
Experiences	Using	the	RISC-V	Ecosystem
to	Design	an	Accelerator-Centric	SoC	in	TSMC	16nm

Tutu	Ajayi2, Khalid	Al-Hawaj1, Aporva Amarnath2, Steve	Dai1,
Scott	Davidson4, Paul	Gao4, Gai Liu1, Anuj	Rao4,
Austin	Rovinski2, Ningxiao Sun4, Christopher	Torng1, Luis	Vega4,
Bandhav Veluri4, Shaolin	Xie4, Chun	Zhao4 Ritchie	Zhao1,

Christopher	Batten1,	Ronald	G.	Dreslinski2,
Rajesh	K.	Gupta3,	Michael	B.	Taylor4,	Zhiru Zhang1

1 Cornell	University
2 University	of	Michigan

3 University	of	California,	San	Diego
4 Bespoke	Silicon	Group,	(U.	Washington/	UC	San	Diego)

MICRO-50 October 14, 2017

Computer	Architecture	Research	Prototyping
Prototyping	is important	to	complement	
the	results	of	simulation-based	research

Many	benefits	to	prototyping	:

• Validating	assumptions
• Validating design	methodologies
• Measuring real	system-level	performance	
and	energy efficiency

• Creating platforms	for	software	research
• Building	credibility	with	industry
• Building	intuition	for	physical	design
• Pedagogical benefits
• Building	real	things	is	fun!

Celerity	::	Introduction

The	Continuing	Need	for	Building	Prototypes

The	rise	of	the dark	silicon	era [1],	in	which	an	
increasing	fraction	of	silicon	must	remain	
unpowered,	is	motivating	an	increasing	trend	
towards	accelerator-centric	architectures.

Specialization	research	requires:

• New	simulation-based evaluation	
methodologies	based	on	accelerators	[2]

• New	prototypingmethodologies	for	rapidly	
building	accelerator-centric	prototypes

Unfortunately,	building	research	prototypes	can	
be	tremendously	challenging.	

“Shrink” “Dim”

“Specialize” “Magic”

Celerity	::	Introduction

The Four	Horsemen	of	the Coming

Dark	Silicon Apocalypse

[1]	M.	Taylor.	“Is	Dark	Silicon	Useful?	Harnessing	the	Four	Horsemen	of	the	Coming	Dark	Silicon	Apocalypse,”	In	Design	Automation	Conference,	2012.
[2]	Y.	Shao,	et	al.	“Aladdin:	A	Pre-RTL,	Power-Performance	Accelerator	Simulator	Enabling	Large	Design	Space	Exploration	of	Customized	Architectures”,	ISCA	2014

Prototyping with	the	RISC-V	Software/Hardware Ecosystem

Celerity	::	Introduction

Software	Toolchain

• A	complete,	off-the-shelf	software	stack	(e.g.,	binutils,	GCC,	newlib/glibc,	
Linux	kernel	&	distros)	for	both	embedded	and	general-purpose

Architecture

• RISC-V	ISA	specification	designed	to	be	both	modular	and	extensible,	with	
a	small	base	ISA	and	optional	extensions

Microarchitecture

• On-chip	network	specifications	and	implementations	(NASTI,	TileLink)
• RISC-V	processor	implementations	for	both	in-order	(Berkeley	Rocket)	and	
out-of-order	(Berkeley	BOOM)	cores

Physical	Design

• Previous	spins	of	chips	for	reference
Testing

• Standard	core	verification	test	suites	+	Turn-key	FPGA	gateware

Application
Algorithm

Operating System

Instruction Set Architecture

Register-Transfer Level

Circuits

Programming Language

Compilers

Microarchitecture

Gate-Level

Technology
Devices

The	Celerity	System-on-Chip

Celerity, an	accelerator-centric	SoC
with	a	tiered	accelerator	fabric

that	targets highly	performant	and	energy-
efficient	embedded	systems

Funded	by	the	DARPA	CRAFT	program,
“Circuit	Realization	At	Faster	Timescales”

