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Abstract—As demonstrated by numerous practical attacks, the
physical act of computation emits unintended and damaging
information through infinitesimal variations in timing, power,
and resource contention. While there are many techniques for
preventing the leakage of information through power channels for
specific cryptographic units, they are typically either built directly
into the hardware logic or exploit intricate mathematical proper-
ties of the algorithm itself. However, such leaks are not uniform in
time but, as we show, rather occur in specific bursts. Exploiting
this observation we propose a set of software-controlled tech-
niques allowing for the seamless disconnection and reconnection
of general purpose programmable components in a system-on-
chip. Such a system is capable of providing brief moments of
electrical isolation during which the most critical computations
can be performed free from both timing and power measurement.
Of course, disconnection comes at a cost. To balance the resulting
trade-off between overhead and security effectively, we describe
a new analysis technique to uncover the ‘“leakiest” intervals of
time, we provide an algorithm to co-optimize the covering of
these intervals and the performance/energy costs under a set of
architecture imposed constraints, and explore the architectural
and software ramifications of such intermittent disconnection. In
the end we find that by hiding only between 15% and 30% of
the trace, at a performance cost of between 15% and 50%, we
are able to reduce the mutual information between the leakage
model and key bits by 75% on average, and to nearly zero in
specific cases.

Keywords-hardware security; security metrics; side-channel
attacks; electronic countermeasures

I. INTRODUCTION

While there are many techniques by which information in
a system can be kept secret, providing secrecy becomes even
more challenging when the device is subject to physical access
by an attacker. In these cases, the attacker likely has the ability
to measure the dynamic power usage of the chip, which leaks
subtle (but incredibly useful) information about any secret
bits used during computation. The scope and sophistication of
power analysis attacks on cryptographic systems has grown
at a staggering pace. We are now at the point where even
tiny amounts of information can be amplified through abstruse
statistical machination over a set of repeated measurements.
The attacker has many advantages, one of the largest being
that they are free to collect an effectively unlimited number
of traces in order to overcome noise.

To combat this problem, we propose a process called
computational blinking. This architectural approach provides
controlled dynamic power consumption isolation. Our system
provides a mechanism to electrically disconnect general pur-
pose computation from the rest of the system; this isolates

all aspects of the computation from the power, ground, and
other pins of the chip, and the rest of the on-chip function-
ality. While disconnected (or “blinking”), the attacker learns
nothing of value from the computation. As such, repeated
measurements provide no additional information about those
disconnected regions of execution. In the same way that
architectures have been extended with mechanisms to enable
the software management of explicit and now implicit flows
of information through special security modes [2], [31], [16],
[49], this technique places the power leakage channels under
software control. However, this idea brings with it many basic
questions: how do we provide the core with required power
while it is disconnected? How long can we perform this
isolated computation? And finally, how do we optimally apply
such disconnections to maximize the benefit to security and
simultaneously minimize the impact on performance?

The reality of such an architecture is that one can only
manage to operate in a disconnected state for very short bursts
of time. Unlike traditional security mode architectures, where
complete and long-running computations can take place if
necessary, here we must be exceedingly judicious about what
is covered by this mode. An important contribution of the
paper is the technique by which we take a set of execution
traces and analyze them automatically to uncover the points
in the trace where the vast majority of information leakage
is occurring. At one end of the spectrum is no protection
(execution is fully subject to power analysis), and at the
other is the extreme case where the entire secret operation
is performed only in a series of disconnected states. We
show that a security engineer is able to examine the entire
spectrum of possibilities in between and make decisions that
quantitatively trade-off between security and performance. For
example, for a given AES implementation, our analysis shows
that a designer can choose a near-perfect information blockage
with a 2.7x slowdown, eliminate about half the leakage with a
12% slowdown, or choose some point in-between. Specifically,
our work:

« demonstrates that information leakage over time in power
traces is non-uniform and that the amount of useful
information leaked at various points in an execution can
actually be quantified.

« describes a novel technique that allows software to control
power side-channel information leakage and to make
informed decisions trading off between security and per-
formance.
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Fig. 1: A depiction of a computational blink. When a blink computation is invoked, three phases occur serially: 1) The blink
computation begins and lasts as long as the maximum time needed for the worst case execution time of the code using the
allotted energy. 2) A fixed “discharge” time occurs, regardless of the on-chip energy source having been drained or not. During
this time, the energy source is emptied. 3) a fixed “recharge” time occurs and the on-chip energy source is filled back to
its original capacity. The length of time for the blink computation, the discharge, and the recharge is fixed to insure that the

computation does not leak any information.

o examines the architectural impacts of such hard-
ware/software co-operation including the ramifications
for our new abstraction, the “blink”, which exposes new
hardware capabilities for disconnected operations to the
instruction set.

« provides a careful accounting of a specific trade-off space
between security, performance, and energy for secure
operations using a combination of modeling and hardware
measurements.

