
BaseJump STL:
SystemVerilog Needs 

a Standard Template Library for Hardware Design

Michael Bedford Taylor
Bespoke Silicon Group

University of Washington

http://bjump.org/stl



The Celerity Open Source Tiered Accelerator Fabric
Celerity: 9-months total time to tapeout, w/ Cornell & Mich

511 RISC-V Cores
496-core manycore    (BaseJump Manycore)
High Speed I/O & SoC Fabric
10-core always on manycore  (“)
5 Linux-capable cores (Berkeley Rocket)
Binarized Neural Network in HLS
1 GHz Frequencies

[IEEE Micro, Mar/Apr 2018]
[Hotchips 2017]

TSMC 16FFC 5x5mm

DARPA 
CRAFT



The Celerity Open Source Tiered Accelerator Fabric
Celerity: 9-months total time to tapeout, w/ Cornell & Mich

511 RISC-V Cores
496-core manycore    (BaseJump Manycore)
High Speed I/O & SoC Fabric
10-core always on manycore  (“)
5 Linux-capable cores (Berkeley Rocket)
Binarized Neural Network in HLS
1 GHz Frequencies

500B RISC-V Instructions Per Second
World record for RISC-V performance
Beats prior record by 100X

100% Open Source (http://opencelerity.org)

[IEEE Micro, Mar/Apr 2018]
[Hotchips 2017]

DARPA 
CRAFT

TSMC 16FFC 5x5mm

http://opencelerity.org/


Accelerating the creation of discrete accelerators

H
DL

 D
es

ig
n

You Do This Part

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org



Accelerating the creation of discrete accelerators

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library
For SystemVerilog

[DAC 2018]

You Do This Part

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Accelerating the creation of discrete accelerators

BaseJump Socket:
Standardized IO Padring

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library

For SystemVerilog

[DAC 2018]

You Do This Part

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Accelerating the creation of discrete accelerators

BaseJump Socket:
Standardized IO Padring

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library

For SystemVerilog

[DAC 2018]

You Do This Part

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Accelerating the creation of discrete accelerators

BaseJump Socket:
Standardized IO Padring

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library
For SystemVerilog

[DAC 2018]
BaseJump Socket:
Standardized BGA 

Package

You Do This Part

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Accelerating the creation of discrete accelerators

BaseJump Socket:
Standardized IO Padring

BaseJump
Motherboard

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library
For SystemVerilog

[DAC 2018]
BaseJump Socket:
Standardized BGA 

Package

BaseJump:
Open FPGA
Firmware

You Do This Part

Click!!!

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Accelerating the creation of discrete accelerators

BaseJump Socket:
Standardized IO Padring

BaseJump
Motherboard

H
DL

 D
es

ig
n

BaseJump STL:
Standard Template

Library
For SystemVerilog

[DAC 2018]
BaseJump Socket:
Standardized BGA 

Package

BaseJump:
Open FPGA
Firmware

You Do This Part ZedBoard:
Arm Core + Xilinx IP

Click!!!

BASEJUMP: A Fully Open-Source ASIC Stack

BaseJump: Open Source DNA For ASICs

http://bjump.org

((the focus of this talk)



Basejump: Early Adopters

DARPA CRAFT (16nm) NSF SaTC Large (Crypto)

NSF SaTC Med 
(Security)

bjump.org

(DARPA
PERFECT)



BaseJump STL:
SystemVerilog Needs 

a Standard Template Library for Hardware Design

80% of the code for Celerity was 
implemented using BaseJump STL



Introduction: A Thought Experiment

If (width == 32)
fft_32()

else if (width == 16)
fft_16()

What if we translate this code into software or hardware,
But we never actually use the fft_32 functionality?



Comparing the cost of unused functionality: HW vs SW

If (width == 32)
fft_32()

else if (width == 16)
fft_16()

In software, the unused code:
- occupies cheap storage
- barely affects performance, power, cost, or energy



Comparing the cost of unused functionality: HW vs SW

If (width == 32)
fft_32()

else if (width == 16)
fft_16()

In software, the unused code:
- occupies cheap storage
- barely affects performance, power, cost, or energy

In hardware, the unused code:
- occupies die area, routing  ($)
- creates new critical paths (ns)
- has static power (W)
- dissipates dynamic energy 

through accidental toggles (pJ)
Unused Code is Way More Costly in HW than SW!



