
arithmetic unit for each instruction in the target
code, and the wires between them mirror data
dependence arcs in the source program. The
close correspondence between the structure of
the c-core and the source code is useful for
three reasons. First, it makes it possible to

automatically generate c-cores from arbitrary
code without complex compiler analyses. Sec-
ond, it allows us to integrate a limited degree
of reconfigurability that allows one c-core to
execute multiple versions of the same source
code (e.g., as might appear during a system
upgrade): small changes in the source code will
correspond naturally to small changes in hard-
ware. Full details of c-cores’ patching facilities
are available in [2].

The final advantage of the correspondence is
that it allows c-cores to function as drop-in
replacements for the code they target, even in
complex multithreaded applications. The corre-
spondence guarantees that the c-core will exe-
cute exactly the same loads and stores as the
general-purpose processor while executing the
target code. Furthermore, the c-core will execute
them in the same order. This means that the
existence of the c-cores is transparent to the pro-
grammer. A specialized compiler recognizes
regions of code that align well with the c-cores,
and generates “stub” functions and a patching
configuration that allows the c-cores to replicate
a function’s behavior.

On average, c-cores reduce energy consump-
tion by 94 percent compared to the general-pur-
pose processor running the code that the c-cores
target. Overall system energy savings are smaller
because of three effects:
¢ Cold code still runs on the (relatively ineffi-

cient) CPU.

e C-core optimizations do not reduce the
energy costs of the L1 cache.

* Significant energy still goes toward leakage
and the clock.

The first effect we reduce by attaining high exe-

cution coverage by the c-cores, targeting regions

that cover as little as 1 percent of total execution

coverage. The last two we have attacked through

novel memory system optimizations, power gat-

ing, and clock power reduction techniques.

The specialized nature of c-cores allows them
to overcome the utilization wall. Collectively, the
tiles in the GreenDroid system exceed the power
budget of the system. As a result, most of the

IEEE Communications Magazine * April 2011

115

|
We have profiled a
diverse set of
Android applications
including the web
browser, Mail, Maps,
Video Player,
Pandora, and many
other applications.
We found that
applications spend
95 percent of their
time executing just
43,000 static
instructions.

i

for (i=0; i<n; ++i)
}OrBI[i]=IA[?]; V1 %

(a) (b)

Cache interface

Figure 3. Conservation core example: an example showing the translation from C code (a), to the compil-
er's internal representation (b), and finally to hardware for each basic block (c). The hardware datapath
and state machine correspond very closely to the data and control flow graphs of the C code.

time, most of the c-cores and tiles are idle (and
power gated), so they consume very little power.
Execution moves from tile to tile, activating only
the c-cores the application needs.

ANDROID: GREENDROID'S
TARGET WORKLOAD

Android is an excellent target for a c-core-
enabled, GreenDroid-style architecture.
Android comprises three main components: a
version of the Linux kernel, a collection of
native libraries (written in C and C++), and the
Dalvik virtual machine (VM). Android’s
libraries include functions that target frequently
executed, computationally intensive (or “hot”)
portions of many applications (e.g., 2D com-
positing, media decoding, garbage collection).
The remaining “cold” code runs on the Dalvik
VM, and, as a result, the Dalvik VM is also
“hot.” Therefore, a small number of c-cores that
target the Android libraries and Dalvik VM
should be able to achieve very high coverage for
Android applications.

We have profiled a diverse set of Android
applications including the web browser, Mail,
Maps, Video Player, Pandora, and many other
applications. We found that this workload spends
95 percent of its time executing just 43,000 static
instructions. Our experience building c-cores
suggests that just 7 mm? of conservation cores in
a 45 nm process could replace these key instruc-
tions. Even more encouraging, approximately 72
percent of this 95 percent was library or Dalvik
code that multiple applications used.

Android’s usage model also reduces the need
for the patching support c-cores provide. Since
cell phones have a very short replacement cycle
(typically two to three years), it is less important
that a c-core be able to adapt to new software
versions as they emerge. Furthermore, handset
manufacturers can be slow to push out new ver-
sions. In contrast, desktop machines have an
expected lifetime of between five and ten years,
and the updates are more frequent.