We begin in Section II with a discussion of power traces, the
threats they introduce, and how the time-varying nature of their
information leakage can be exploited. Section III introduces a
rigorous method by which we can accurate quantify, for the
first time, that time-varying information leakage and find the
most useful points to target for removal. To edit those high
points out, in Section IV we introduce the hardware details of
our approach which dynamically connects and disconnects to
power according to a static (but software controlled) schedule.
We evaluate our approach across a variety of metrics and
crypto algorithms in Section V and relate our contributions to
prior work in Section VI before summarizing in Section VIIL

II. NON-UNIFORM INFORMATION LEAKAGE

Power analysis attacks are surprisingly powerful. It may
seem counterintuitive that small series of bit transitions per-
formed by an algorithm running on a microprocessor could
be reliably detected from its power consumption without
unfathomably precise equipment, yet they absolutely are. Such
a feat is possible, at a high level, through two observations:
1) the attacker need only find differences that are correlated
with data that they are looking for, and 2) the attacker can
force the system to use the data they are looking for while
the rest of the system activity generates “noise”. Thus system
activity is either correlated with the data we are looking for
(in which case that activity is useful to the attacker), or
uncorrelated with the data (in which case simply averaging
across several runs will quickly remove that noise). This is a
gross oversimplification of power analysis attacks, but gives

accurate intuition as to why it is so hard to develop robust
countermeasures.

Differential Power Analysis (DPA) is one of the most
common side channel attacks due to its simplicity and effec-
tiveness. It can be performed with low cost equipment in a
small amount of time [27]. Attack success is conditional upon
the fact that the energy consumed by the computation will
be differ depending upon the values of the input data. And
when that input data is confidential, such as a cryptographic
key, the variance in power draw across an execution trace
reveals information about the input, intermediate, and output
data that is being computing. This enables the attacker to
reason about portions of the secret data by making educated
guesses about the execution of the algorithm, e.g., is the
least significant bit of the result of a computation ‘0’or ‘1’?
even when the instructions executed are exactly the same
across all traces (as is common for crypto code). DPA verifies
whether or not a guess is correct, which can quickly lead to
determining the secret information. DPA is more powerful than
prior methods in that it does not require intimate knowledge
of the device under attack; typically the attacker only needs
to know details about the computation being performed, e.g.,
the cryptographic algorithm. A successful attack is possible
even with a significant amount of noise. However, it does
require an additional amount of execution trace data, which
depends upon the signal-to-noise ratio. As an example, a
DPA attack on a particular AES software implementation
requires approximately 200 traces to determine the entire key,
while one hardware (ASIC) implementation is more difficult,
requiring approximately 6500 traces [29]. The effectiveness of
these attacks is related to the large reduction in search space,
e.g., from 16 x 28 as opposed to 2'?3 for the brute force attack
on an 128 bit secret key. Extensions of this idea into Correlated
Power Analysis [6] and Template Attacks [10] extend these
ideas with more accurate power models for the device and/or
testing the physical device itself.

Typically, an attacker will target a time point that both leaks
information and is easy to derive bits of the true key from.
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Fig. 2: Vulnerability of AES over time (as extracted from
power traces). The x-axis is a unit of time and the y-axis
is a measure of the leakage. Specifically the y-axis is the
—log(p-values) from a TVLA analysis of power traces. Larger
values indicate that a location is more likely to leak informa-
tion due to power variations.

While many algorithms have well-known easy attack points,
the amount of information leakage is the dominant factor in
attack success. However, not every point in time in a trace
has the same amount of useful information. In analyzing real
power traces, we found that the amount of useful information
varied radically as a function of time. While there are many
different prior approaches that attempt to mask an entire trace,
hide such a trace under noise, or simply be resilient in the face
of leaks which we discuss in Section VI, this is a first attempt
to exploit the measured non-uniformity of leakage over time
using a programmable electronic countermeasure.

A. Threat Model

We assume an attacker can cause security critical programs
to run with arbitrary inputs and collect detailed power traces.
For example, the attacker could write a program that would
call a library to encrypt the data of their choosing while
gathering current measurements over time. We assume that
the attacker has the ability to synchronize the power supply
signal with the computation, i.e., she knows precisely when
the start of the computation occurs (perhaps using simple
power analysis [26]), and can synchronize multiple traces of
an encryption as is assumed in most power analysis attacks.
We make no assumptions on the equipment used to record
the power traces, i.e., the signal acquisition equipment could
have arbitrarily high sampling rate and resolution and/or the
attacker could have a detailed power simulator. We note that
relatively low-cost equipment is often used for power analysis
attacks [27], but our mitigation strategy is effective regardless
of how the power traces are collected. Our techniques focus
on mitigating power analysis. Attacks and other side channels
(timing, acoustic, RF, etc.) are outside of our threat model,
although the analysis technique we present may be more
broadly useful. In essence, we assume that the attacker can
obtain power traces that have similar or better quality than
those in the DPA contest [13].