The	goal	was	to	develop	new	methodologies	to	
design	chips	more	quickly

Celerity	::	Introduction

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

We	leveraged	the	RISC-V	software/hardware	ecosystem as we	built	Celerity,	and	we	believe	it	was	
instrumental	in	enabling	a	team	of	20	graduate	students	to	tape	out	a	complex	SoC	in	only	9	months

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Ba
se
Ju
m
pF

SB
	a
nd

	M
ot
he
rb
oa
rd

Celerity:	Chip	Overview

• TSMC	16nm	FFC
• 25	mm2 die	area	(5mm	x	5mm)
• ~385	million	transistors
• 511	RISC-V	cores

• 5	Linux-capable	RV64G	Berkeley	Rocket	cores
• 496-core RV32IM mesh	tiled	array	“manycore”
• 10-core	RV32IM	mesh	tiled	array	(low	voltage)

• Binarized Neural	Network	Specialized	Accelerator
• On-chip	synthesizable	PLLs	and	DC/DC	LDO

• Developed	in-house
• 3	Clock	domains

• 400	MHz	– DDR	I/O
• 625	MHz	– Rocket	core	+	Specialized	accelerator
• 1.05	GHz	– Manycore	array

• 672-pin	flip	chip	BGA	package
• 9-months	from	PDK	access	to	tape-out

Celerity	::	Introduction

http://www.opencelerity.org

Agenda

• Introduction
• For	each	Tier:

• What	did	we	build?
• How	did	we	build	it?
• RISC-V	Ecosystem	Successes
• RISC-V	Ecosystem	Challenges

• Conclusion

Celerity	::	Introduction

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Ba
se
Ju
m
pF

SB
	a
nd

	M
ot
he
rb
oa
rd

Celerity:	General-Purpose Tier

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	• Challenges	with	RISC-V

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Ba
se
Ju
m
pF

SB
	a
nd

	M
ot
he
rb
oa
rd

General-Purpose	Tier	Overview

• 5 Berkeley	Rocket	Cores	(RV64G)
• Workload

• General-purpose	compute
• Operating	system	(e.g.	Linux	&	TCP/IP	Stack)
• Interrupt	and	Exception	handling
• Program	dispatch	and	control	flow

• Interface
• Interface	to	off-chip	I/O	and	other	peripherals
• 4	Cores	connect	to	the	manycore array
• 1	Core	interfaces	with	the	BNN

• Memory
• Each	core	executes	independently	within	its	
own	address	space

• Memory	management	for	all	tiers

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	• Successes	with RISC-V	• Challenges	with	RISC-V

M
an

yc
or
e

BN
N

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

Ba
se
Ju
m
pF

SB
	

Ba
se
Ju
m
pM

ot
he
rb
oa
rd

Berkeley Rocket	Cores

• 5	Berkeley	Rocket	Cores
(https://github.com/freechipsproject/rocket-chip)

• Generated	from	Chisel
• RV64G	ISA
• 5-stage,	in-order,	scalar	processor
• Double-precision	floating	point
• I-Cache:	16KB	4-way	assoc.
• D-Cache:	16KB	4-way	assoc.

• Physical	Implementation
• 625	MHz	(Critical	path	in	FSB)
• 0.19	mm2 per	core

http://www.lowrisc.org/docs/tagged-memory-v0.1/rocket-core/

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Design	Iterations
2.	Alpaca

3.	Bison 4.	Coyote

1.	Loopback

B
as

eJ
um

p
M

ot
he

rb
oa

rd

B
as

eJ
um

p
FS

B Loopback FIFO

B
as

eJ
um

p
M

ot
he

rb
oa

rd

B
as

eJ
um

p
FS

B

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache
N

A
ST

I RISC-V Rocket Core

I-CacheD-Cache

RoCC AcceleratorB
as

eJ
um

p
M

ot
he

rb
oa

rd

B
as

eJ
um

p
FS

B

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	• Successes	with	RISC-V	•	Challenges	with	RISC-V

Implemented	NASTI	bridge	and	connected	rocket	coreBaseline	design	to	validate	FSB	and	Northbridge