SYNTHESIZING C-CORES FOR
GREENDROID

A single GreenDroid processor will contain tens
or hundreds of different c-cores that each imple-
ment a different key function in Android.
Designing this many c-cores by hand is not prac-
tical. Fortunately, the c-core toolchain makes
this unnecessary since it can convert arbitrary C
functions into c-core hardware.

The c-core toolchain differs from convention-
al C-to-Verilog systems, since it focuses on sav-
ing energy rather than attaining large
improvements in performance. This means it can
omit the complex analyses necessary to extract
the parallelism accelerators must exploit. Conse-
quently, our toolchain can target a much wider
range of C constructs, and can build energy-sav-
ing c-cores for functions that are poor targets for
acceleration.

The toolchain’s profiling pass identifies “hot”
functions and loops in the target workload, and
isolates them by inlining functions and outlining
loops. Our C-to-Verilog compiler divides the c-
core for each hot region into control and data
paths. The data path mirrors the single static
assignment program representation the compiler
uses internally and groups instructions together
by basic block. The control path tracks execution
through the function with a state machine that
closely matches the function’s control flow graph
(CFG). The compiler also generates function
stubs to replace the original functions by invok-
ing the hardware.

Figure 3a illustrates this process on a simple
loop. Figure 3b shows the corresponding data
and CFG, and Fig. 3c shows the resulting hard-
ware. The hardware contains a mux for i, since it
is defined in two basic blocks. The c-core’s state
machine is very similar to CFG, but the c-core
adds self-loops for multicycle operations (e.g.,
memory accesses). The data path includes sim-
ple functional units to implement each instruc-
tion in Fig. 3b, including a load and store unit to
access arrays A and B.

116

IEEE Communications Magazine * April 2011

Fast |Clock | I | | | I | I | I | I | I | I | I | I

Slow Clock 5
[[[[| [[[[[[

D (T X X X X X X X X X
Datapath (settling) |
| Basic Iplocks ‘ |

ckG | | | | | | |
/ast states,

N\
&

Datﬁpath

C code:

for (i=0; i<N; i++) {
x = A[i];

y = BIil;
C[x] = DIyl + x +y +
(x=1) * (y-1);

Figure 4. Example SDP datapath and timing diagram In SDP circuits, non-memory datapath operators chain combinationally within a
basic block and are attached to the slow clock. Memory operators and associated receive registers align to the fast clock.

As new versions of the Android platform
emerge, GreenDroid’s c-cores may need to
change to remain useful. C-cores support this by
providing targeted reconfigurability that lets
them maintain perfect fidelity to changing source
code. C-cores provide built-in support for
changes to compile-time constants as well as a
general mechanism for transferring control back
to the general-purpose core to execute individual
basic blocks. Whether to include patching sup-
port for a particular function depends on how
mature the function is. For functions that change
very little, leaving out patching support may
make sense since it can save area and increase
energy efficiency.

CONSERVATION CORE
MICROARCHITECTURE

Historically, logic design techniques in processor
architecture have emphasized pipelining to
equalize critical path lengths and increase per-
formance by increasing the clock rate. The uti-
lization wall means that this can be a suboptimal
approach. Adding registers increases switched
capacitance, increasing per-op energy and delay.
Furthermore, these registers increase the capaci-
tance of the clock tree, a problem compounded
by the increased switching frequency rising clock
rates require.

For computations that have pipeline paral-
lelism, pipelining can increase performance by
overlapping the execution of multiple iterations.
This improves energy-delay product despite the
increase in energy. However, most irregular code
does not have pipeline parallelism, and as a
result, pipelining is a net loss in terms of both
energy and delay. In fact, the ideal case is to
have extremely long combinational paths fed by

a slow clock. This minimizes both the energy
costs and the performance impact of pipeline
registers.

The use of long combinational paths carries
two challenges. First, different basic blocks have
different combinational critical path lengths,
which would require the distribution of many
different clocks. Second, there is no way to mul-
tiplex centralized or area-intensive resources
such as memory and FPUs into these combina-
tional paths.