B. Leakage Non-Uniformity

Figure 2 shows an example of leakage over time using real
power traces by running AES on an AVR microcontroller. Note
that we are not showing the power trace directly, but rather
the degree of leakage as measured by a ¢-test according to the
Test Vector Leakage Assessment (TVLA) by Cryptography

Research Inc. [20]. Larger —log(p-values) from the z-test
indicate samples in time with larger average power difference
for differing data, i.e. samples that leak more information from
the algorithm via the univariate mean.

The ¢-test determines the probability that the means of two
Gaussian distributions are equal, and it assumes that the data
is drawn independently from a Gaussian distribution. If the
means are not equal, then this indicates that there could be key-
dependent leakage at this location in time. The plot shows the
—log(p-values) of the ¢-statistic that the means are equal. High
values indicate a greater confidence that there is a difference
between the means, and therefore indicates a greater leakage of
key information. Values of p < 0.00001 = —log(p) > 11.51
are vulnerable according to the TVLA-recommended thresh-
old. Note that this threshold is not adjusted for the length of the
traces, and so it is a heuristic rather than the true probability
of a false rejection of the null hypothesis.

It is clear from the plot that leakage over time varies
radically. If we can protect those points in time that leak the
most information, then we can increase our security without
employing more costly protection mechanisms that cover the
entire execution of the crytographic algorithm. There is one
important thing to make clear—the #-test is only one of myriad
possible schemes to test for secret information leakage from
traces [4], [20], [28], [34], [35], [46]. The questions remaining
for Section III are why should we make another method, and
how can we make sure our approach is at least as powerful
as any such scheme. However, before we get into that we will
discuss what we are going to do with that information at a
high level.

C. Blinking as a Method to Exploit Non-Uniformity

To take advantage of the observation of leakage non-
uniformity as a countermeasure to power SCA, we intro-
duce computational blinking—a technique that intermittently
removes the power consumption for parts of an algorithm
from the observation of the attacker. We draw inspiration from
a “blink™, i.e., the rapid closing of an eyelid. The average
person blinks 15-20 times per minute [37] for a duration
between 100-400 ms [44]. Thus, we spend between 2.5-13.3%
of our waking time with our eyes closed due to blinking.
These spontaneous blinks occur at natural breakpoints when
our visual attention is least needed, e.g., during a pause when
listening to a speaker [23] or at a scene change in a video [38].
Computational blinking aims to perform a similar activity: to
blink during times that the algorithm leaks the most critical
information, yet do this in a manner that minimizes the impact
on performance.

During a computational blink, or period of power disconnec-
tion, the computation should not draw power from an external
(and thus measurable) energy source. Instead, the computation
uses a source of on-chip energy, e.g., an on-chip bank of
capacitors. To mitigate the energy storage overhead of this
scheme, blinks would ideally be very short. Because of this,
blinks must be applied with great care if there is any hope
of effectively hiding the sensitive operations from an attacker.
For example, if we were to blink randomly, the attacker would



be able to, in effect, remove the blink just as they could for
any other uncorrelated noise; by collecting more traces.

Any blinking approach must bring together three elements:
an analysis to find the points in the trace where one should
blink, a method of implementing disconnection in the hard-
ware, and an extension to the system that allows for such in-
formation to be passed from the software to the hardware as a
blink schedule. This general framework enables programmers
and system designers to perform a computational blink and
mask intermediate energy usage over a fixed amount of time,
either eliminating or greatly reducing the information leakage.
While there are many details to such a system that we discuss
in depth later in the paper, we will begin with a high level
description of a blink.

Figure 1 shows the high-level idea of the execution of two
computational blinks for a small security core built into a
larger system on chip (SoC). At the beginning of execution
the security core is connected to the same shared power
system as the rest of the design. As a software-determined
static schedule forces the system into a blink, the power is
disconnected and the security core starts to draw down the
energy in the capacitors until it reaches V,,;,—the minimum
tolerated operating voltage specified for the security core. This
first blink computation draws down some, but not all, of the
energy from the on-chip energy source. The computation is
followed by a discharge time that dissipates the stored energy
to a known, fixed, minimum level. The energy in the capacitors
is then built back up during normal execution. The second
blink computation in the example happens to use all of the
energy from the on-chip energy source. However, the discharge
time must still be incurred to avoid adding a new timing
channel.

In the end, a blink presents an abstraction under which
a fixed energy and time budget is allocated and where the
computation will take no more and no less than the amount
to which it has been allocated. The energy is emptied to a
fixed level—otherwise the amount of time and energy for
the recharge will vary and this could leak information. The
schedule is determined before execution and not secret-data
dependent, i.e., being able to detect the schedule does not pro-
vide any additional information. The major advantage of this
combination is that a complete lack of variance in the signal
measured at the output means zero bits of Shannon entropy
and thus no leakage of information. However, before this idea
can be fully exploited we need have a new understanding of
exactly what it means to partially remove information from a
trace this way.