The Need for HW Metaprogramming

Programming:           Writing code to specify the functionality of computation

Metaprogramming:  Writing code to specify the code for a computation

Let’s use the term HW Metaprogramming for this. 

If (width == 32)
fft_32()

else if (width == 16)
fft_16()

If (width == 32)
fft_32()

else if (width == 16)
fft_16()

Functionally correct even
if width is never 32.

If width is never 32, this
is the hardware I want to generate.



But Why Not Just Write What We Need?

fft_16() Just code-to-fit what you need; the time honored tradition.

It works! But this is also why HW is in the dark ages.

Why?



But Why Not Just Write What We Need?

fft_16() Just code-to-fit what you need; the time honored tradition.

It works! But this is also why HW is in the dark ages.

Why?

No code reuse! Everything is exactly fit to the current situation and must
be re-written to the new situation.



But Why Not Just Write What We Need?

fft_16() Just code-to-fit what you need; the time honored tradition.

It works! But this is also why HW is in the dark ages.

Why?

No code reuse! Everything is exactly fit to the current situation and must
be re-written to the new situation.

In order for hardware to scale like software, we need to make code reuse the
common case. We need to be able to build great libraries.

But we need metaprogramming to make those libraries efficient so that the
implementations are just as efficient as code-to-fit, and there is near-zero unused HW.



Enter the Generator: Metaprogramming-First HDLs

Level 1: Verilog + vpp, Perl – printf code
Level 1.1: Verilog + python – printf code
Level 2: Stanford Genesis2

Perl Metaprogramming Composition Language

SystemVerilog leaf hardware

Level 3: MyHDL [Linux Journal 2004]

Python-embedded HDL

Level 3: Chisel [DAC 2012] 

Scala-embedded HDL
PyMTL, Pyrope & many others



But SystemVerilog Has SuperPowers Too

Concise; no language embedding artifacts

Pervasive Tool Support for Verification and Backend Design

Active Language Development (e.g. IEEE 1800-2017)

Lots of Users; Widely Taught

Does not require functional programming language experience

How far can we push SystemVerilog
for HW Metaprogramming and Library support? 



Metaprogramming Support In SystemVerilog

Generate For
- Construction of variable amounts of hardware

Generate If
- Conditional Construction of Hardware

Parameter
- Construction of variable widths of hardware

Structs & Interfaces
- Named bundles of wires à same code, swap in different struct

Macros (eek!)
- Generate-by-text-manipulation; like C



Inspiration from Software

C++’s Standard Template Library (STL)
- Implements common software datastructures

- Best-of-class data structure & algo implementations specialized for:
- your data type 
- particular input sizes

- Tight language integration

- Before this, everybody had to recode the same data structure code



Inspiration from Software

C++’s Standard Template Library (STL)
- Implements common software datastructures

- Best-of-class data structure & algo implementations specialized for:
- your data type 
- particular input sizes

- Tight language integration

- Before this, everybody had to recode the same data structure code
If SystemVerilog supports metaprogramming, why doesn’t it have 
a standard library for HW design?



BaseJump STL

C++’s A Standard Template Library (STL) for System Verilog

- Implements common software datastructures hardware structures

- Best-of-class data HW structure & algo implementations specialized for:

- your data type 

- particular input sizes

- Tight language integration

- Before this, everybody had to recode the same data HW structures

What else should we add?



Requirements for a HW STL

1. Portability Interface
The STL shall provide interfaces that allow a design to be moved unchanged 
between ASIC process nodes and vendors, as well as to different FPGA vendors.

bsg_mem/

...
bsg_mem_1r1w_sync.v

Portable Verilog STL

basejump_stl/

bsg_math/
...



Requirements for a HW STL

1. Portability Interface
The STL shall provide interfaces that allow a design to be moved unchanged 
between ASIC process nodes and vendors, as well as to different FPGA vendors.

bsg_mem/

hard/
tsmc40lp/

bsg_mem/

...
bsg_mem_1r1w_sync.v

bsg_mem_1r1w_sync.v

Portable Verilog STL

Foundry-specific

”override files”

basejump_stl/



Requirements for a HW STL

1. Portability Interface
The STL shall provide interfaces that allow a design to be moved unchanged 
between ASIC process nodes and vendors, as well as to different FPGA vendors.

bsg_mem/

hard/
tsmc40lp/

bsg_mem/

...
bsg_mem_1r1w_sync.v

bsg_mem_1r1w_sync.v

Portable Verilog STL

Foundry-specific

”override files”

basejump_stl/

Only a subset of files need to be customized for a process.