SELECTIVE DEPIPELINING

In order to generate efficient hardware, we
developed a technique that integrates the best
aspects of pipelined and unpipelined approach-
es. The technique is called selective depipelining,
or SDP [5], and it integrates the memory and
data path suboperations from a basic block into
a composite fat operation. SDP replicates low-
cost data path operators into long combinational
data path chains, driven by a slow clock. At the
same time, memory accesses present in these fat
operations are scheduled onto an L1 cache that
operates at a much higher frequency than the
data path. In effect, SDP replicates the memory
interface in time and the data path operators in
space, saving power and exploiting ILP. To gen-
erate these circuits, the c-core flow makes heavy
use of multicycle timing assertions between the
data path chains and the multiplexers that con-
nect to the L1 caches. Except for registers to
capture the outputs of the multiplexed memory,
sequential elements are only stored at the end of
the execution of a fat operator.

Using our automatic SDP algorithm, we have
observed efficient fat operations encompassing
up to 103 operators and including 17 memory
requests. The data path runs at a tiny fraction of
the memory clock speed, reducing overall clock

IEEE Communications Magazine * April 2011

D-cache

Data path

38%

Energy
saved
91%

Baseline CPU C-cores
91 pJ/instr. 8 pJ/instr.

Figure 5. Energy savings in c-cores Eliminating instruction fetch and decoding
as well as overheads such as register files, bypass paths, and ALU muxes drops
per-instruction energy by 91 percent.

energy and improving performance. With SDP,
c-cores execute faster and consume less energy
than either general-purpose processors or c-core
designs without SDP. SDP improves perfor-
mance by enabling memory pipelining and
exploiting ILP in the data path while it mini-
mizes both static and dynamic power because
fewer pipeline registers are required. In addi-
tion, synthesis can employ smaller, slower gates,
since many paths easily fit within the constraints
of the slow clock cycle time.

SLOW STATES AND FAST STATES

With SDP, one basic block from the program’s
control flow graph (CFG) executes for each
pulse of the slow clock. The execution of a basic
block begins with a slow clock pulse from the
control unit. The pulse latches live-out data val-
ues from the previous basic block and applies
them as live-ins to the current block. The next
pulse of the slow clock, which will trigger the
execution of the next basic block, will not occur
until the entire basic block is complete.

For each basic block, there is a single con-
trol state, which contains multiple substates
called fast states. The number of fast states in
a given control state is based on the number
of memory operations in the block and the
latency of the datapath operators. This means
that different basic blocks operate at different
slow clocks, however they are always a multi-
ple of the fast clock. During a basic block’s
execution, the control unit passes through fast
states in order. Some fast states correspond to
memory operations, for which the c-core sends
out a split-phase load or store request to the
memory hierarchy, which returns a few cycles
later and is received by a register connected to
the fast clock. The register holds the value
steady for the rest of the slow clock cycle. In
the meantime, memory accesses and other
operations can be performed. To allow for
variable latency due to caches, the c-core will
stall until the memory operation completes.
While most operations are scheduled at some
combinational delay relative to the slow clock

edge, memory accesses and other multiplexed
operations such as FPU operations are sched-
uled relative to the fast clock. Conservation
cores employ in-order completion of memory
requests because this minimize complexity and
power and simplifies multithreaded memory
semantics.

SDP EXAMPLE

Figure 4 shows an example of an SDP imple-
mentation of a basic block. Source code for the
block is on the right. The timing diagram, CFG,
and data path show the execution of the code as
time flows from left to right. The data path con-
tains arithmetic operators and load/store units
that correspond to each of the original pro-
gram’s operations. As shown in the timing dia-
gram, the data path logic can take multiple fast
cycles to settle while the data path makes multi-
ple memory requests.

Figure 4 shows how SDP improves energy
and performance. In conventional high-frequen-
cy multicycle designs, all live values in the basic
block would be registered at fast clock bound-
aries (i.e., at each vertical dotted line). Instead,
SDP eliminates registers altogether, reducing
latency, area, and energy. It also eliminates
many clock-tree leaf nodes, reducing clock tree
area, capacitance, and leakage. Removing regis-
ters also enables more flexible gate-level opti-
mizations.