III. QUANTIFYING AND EXPLOITING TIME-VARYING
INFORMATION LEAKAGE

For blinking to be feasible, we need to know how to
determine which regions of the trace are most useful to an
attacker, and how secure a system would be if we could
remove them. Ideally the answer to such a question is not
tied to a specific attack, but rather says something more
fundamental about the nature of the amount of information
remaining in the trace that an attacker can learn. While one

is very unlikely to get to the point that side-channel attacks
are provably impossible in practice, we can capture this notion
by developing a criteria that covers learning-based attacks that
have yet to be realized. In this section we outline our blinking
approach as summarized in Figure 3. This requires a sound
information leakage model (Section III-A), a security metric
to measure the “leakiest” moments in time (Section III-B), and
a blink scheduling algorithm (Section III-C).

A. Formalizing Leakage and Security Criteria

At a high level, our main assumption is that if a system
is secure against power SCA then it is impossible for an
attacker to differentiate between different secrets given sets
of measurements. One way to do this is to ensure that the
measurements with differing secrets are always equal. Another
is to ensure that they are random noise that is completely
unassociated with the secret. If they are equal, then looking
at one power trace is equivalent to looking at any other, if
they are random, this is also (statistically) true, and there
is a spectrum of scenarios mixing equality and randomness
where security is maintained. This implies that measurements
could be noisy functions of one another and still maintain the
security of underlying secrets. Metrics that only test univariate
statistical independence between traces and secrets, such as
[34] without multivariate combining, will not be powerful
enough for blink scheduling in general, because single points
in time may be independent of the secret when taken alone
and yet, as we show in the XOR example in Section III-B,
when combined may yield the secret with little effort. This is
one of the reasons why we need to develop a mathematically
sound security criterion and algorithms in this work.

First, we develop some notation that we will use to formal-
ize our intuition. Measurements are a function f(-) of pro-
cessor behavior. In power SCA, f(-) would be measurements
of voltage drop recorded with an oscilloscope. In general,
f(-) could be physical measurements, or simulations from a
model that are correlated with measurements. The power side-
channel analysis community refers to such measurements as
leakage, and we will do the same. We take the convention
that f(t,-) is a vector of leakage values at sample times t.
Under our threat model we run processes using data m that are
assumed to be known to attackers, and data s that is secret—
for example, m could be a plaintext message and s a secret
key in a cryptographic algorithm—so our leakage function
also includes those latent variables, and becomes f(t,m,s).
Per our convention, f(t;,m,s) is the single value measured—
or leaked—at time i, while f(t,m,s) is a vector of leakage
values (a power trace), at all times t for a fixed non-secret
and secret. Likewise f(t,m,s) is an order three tensor—a
multidimensional array—of leakage values for multiple times,
multiple non-secrets, and multiple secrets!.

Intuitively, a system would be invulnerable to a leakage-
based analysis if secrets have no effect on the measurements at

!'A note on notation: for the remainder of this paper scalar variables will be
lower case, vectors will be in bold lower-case, matrices in bold upper-case,
and their indices as subscripts (e.g. respectively, y, X, A, and x; and A;;). For
sets .o/, o/ is the complementary set, i.e. &/ U&/“ = %, the universal set,
and &/ N.e/¢ = 0, the empty set
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Fig. 3: An overview of the process to determine the best blink schedule for an algorithm. The algorithm inputs are labeled as
secret and non-secret and the algorithm is analyzed to determine its power leakage f(-) either by collecting power traces or
using a model. This is given to a security metric (Section III-B) that outputs a score z indicating the best places to blink, i.e.,
the times with the most leakage. A blink scheduler (Section III-C) takes this data and information from the hardware (Section
IV) that determines the blink time(s) and outputs an optimal blink schedule.

all. Such as system is “unlearnable” to the attacker as they can
observe no difference in traces when secrets differ. Likewise,
we might incorrectly assume that if the traces are random and
have the same distribution for any pair of underlying secrets,
then it is also impossible for an attacker to succeed. However,
this is not enough to guarantee security. For intuition as to
why this is so, consider that a list in random order and a
sorted copy of that list are both identically distributed in terms
of their values, and so their histograms would be equal, yet
the ordering of the information allows us to reliably tell them
apart.
For this reason, it must be necessary for security that

f(t,m,s) < f(t,m,Ps), VP (1)

where P is a permutation matrix, and s and m are vectors of all
messages and all secrets respectively, and 2 indicates equality
in probability distribution. This criteria is known in statistics
as exchangeability [18], and implies that the joint distribution
leakage is unaffected by reordering secrets.

Eqgn. 1 is a very general security criteria, and useful even
if the space of secrets is small enough to make a brute-force
search easy. If a system with leakage f(t,m,s) obeys Eqn. 1,
then we cannot do better than a random guess at the value of s
for the leakage function f for a given device and measurement
setup. Unfortunately, verifying Eqn. 1 for all permutations
requires O(n!) multivariate hypothesis tests! We must clearly
tackle this problem approximately, and so we take the Monte
Carlo approach explained in Section III-B.