Implemented	accelerator	connected	through	Blackboxed RoCC Modularized	RoCC	interface	to	accelerator

B
as

eJ
um

p
M

ot
he

rb
oa

rd

B
as

eJ
um

p
FS

B N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

Accelerator

… …

BaseJump Motherboard Celerity SoC

Off-Chip	Interface	and	Northbridge

• Open-source	BaseJump	IP	Library
• http://bjump.org

• Front	Side	bus
• BaseJump	Communication	Link
• High	Speed	(DDR)	Source-Synchronous	
Communication	Interface

• Packaging
• Modified	BaseJump	BGA	Package	and	I/O	Ring

• Validation
• BaseJump	Super	Trouble	PCB (Daughter	Card)
• BaseJump	Motherboard	(ZedBoard)

DRAM
Controller

Ethernet

SSD

L2 $

JTAG

B
as

eJ
um

p
FS

B
 &

 F
PG

A
 B

rid
ge

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

N
A

ST
I RISC-V Rocket Core

I-CacheD-Cache R
oC

C

B
as

eJ
um

p
FP

G
A

 B
rid

ge

Clocks

.	.	.

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

RISC-V	Successes

• Berkeley	Rocket	Cores
• Very	quickly	generated	validated	designs
• Vibrant	ecosystem	to	provide	feedback	and	support
• Test	and	Validation	infrastructure
• Software	and	Toolchain	support

• Flexible	memory	system	and	peripheral	I/O	support
• Easy	integration	with	BaseJump IP	Library

• Balances	extensibility	and	software	support

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	• Successes	with RISC-V	•	Challenges	with	RISC-V

RISC-V	Lessons	Learned

• Component	stability,	compatibility	and	versioning
• Chisel	adoption
• RTL	simulationissues

• Deciphering	Chisel	generated	RTL
• Register	initialization	and	X-Pessimism

Celerity	::	General-Purpose	Tier	::	What	is	it?	• How	did	we	build	it?	• Successes	with RISC-V	•	Challenges	with	RISC-V

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Ba
se
Ju
m
pF

SB
	a
nd

	M
ot
he
rb
oa
rd

Celerity:	Massively	Parallel Tier

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

Developed	by	Taylor’s		
Bespoke	Silicon	Group	@	UW	

Celerity	::	Massively Parallel	Tier	::	What	is	it	?	• How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

http://bjump.org/manycore

The	tiled	architecture

The	Vanilla	core: Simple	but	efficient	to	run	C	
code	without	any	toolchain	modification

• ISA:	RV32IM	
• Pipeline:	5-stage,	fully	forwarded,	in-
order,	single	issue

• Scratchpad	memory:	4KB	for	I	Mem,	
4KB	for	D	Mem

• Second	Tape-out	of	this	tiled	
architecture	(10-core)

...

… … …...

...

...

...

… … …

NOC
Router

RISC-V
Core

M
EM

C

ro
ss

ba
r

DMEM

IMEM

496	RISC-V	Cores

Celerity	::	Massively Parallel	Tier	::	What	is	it	? • How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Mesh	Network

• Link	Protocol:	Forward/Reverse	paths,	
parameterizable address/data	bits

• Credit-Based:	Each	packet	will	be	
acknowledged	with	response

• Flow	control:	Endpoint	controls	the	
number	of	the	outstanding	packet.

• Router:	simple	XY-dimension	routing,	
buffered

17Celerity	::	Massively	Parallel	Tier	::	What	is	it	? • How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

...

...

...

Forward packet
Forward response
Reverse packet
Reverse response

buffered

router

tile
link protocol

Manycore Links	to	General-Purpose	and	Specialized	Tier

Cross	Clock	Domain	interface

• To	General-Purpose	Tier:	Convert	RoCC	to	link	
protocol,	support	configuring	DMA,	write	and	
reset	manycore etc.

• To	Specialized	Tier:	Aggregate	link	interface	to	
increase	the	bandwidth	and	throughput	

A
sy

nc
 F

IF
O

En
dp

oi
nt

D
M

A

L1D Cache

Core

req

resp

cmd
resp
busy

link_to_rocc Router

...