Requirements for a HW STL

1. Portability Interface
The STL shall provide interfaces that allow a design to be moved unchanged 
between ASIC process nodes and vendors, as well as to different FPGA vendors.

bsg_mem/

hard/
tsmc40lp/

bsg_mem/

...
bsg_mem_1r1w_sync.v

bsg_mem_1r1w_sync.v...
tsmc16ffc/

Portable Verilog STL

Foundry-specific
”override files”

Port to new
foundry

basejump_stl/

bsg_mem/
bsg_mem_1r1w_sync.v

Example:
250nm to 180nm in 3 days



Requirements for a HW STL

2.  Portable Leaf Building Blocks (Corollary to #1)
The STL shall provide portable interfaces to leaf building blocks:

- SRAMs
- Synchronizers
- RFs
- Clock Generators
- I/Os

See the paper (or the code) for the nuances.



Requirements for a HW STL

3. Efficient Hardware Primitives
The STL shall provide efficient implementations for all commonly used 
hardware primitives.



BaseJump STL Components

FIFOs, stream mergers, round-robin arbitrators, serial-to‐parallel converters

Floating point Add, Multiply, compare, CORDIC functions

network-on‐chip building blocks RISC‐V interface logic

asynchronous fifos and interfaces

synthesizable digital clock generator

high-speed I/O source-synchronous interface

front side bus (high-speed bridge between off-chip and on‐chip worlds)

portability layer for SRAMs

popcount, flop trays, decoders, lfsr, multiplies, flexible muxes, transposers 
crossbars, gray_to_binary, priority encoder, thermometer encoders, counters

SoC configuration interface (like SPI or JTAG)

Test bench blocks; reset generators, delay lines, clock gens

bsg_misc

bsg_async
bsg_clk_gen
bsg_comm_link

bsg_dataflow

bsg_fsb
bsg_mem

bsg_math
bsg_noc

bsg_tag

bsg_test

Package Example HW Primitives

Several Hundred Modules, All Parameterized



Requirements for a HW STL

4. Latency Insensitive Design
To support interfacing of modules that have internal state, the STL shall:
• provide the right set of latency-insensitive interfaces that allow hardware to 

be composed correctly without considering the internals of composed blocks.
(e.g., no waveform diagrams)

• This overhead of these interfaces, in terms of area, power, or performance 
shall be near zero.
• The interfaces shall allow wire delay to be managed in a portable way



Typical “Valid and Ready” interface

P Cvalid

ready

gogo

Valid and Ready cannot depend on each other.

Nice, because valid and ready signals have almost an entire cycle to traverse
the distance between P and C, or to be computed internally.

Guaranteed no combinational loops.

Good design practice for top-level, long-distance SOC connections that are almost
a cycle of wire delay.

data



But it’s too weak to describe very simple 
hardware primitives.

valid

valid

ready

ready

I can only take one element.
How do I commit to taking an
element without examining
the valids? 

valid

valid

ready

ready

I want to forward an element
along one of two paths.

But I’m not allowed to see if one
of the paths is free.

These are “demanding” interfaces because they require up-front information before
asserting their output.



Two interfaces are sufficient for short-
range connections; and the third for 
long-range connections.
ready -> valid      “r->v” 

producer:  I demand r up front and then will decide v
consumer: I volunteer r up front and will wait for v

valid   -> ready    “v->r”
producer: I volunteer v up front and wait for r
consumer: I demand v up front and then will decide r

valid & ready      “v&r” (for long range connections)
producer: I volunteer v up front

consumer: I volunteer r up front

v
r

v
r

v
r



Pairing Producers and Consumers

Helpful Demanding
Helpful rv->&          v->r
Demanding r->v        Use FIFO (universal converter)                   

Consumer

Simple rule: Demanding interfaces must be paired with Helpful ones.

Pr
od

uc
er



Given the choice, what should I make a producer 
or consumer interface?

As helpful as possible .... without adding new logic:

This is the most natural interface for that module.