B. Measuring the Leakiest Regions of a Trace

Now we turn our mathematical intuition into a security
metric and blink window selection algorithm. Our statements
here are without regard for implementation. In Sections IV
and V we will consider practical constraints along with their
security and performance ramifications.

In order to make Eqn. 1 hold for more, and ideally, all,
subsets of times in the trace, we would like to blink at times
that contribute the most to making traces “unexchangable”

with respect to different keys. If Eqn. 1 does not hold, then
we should be able to build a model of groups of power traces
with differing keys, and use this model to classify traces with
an accuracy consistently better than chance. We can now see
that identifying the leaky time intervals corresponds closely
to the data analysis problem of feature selection. The goal of
feature selection is to identify a set of properties, or indices of
data vectors, that consistently contribute as much information
as possible about a datum’s associated class. If we consider
classes to correspond to secrets, a good feature selection
approach will determine which set of indices % allow us to
differentiate among secrets, then we can blink them out, along
with all redundant features.

For our choice of a baseline feature selection metric, we
turn to [7], which includes an empirical study determining
which of many modern information theoretic feature selectors
score well over several trade-offs. Based on this study, the
Joint Mutual Information feature selector (JMIFS) [33], [52]
is a balanced choice. The JMIFS is defined for a time index i
as

IMIFS(i) = ¥ 1(f(t,0,8) ~ £(t;,,8);
je#

8) 2
where x — y concatenates x and y, m and § are vectors of
messages and secrets chosen independently and uniformly at
random, &4 is the set of time indices already chosen to blink,
and I(-;-) is the mutual information between variables. Mutual
information is a measure of association between its arguments,
and we will describe it with more detail in Section V.

We select features using the JMIFS criteria recursively: The
first index selected will be the time point in a trace with the
maximum mutual information with the secret, we add this to
the set of indices to blink 4, and remove it from the set %°
of remaining indices. We select the next index as the one that
maximizes Eqn. 2, and so on, until there are no more indices
to test, i.e. Z° = 0. We cache the values J;; = I(f(t;,,§) ~
f(tj,m,8);8) for use in later steps.

Our feature selection problem has an idiosyncrasy specific
to security; redundant time indices present other—equally



strong—attack vectors. However, feature selection algorithms
are designed with a bias against selecting redundant indices. In
order to derive a good blinking criteria from JMIFS, we group
the features with respect to their mutual redundancy, and re-
score them accordingly. Specifically, if J;; = I(f(t;,,8) ~
f(tj,m,8);8) computed during an ordinary JMIFS run, are
equal, up to numerical error, to the mutual information be-
tween leakage at index i and the secret values, then leakage
at j is redundant given i. Our algorithm constructs a Boolean
matrix R such that R; ; = 1 if time i is redundant with time
Jj and R;; = 0 if it is not. Once we have identified the
redundant indices, we re-score those time indices in the same
redundant set with a group label according to their selection
order by JMIFS. We use this group label as a ranking so that
redundant indices are all given the “worst”/maximal score
from among their redundant group. This means that more
leaky regions have higher ranks, and regions that have more
redundancy will have a larger gap between themselves and
regions ranked immediately below them than will regions with
smaller redundant sets. We do not weight the ranking in this
work but this is certainly possible to do, and could be used
to place greater importance on particular regions, or prioritize
easy attack vectors to ensure they are blinked out.

An important feature of JMIFS is that it considers com-
binations with the other times we’ve selected so far. This
is a way of handling variable complementarity [22]. The
following is an example: if Boolean variables x; and x; are
statistically independent, then x; ®x, =y is independent of
each individually, implying I(x;y) = I(x2;y) = 0, however,
I(x; —~ x2;y) > 0 because x; —~ x completely determines y.
JMIFS detects indices leaking secret information even if they
have an XOR-type relationship, while moment-based tests,
or those relying on univariate statistical independence, are
insensitive to this case.

We have found via experimentation that complementarity
exists in power traces, and attacks such as [19], [30] exploit it
to powerful effect. In this way our selection criteria is superior
to other SCA security evaluation metrics [4], [20], [28],
[34], [35], [46] that consider the power samples taken singly,
or involve the use of combining functions’> or multivariate
histograms for only a few time indices. In any case, we
cannot credibly assume a lack of complementarity of f(t;,m,s)
with f(tg,m,s), for arbitrary i and a set of time indices %,
due to the latent factors m and s which are held constant
during a run of the underlying security-sensitive algorithm.
An analysis using a univariate metric can therefore only reveal
how vulnerable a design is at minimum. This further motivates
our decision to use the JMIFS criteria. We emphasize that
it is not sufficient to consider time indices one-by-one when
determining whether to blink them out.