… … …...

...

...

...

… … …

Rocket

Rocket

Rocket

Rocket

RoCC

RoCC

RoCC

RoCC

General-Purpose Tier
clock domain

Massively Parallel Tier
clock domain

Specialized Tier
clock domain

A
sy

nc

FI
FO

A
sy

nc

FI
FO

A
sy

nc

FI
FO

A
sy

nc

FI
FO

32

32

32

32

64

64

64

Celerity	::	Massively Parallel	Tier	::	What	is	it	? • How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Cross Clk
Domain

Cross Clk Domain

Programming	Model

Producer-consumer	programming	model:

extended	instructions	for	efficient	inter-tile	
synchronization

• Load	Reserved	(lr.w):	load	value	and	set	
the	reservation	address

• Load-on-broken-reservation	(lr.lbr):	stall	if	
the	reserved	address	didn’t	written	by	
other	cores

• Consumer: wait	on	<address,	value>
• Benefits:	No	polling,	no	interrupt,	fast	
response,		stalled	pipeline	can	save	power

Input
Split Join

Feedback

Pipeline

Output

Producer-consumer Programming

DMEM

Core A Core B

NoC

Remote store

Reserved Address

Invoke pipeline
Stalled Pipeline

waiting for events

Celerity	::	Massively Parallel	Tier	::	What	is	it	? • How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Thread	Density Comparison

[1]	J.	Balkind,	et	al.	“OpenPiton	:	An	Open	Source	Manycore	Research	Framework,”	in	the	International	Conference	on	Architectural	Support	for	Programming	Languages	and	Operating	Systems	(ASPLOS),	2016.
[2]	R.	Balasubramanian,	et	al.	"Enabling	GPGPU	Low-Level	Hardware	Explorations	with	MIAOW:	An	Open-Source	RTL	Implementation	of	a	GPGPU,"	in	ACM	Transactions	on	Architecture	and	Code	Optimization	(TACO). 12.2	(2015):	21.

Configuration
Normalized	Area	

(32nm)

Area	

Ratio

Celerity	Tile
@16nm

D-MEM	=	4KB
I-MEM	=	4KB

0.024	*	(32/16)2
=	0.096	mm2 1x

OpenPiton	Tile
@32nm

L1	D-Cache	=	8KB
L1	I-Cache	=	16KB

L1.5/L2	Cache	=	72KB
1.17	mm2 [1] 12x

Raw	Tile
@180nm

L1	D-Cache	=	32KB
L1	I-SRAM	=	96KB

16.0	*	(32/180)2
=	0.506	mm2 5.25x

MIAOW	GPU
Compute	Unit	Lane

@32nm

VRF	=	256KB
SRF	=	2KB

15.0	/	16
=	0.938	mm2	[2] 9.75x

Celerity	::	Massively Parallel	Tier	::	What	is	it	? • How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

• Timing:	1.05	GHz	@	16	nm	
• Area:	0.024	mm2 @	16	nm
• Si	Utilization	Ratio:	90%

Normalized	Physical	Threads	(ALUops)	per	Area

How	did	we	build	the	massively	parallel	tier?

Basejump
STL	library

Data	flow

NoC

Arithmetic	

…

RISC-V	tool	
chain

Assembly	
Test	Suite

Modified	
Runtime

C	
Compiler

…
In	house

Design Testing

I Mem D Mem
RF

Hard-macro

One tile

Floorplan

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Celerity	::	Massively Parallel	Tier	::	What	is	it	?	• How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Hierarchical	Flow

RISC-V	Ecosystem	Successes

• Modular	ISA
• Flexible	for	both	complex	cores	(i.e.	Rocket) and simple	cores	(i.e.	Vanilla)

• Extensible	RoCC	interface
• 4 customizable	instructions:	we	used	one

• Comprehensive	assembly test	suite(434	test	cases)
• Off-the-shelf	toolchain

Celerity	::	Massively Parallel	Tier	::	What	is	it	?	•	How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Building	up	the	RISC-V	Ecosystem

We provide	an	efficient	RV-32IM implementation	

in	System	Verilog.