If you have to add more logic to make the module more 
helpful, the module may be connecting to another helpful 
module, and you wasted logic.



Requirements for a HW STL

5. Parameterization
The STL primitives shall be elegantly parameterized to allow them to be 
reusable. 

Parameters should be used to:
• capture slight variations in common modes of usage
• Improve code factoring
• Reduce bugs
• Reduce module count

Moreover, the implementations shall be pervasively specialized based on the 
input parameters, to allow code that is more efficient than can be reasonably 
written by humans under time constraints.



Requirements for a HW STL

6. Efficient Plumbing
The STL should provide hardware primitive implementations that support 
efficient data movement. 

Primitives to support efficient, minimalist, higher-level primitives like FIFOs (all 
common varieties), virtual channels, credit-counters, crossbars, and network 
routers...



Support for Metaprogramming

7. Bug-reducing coding style
No low-true signals. 

No non-synthesizable code (except for assertions and display statements)

Consistent naming:
_i – input; _o – output; _p – parameter, _r – register 

width_p – standard width param name
els_p – standard elements param name

Non-synthesizable modules for testing clearly marked in module names with 
_nonsynth_



Requirements for a HW STL

8. Support for Composable Metaprogramming

Some support already there – see my SystemVerilog wishlist later in this talk! 

See the paper for how we handled it without these features.



Requirements for a HW STL

9. A Testing Suite (!)

Must test all combinations of inputs and all combinations of 
supported parameters.

Although performance is the main draw, the true 
savings in the STL is that the code has already been 
tested and debugged, and you will save development 
time and NRE*! 

[ASPLOS 2018, Khazraee et al.]



SystemVerilog Wishlist for Metaprogramming

1. Synthesis support for arrays of interfaces
Currently have to split up interfaces into arrays of structs



SystemVerilog Wishlist for Metaprogramming

1. Synthesis support for arrays of interfaces
Currently have to split up interfaces into arrays of structs

2. Tolerance for Zero-width signals
With els_p as an input param, when els_p = 1, the width of a pointer is 0 bits.



SystemVerilog Wishlist for Metaprogramming

1. Synthesis support for arrays of interfaces
Currently have to split up interfaces into arrays of structs

2. Tolerance for Zero-width signals
With els_p as an input param, when els_p = 1, the width of a pointer is 0 bits.

3. Make Default Parameters Optional
Often there is no good default;  we want to force user to specify it.



SystemVerilog Wishlist for Metaprogramming

1. Synthesis support for arrays of interfaces
Currently have to split up interfaces into arrays of structs

2. Tolerance for Zero-width signals
With els_p as an input param, when els_p = 1, the width of a pointer is 0 bits.

3. Make Default Parameters Optional
Often there is no good default;  we want to force user to specify it.

4. True type polymorphism
Pass struct or type as a parameter



SystemVerilog Wishlist for Metaprogramming

5. Declaration of bit widths with [0+:width_p] notation



SystemVerilog Wishlist for Metaprogramming

5. Declaration of bit widths with [0+:width_p] notation
6. Simple Bit Width Inference

With an easy way to see inferred widths



SystemVerilog Wishlist for Metaprogramming

5. Declaration of bit widths with [0+:width_p] notation
6. Simple Bit Width Inference

With an easy way to see inferred widths

7. Better Generate Statement Debugging
i.e. a preprocessor option to see expanded version.



SystemVerilog Wishlist for Metaprogramming

5. Declaration of bit widths with [0+:width_p] notation
6. Simple Bit Width Inference

With an easy way to see inferred widths

7. Better Generate Statement Debugging
i.e. a preprocessor option to see expanded version.

8. Language Construct to indicate signal is unused
Allows uniform interfaces to leaf blocks without tool complaining. 

e.g. some memories may require a reset line and some may not.



Future Steps

Can the EDA Community move forward with 
the standardization of an STL for 
SystemVerilog?



Thanks!

Special Thanks:

BaseJump STL Users 
(40+ users, 4 tape-outs, 40+ tape-ins, 2 FPGAs)

Linton Salmon & CRAFT Program
Berkeley - Chisel & RISC-V

Celerity Team (Cornell, Michigan, UCSD, UW)

This work was supported in part by the Center for Applications Driving Architectures (ADA),

one of six centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA. 

http://bjump.org/stl
We welcome you to use and improve 
our STL prototype!