Algorithm 1 describes the blinking index scoring algorithm
in full, which returns a vector z so that z; = z; means that
those time indices i and j are equally vulnerable to attack,
and z; > z; means that z; provides more information about the

2Combining functions often violate the assumptions of underlying statistical
hypothesis tests, and are often derived from attack methods with particular
assumptions themselves. p-values from tests using combining functions should
be treated as heuristic unless this is explicitly corrected.

Algorithm 1: Blinking Index Scoring

1 Input: experimental keys § and power traces f(t,1,$)
for experimental plaintexts m

QOutput: a vector z of scores ranking time points t by
vulnerability to attack

3 while #° #0 do

4 foreach i € ¢ do

5 if i* < JMIFS(i) then

6

7

[ 5]

i
g* < JMIFS (i)

B +— BU{i*}
B — BN\{i*}
0 | g g

e

11 // J is already computed in previous steps
Let Ji.; = I(f(t;,m,8) ~ f(t;,m,8);3)
13 foreach (i, j) € | 8| x | %] do
Laf (3 —1(f (6, m,8):8)| < €
14 ij= .
0 otherwise

—
(5]

15 z < rank of max g in each redundant set indicated by R
16 Vi€ [n],2; < 2;/Yj_, z; /| Normalize scores

secret than z;.

C. Turning Measurements into Blink Regions

Now that we have a way to score the leakage of differ-
ent time indices in a traces, we must determine the best
blinking schedule. After executing Algorithm 1, z; contains
the leakage ranking for all time points under the given mea-
surement/simulation setup. The problem of selecting globally
optimal locations to begin a blink can be reduced to a weighted
interval scheduling (WIS) problem. It can be solved optimally
in O(nlog,n) operations where, in our case, n is the number
of samples in the measurement/simulation vectors [25].

Algorithm 2 shows the WIS algorithm used to optimally
derive the blinking window schedule. The algorithm accepts
as input the vectors t of time indices available for blinking
and z of corresponding leakage scores from Algorithm 1.
Additionally, it requires the constants blinkTime and recharge,
which are dependent on the underlying blink-enabled hardware
discussed in Section IV. Using t as the available times, and z
as weights, Algorithm 2 solves the WIS problem to determine
the best locations to blink so that the sum of z in non-blinking
regions is minimized. This approach is globally optimal in the
sense that it will select locations in the program to begin a
blink such that the sum of the scores covered by the blinked-
out regions is the maximum possible under the constraints.

IV. HARDWARE SUPPORT FOR BLINKING

Now that we have a new and powerful method of analyzing
execution behavior to find the leakiest regions, we describe
a proof-of-concept class of architectures that exploit that new
knowledge. At a high level, the hardware support for blinking
can be divided in three parts: 1) hardware support to switch



Algorithm 2: Blinking Window Scheduling

1 Input: length-n vectors t and z, of times and scores
respectively, and constants blinkTime and recharge

2 QOutput: The blinking schedule & with optimal coverage
3 foreach i € [n] do

4 start <— i

5 end < i+ blinkTime + recharge

6 score <— Z;'i;arffharge g

7 w; < (start,end,score)

8 foreach i € [n] do

o

| prev; < j s.t. wj.end —w.start is <0 and minimal

10 foreach i € [n] do
1| g max(wi.score + Zprevs; 8i-1)

12 i n

130+0

14 while i > 1 do

15 if w;.score + gprevs, > gi—1 then
16 O+ OU{w.start}

17 L i < prevs;

18 else

19 | ii-1

the power supply for the security domain from the main power
distribution network to an on-chip bank of capacitors, 2) the
processor modifications to allow it control over its own power
supply, and 3) the capacitor bank itself. The idea of using on-
chip capacitance as a way to hide cryptographic information
is well established both in theory and in practice. Our aim
is to expand upon these ideas to show how to make this
programmable to protect any general purpose computation.

One of the major issues with blinking is how to get
enough capacitance on chip to completely power a small core.
Shamir [45] first described the cycled use of two switched
capacitors, and more recently Tokunaga and Blaauw [50]
proposed a switched capacitor current equalizer to isolate a
fixed function block from the power supply line. The key
insight we bring over these hardware-only approaches is that
the information leakage over time in a trace is highly irregular.
Instead of attempting to cover the entirety of execution with a
large capacitor bank, we can instead blink during those parts
of the computation that are most leaky, and thus effectively
remove the power consumption during those times from at-
tackers view. We do this in a manner that gives direct control
to the programmer over the security-performance trade-off.
However, to make this trade-off quantitatively we need to
better understand the hardware-imposed constraints on our
blinking schedule.