We consolidated	Information	about	RoCC	that

was	scattered across	the	internet.

With	Celerity

• Efficient	open	source	core
• Based	on	Systemverilog
• Silicon	proven

• Public	RoCC document	V.2	
[bjump.org/rocc_doc]

• Exported	RoCC	interface	on	top	level

Celerity	::	Massively Parallel	Tier	::	What	is	it	?	•	How	did	we	build	it	?	• Successes	with RISC-V	•	Challenges	with	RISC-V

Celerity:	Specialization	Tier

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

Celerity	::	Specialization	Tier	::	What	is	it	?	• How	did	we	build	it	?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache
N

A
ST

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

N
A

ST
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Ba
se
Ju
m
pF

SB
	a
nd

	M
ot
he
rb
oa
rd

Case	Study:	Mapping	Flexible	Image	Recognition	to	a	Tiered	Accelerator	Fabric

Three	steps	to	map	applications	to	tiered	accelerator	fabric:

Step	1. Implement	the	algorithm	using	the	general-purpose	tier
Step	2. Accelerate	the	algorithm	using	either	the	massively	

parallel	tier	OR the	specialization	tier
Step	3. Improve	performance	by	cooperatively	using	both	the	

specialization	AND the	massively	parallel	tier

Convolution Pooling Convolution Pooling Fully-connected

bird	(0.02)
boat	(0.94)

cat	(0.04)
dog	(0.01)

Massively	Parallel Tier

Specialization Tier

General-Purpose	Tier

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Step	1:	Algorithm	to	Application
Binarized	Neural	Networks

• Training	usually	uses	floating	point,	while	inference	usually	uses	lower	precision	weights	and	
activations	(often	8-bit	or	lower)	to	reduce	implementation	complexity

• Rastergari et	al.	[3]	and	Courbariaux et	al.	[4]	have	recently	shown	single-bit	precision	
weights	and	activations	can	achieve	an	accuracy	of	89.8%	on	CIFAR-10

• Performance	target	requires	ultra-low	latency	(batch	size	of	one)	and	
high	throughput	(60	classifications/second)

[3]	M.	Rastergari,	et	al.	“Xnor-net:	Imagenet classification	using	binary	convolutional	neural	networks,”	In	European	Conference	on	Computer	Vision,	2016.
[4]	M.	Courbariaux,	et	al.	“Binarized	neural	networks:	Training	deep	neural	networks	with	weights	and	activations	constrained	to	+1	or	-1,”	arXiv preprint	arXiv:1602.02830	(2016).

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Step	1:	Algorithm	to	Application
Characterizing	BNN	Execution

• Using	just	the	general-purpose	tier	would be	200x	slower	than	the performance	target	(60	classifications	/	sec)
• Binarized	convolutional	layers	consume	over	97%	of	dynamic	instruction	count
• Perfect	acceleration	of	just	the	binarized	convolutional	layers	is	still	5x	slower	than	performance	target
• Perfect	acceleration	of	all	layers	using	the	massively	parallel	tier	could	meet	performance	target	
but	with	significant	energy	consumption

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Step 2:	Application	to	Accelerator
BNN	Specialized	Accelerator

1. Accelerator	is	configured	
to	process	a	layer	
through	RoCC	command	
messages

2. Memory	Unit	starts	
streaming	the	weights	
into	the	accelerator	and	
unpacking	the	binarized	
weights	into	appropriate	
buffers

3. Binary	convolution	
compute	unit	processes	
input	activations	and	
weights	to	produce	
output	activations

Celerity	::	Specialization	Tier	::	What	is	it	?	• How	did	we	build	it	?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

O
ff-
Ch

ip
	I/
O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

Step	2:	Application	to	Accelerator
General-Purpose	Tier	for	Weight	Storage

• The BNN specialized accelerator
can use one of the Rocket cores’
caches to load every layer’s
weights