SOURCES OF ENERGY SAVINGS FOR
CONSERVATION CORES

GreenDroid’s projected energy savings are
shown in Fig. 5. Two sources are primarily
responsible for savings: First, c-cores do not
require instruction fetch, instruction decode, a
conventional register file, or any of the associat-
ed structures. Elimination of these elements
reduces energy consumption by 56 percent. Spe-
cialization of the c-core’s datapath is responsible
for the remaining 35 percent of energy. Average
per-instruction energy drops from 91 pJ/inst to
just 8 pJ/inst.

CONCLUSION

The utilization wall will exponentially worsen the
problem of dark silicon in both desktop and
mobile processors. The GreenDroid prototype is
a demonstration vehicle that shows the wide-
spread application of c-cores to a large code
base: Android. Conservation cores will enable
the conversion of dark silicon into energy savings
and allow increased parallel execution under
strict power budgets. The prototype uses c-cores
to reduce energy consumption for key regions of
the Android system, even if those regions have
irregular control and unpredictable dependent
memory accesses. Conservation cores make use
of the selective depipelining technique to reduce
the overhead of executing highly irregular code
by minimizing registers and clock transitions. We
estimate that the prototype will reduce processor
energy consumption by 91 percent for the code
that c-cores target, and result in an overall sav-
ings of 7.4x.

118

IEEE Communications Magazine * April 2011

ACKNOWLEDGMENTS

We thank all of the members of the Green-
Droid and Conservation Core teams, including
Nathan Goulding-Hotta, Jack Sampson, Ganesh
Venkatesh, Saturnino Garcia, Jonathan Babb,
Manish Arora, Siddhartha Nath, Vikram Bhatt,
Slavik Bryksin, Po-Chao Huang, Joe Auricchio,
David Curran, Scott Ricketts, and Jose Lugo-
Martinez. The conservation core research is par-
tially funded by the National Science Foundation
under NSF CAREER Awards 06483880 and
0846152, and under NSF CCF Award 0811794.

REFERENCES

[1] J. Babb et al., “Parallelizing Applications into Silicon,”
Proc. 7th Annual IEEE Symp. Field-Programmable Cus-
tom Computing Machines, 1999.

[2] R. Dennard et al., “Design of lon-Implanted MOSFET's
with Very Small Physical Dimensions,” IEEE J. Solid-
State Circuits, Oct. 1974.

[3] N. Goulding et al., “GreenDroid: A Mobile Application
Processor for a Future of Dark Silicon,” HotChips, 2010.

[4] V. Kathail et al., “Pico: Automatically Designing Custom
Computers,” Computer, vol. 35, Sept. 2002, pp. 39-47.

[5] J. Sampson et al., “Efficient Complex Operators for
Irregular Codes,” Proc. Symp. High Perf. Computer
Architecture, Feb. 2011.

[6] M. Taylor et al., “The Raw Processor: A Scalable 32-bit
Fabric for General Purpose and Embedded Computing,”
HotChips, 2001.

[7] G. Venkatesh et al., “Conservation Cores: Reducing the
Energy of Mature Computations,” ASPLOS XV: Proc.
15th Int’l. Conf. Architectural Support for Prog. Lan-
guages and Op. Sys., Mar. 2010.

BIOGRAPHIES

STEVEN SWANSON is an assistant professor at the Universi-
ty of California, San Diego, and jointly leads the Green-
Droid project. His areas of interest include specialized
architectures for low-power computing and system-level
applications for non-volatile solid state memories. He
received his Ph.D. from the University of Washington in
2006.

MICHAEL BEDFORD TAYLOR is an assistant professor at the Uni-
versity of California, San Diego, and jointly leads the
GreenDroid project. He was lead architect of the 16-core
MIT Raw microprocessor, and co-author of Connectix
Corp’s Virtual PC, version 1.0. He received the Intel Foun-
dation Ph.D. Fellowship in 2003 and the NSF CAREER
Award in 2009. He holds an A.B. from Dartmouth College
and a Ph.D. from MIT.

IEEE Communications Magazine * April 2011

119