Another issue is determining a feasible blink time, i.e., the
number of instructions that can be executed during a single
blink. For this, we need to know four characteristics of the
hardware: load capacitance (Cp), storage capacitance (Cy),
maximum operating voltage (Vju,), and minimum operating
voltage (V,in). The load capacitance C; is the capacitance
per instruction; the amount of capacitance required to store
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Fig. 4: Block diagram showing the function of the power
control unit.

enough energy for the core to execute a single instruction.
The smaller the load capacitance, the more instructions we
can execute during a blink. To minimize load capacitance,
blink-enabled hardware should use low-powered processing
cores that aim to minimize joules per instruction. The storage
capacitance Cy is the amount of capacitance available for the
core to draw energy from during a blink. Once the blink has
started, all of the energy required for the core to continue
execution will come from the storage capacitance. The more
storage capacitance available to the core, the more instructions
that can be executed during a single blink. In blink-enabled
hardware, empty sections of the die area can be filled with
decoupling capacitance cells that will increase the storage
capacitance available throughout the chip. The maximum
operating voltage V.. is the highest voltage the core will
run at during a blink. This is the voltage at the start of the
blink which we assume is the normal operating voltage of
the core. As the core executes instructions during a blink,
its operating voltage will decrease. Eventually, the core will
reach a minimum operating voltage V,,;, where the core can
no longer execute any instructions. We define the time that it
takes to move from V4 t0 V,in as the blinkTime.

Using these four characteristics, we can calculate the
blinkTime as:
2-log <@>

Vinax

log (1 — %)

To allow the core to control when a blink happens, we
add an extension to the core’s ISA to allow the core to
communicate with a power control unit. The power control
unit is responsible for initiating a blink to begin secure oper-
ation, discharging the capacitor bank when secure operation
is complete, and recharging the capacitor bank after a fixed
amount of time to resume non-secure operation (see Figure
4). When the core indicates it would like to start a blink,
the power control unit will turn off the blink and recharge
transistors, and disable input and output to the core, thereby
electrically isolating the core and capacitor bank from the main

blinkTime = 3)



power rails, as well as the input and output pins. The core
executes self-sufficiently from its local scratchpad instruction
and data memories. The power control unit will monitor the
voltage across the internal power rails making sure that the
voltage is never less than the minimum operating voltage V.
If the core finishes secure operation before reaching V,,;,, the
power control unit will activate a shunt resistor to discharge
the capacitor bank to V,,;,. After a fixed amount of time from
the beginning of the blink, the power control unit will start
the recharge phase by turning on the recharge transistors. One
concern during the recharging phase is the in-rush current
observed when the depleted capacitor bank is reattached to
the main power rails. A large in-rush current can corrupt the
state of the core [24], therefore we place recharge resistors to
limit the maximum in-rush current. Once recharged, the power
control unit will turn on the blink transistors again to minimize
IR drop across the recharge resistors.

To demonstrate the potential for blink-enabled hardware in
the real world, we evaluated a chip taped out in TSMC 180nm
to determine what load capacitance, storage capacitance, and
minimum operating voltage we could achieve. The chip con-
tains a low power RISC-V processor, which we considered as
our security processor. The core is a 32 bit, 5-stage pipeline,
in-order processor running the RV32IM ISA with 4KB of
instruction memory and 4KB of data memory and has an area
of 1.27mm?. To find the core’s load capacitance, we simulated
the chip in PrimeTime Suite using a switching activity vector
representative of an average workload. We found the core
had an average energy consumption of 515pJ per instruction
running at 1.8V. Therefore we can calculate the required
amount of capacitance needed to store 515pJ at 1.8V which
is 317.9pF.

This chip contains full-custom decoupling capacitance cells
to fill empty areas of the die. These cells make up a majority
of the storage capacitance found on-chip. Using RC extraction,
we found that these decoupling capacitance cells have a
unit capacitance of 4.69fF/um?. On-chip there was a total
of 4.68mm? of the 25mm? die area filled with decoupling
capacitance for a total of 21.95nF of storage capacitance.

The core’s nominal voltage is 1.8V which we use as the
core’s maximum operating voltage. To find the minimum op-
erating voltage, we put the chip on a motherboard with direct
control over the chip’s core voltage and clocking frequency.
We continuously drop the core’s voltage and clock frequency
until there was no clock frequency where the core could still
operate. This occurs at 0.97V, so that is the smallest value we
can use for the chip’s minimum operating voltage V.

Using Eqn. 3, we find that for this particular chip every
Imm? of decoupling capacitance allows the core to execute
roughly 18 additional instructions per blink. The AES-128
implementation used in the DPA contest takes 12,269 cycles
to run [13], including key expansion and overhead. If we were
not to pause for recharging, then 12,269 cycles would require
about 670mm? of decoupling capacitance, 528x more area
than the core itself. This is why we require recharge periods
when blinking, along with algorithms to schedule blinking
time windows: Simply blinking the entire computation would
require impractically large capacitive area.

V. EVALUATION

We have laid out a general blinking framework and shown
how to enable this in hardware. This section evaluates that
framework’s effectiveness. First, we provide details on frame-
work itself, and then we use the framework to perform blinking
on several applications. We show that blinking provides orders
of magnitude reduction in leakage.