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Step	3:	Assisting	Accelerators
Massively	Parallel	Tier	for	Weight	Storage

O
ff-
Ch

ip
	I/
O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized accelerator
can use one of the Rocket cores’
caches to load every layer’s
weights

• Each core in the massively
parallel tier executes a remote-
load-store program to
orchestrate sending weights to
the specialization tier via a
hardware FIFO

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Performance	Benefits	of	Cooperatively	Using	the	Massively	Parallel	
and	the	Specialization	Tiers

General-Purpose Tier Software implementation assuming ideal performance estimated
with an optimistic one instruction per cycle

Specialization Tier Full-system RTL simulation of the BNN specialized accelerator
running with a frequency of 625 MHz

Specialization + Massively
Parallel Tiers

Full-system RTL simulation of the BNN specialized accelerator
with the weights being streamed from the manycore

General-Purpose Tier Specialization Tier Specialization +
Massively Parallel Tiers

Runtime per
Image (ms) 4,024 20 3.3

Power (Watts) 0.2 – 0.5 0.2 – 0.5 0.5 – 2.0

Improvement in
Perf / Power 1x ~200x ~400x

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Design	Methodology

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers	&	

Adapters

Final	RTL

void bnn::dma_req() {
while(1) {
DmaMsg msg = dma_req.get();

for (int i = 0; i < msg.len; i++) {
HLS_PIPELINE_LOOP(HARD_STALL, 1);

int req_type = 0;
word_t data = 0;
addr_t addr = msg.base + i*8;

if (type == DMA_TYPE_WRITE) {
data = msg.data;
req_type = MemReqMsg::WRITE;
} else {
req_type = MemReqMsg::READ;
}

memreq.put(MemReqMsg(req_type,addr,data));
}

dma_resp.put(DMA_REQ_DONE);
}
}

Including

RoCC	Interfaces

Celerity	::	Specialization	Tier	::	What	is	it	?	• How	did	we	build	it	?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Design	Methodology

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers	&	

Adapters

Final	RTL Hard	Macro

ASIC	Flow

Constraints

Files

Celerity	::	Specialization	Tier	::	What	is	it?	• How	did	we	build	it?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Including

RoCC	Interfaces

RISC-V	Ecosystem	Successes	and	Challenges

Successes

• The	RoCC	command	and	memory	interface	were	both	
significant	successes.	We	connected the accelerator	
with	no	changes	to	RV64G	core,	just	as	we	did	for	the	
manycore	array	in	the	massively	parallel tier.

Celerity	::	Specialization	Tier	::	What	is	it	?	• How	did	we	build	it	?	•	Successes	with	RISC-V	•	Challenges	with	RISC-V

Challenges

• Small	challenge	in	the	RoCC	accelerator	
interface	at	the	specific	commit	we	chose	
to	use

• Memory	management	unit	in	RV64G	
used	only	physical	addresses

• We	did	a	small	workaround	to	give	us	
virtual	addresses	as	well	

• This	challenge	has	already	been	fixed	
upstream

The	Celerity	System-on-Chip

Celerity, an	accelerator-centric	SoC
with	a	tiered	accelerator	fabric	that

targets	highly	performant	and	energy-efficient	embedded	
systems

Celerity’s goal was	to	develop	new	methodologies	to	
design	chips	more	quickly

We	believe	the	RISC-V	software/hardware	ecosystem was	
instrumental	in	enabling	a	team	of	20	graduate	students	

to	tape	out	a	complex	SoC in	only	9	months

General-Purpose

Tier

Massively	Parallel

Tier

Specialization

Tier

We	thank	the	many	contributors	to	the	open-source	RISC-V	
software	and	hardware	ecosystem	with	special	thanks	to	U.C.	

Berkeley	for	forming	the	RISC-V	ecosystem

Celerity	::	Conclusion

Acknowledgements:	DARPA,	under	the	CRAFT	program

Special	thanks	to	Dr.	Linton	Salmon
for	program	support	and	coordination

http://www.opencelerity.org