A. Blinking Framework

Estimating the power side channel vulnerability begins with
data collection. This usually entails connecting an oscilloscope
to the circuit under analysis, and running random or specially
chosen inputs until thousands of power traces are recorded.
However, it may be unreasonable to expect a software engineer
to collect these data each time they make modifications to
their source code. Furthermore, it is not possible to collect
power traces from an architecture that is under design. Thus,
we developed a simulator of power side-channel leakage to
help facilitate our evaluation.

Our power simulator leverages the open-source tool SimAVR
[40]. SimAVR executes binaries compiled by the avr-gcc
toolchain, and provides instruction-level access to program
state. This means our simulated traces result from execution of
the binary as it would be run on an AVR microcontroller, in-
cluding all optimizations implemented by the compiler, instead
of an analysis of the source code. Our SimAVR modifications
implement the Hamming distance leakage model [6] used in
nearly all CPA attacks. For each opcode the simulated power
trace is the Hamming distance between the previous value in
the target register (resp. memory location) and the new value to
be written. Our modified tool outputs this Hamming distance
value for as many cycles as the current opcode takes to execute
on the particular target AVR chip before moving on to the next
opcode in the compiled binary.

The Hamming distance model assumes that toggling a bit
leaks/consumes one unit of power, regardless of other factors,
and leaving a bit in its current state consumes no power. While
this is a highly simplified model, it is nearly ubiquitous in the
power SCA literature, (see [1], [6], [32], [35] among others,)
due to its consistent correlation with power consumption and
its effectiveness for correlation-based attacks. While other
research has focused on modeling exact characteristics of
the circuit in question, these have not been widely adopted,
because 1) the Hamming distance model captures sufficient
detail with a minimal effort on the part of the attacker, and 2)
an exact model can be obtained from the system itself.

Optionally, our tool adds the Hamming weight (HW) of the
data moved by an instruction into the simulated power output.
We have found that this better accommodates the effects of
load and store instructions. This is because supplying electric
charge to the buses and RAM cells of the memory system
consumes power in proportion to the data itself, rather than
the bit-wise change in value. Together, we can write that our
model output is, for prior state x and current state y,

Power Leakage Model(x,y) = HW(x®y)+HW(y) (4)



It may be unintuitive that Hamming distance and weight can
be used for a power-based analysis. However, power SCAs
only require a model that is consistently correlated with the
measured quantity in order to succeed. This is one of the
reasons power SCA is so effective. In power SCA, the leakage
function f that we measure is usually not power directly,
but voltage drop during an operation. The studies of [1], [6],
[32], among others, empirically show that Eqn. (4) is robustly
correlated with voltage drop across different devices.

B. Balancing Security, Energy, and Performance

In architecting a blinking device, we are faced with the
task of balancing many related parameters. Clock speed is
determined by the lowest operating voltage, which will occur
at the end of a blink; the storage capacitance and minimum
operating voltage determine the maximum blink length; longer
blinks drain more voltage, affecting operating voltage (and
thus clock speed) as well as energy consumption; blink sizes
affect security, the cost of static scheduling, and performance.

The maximum blink window size is a function of the
stored capacitance and the V,,;;,, of the chip. Smaller blink
lengths are also possible, meaning less capacitance will be
drained and the chip can resume operation at Vo, > Vipi. We
considered a range of storage capacitances from 5nF to 140nF
(corresponding to 1 to 30mm? of decoupling capacitance)
to better evaluate the design space. We assume that each
instruction requires, on average, a load capacitance C; of
317.9pF (as computed in Section IV).

With the available blink sizes determined, the selection
algorithm (Algorithm 2) can analyze a set of scores from
(Algorithm 1) and find the optimal coverage that minimizes
global secret information leakage. The algorithm notably does
not consider performance; this would require the algorithm to
make trade-offs between performance and security, which we
leave to the designers or as future work.

There is a constant switching overhead to disconnect and
connect the core at the beginning and end of a blink. Accord-
ing to our simulations, disconnection can occur fully within
2 cycles, while power shunting and reconnecting happens in
under 1 cycle. Real-world execution, fabrication thresholds,
and unpredictable conditions can easily push this disconnect
time much higher. In our design space explorations, we use a
penalty of 5 cycles per blink. Energy is potentially wasted in
every blink, as excess charge in the capacitor must be shunted
to avoid leaking information. From our power simulations, the
most energy-intensive instructions consume 1.6x the energy
of an average instruction. Provisioning for the worst case, on
average the extra 60% capacitance is wasted. Depending on
the algorithm and voltage, this was between 5 and 35% in our
simulations.

We have found that different algorithms (or implementations
of the same algorithm) can have very different leakage charac-
teristics, requiring different blinking strategies. In addition to
real AES traces from the DPA Contest v4.2 [13], we simulate
power traces for both 128-bit AES and PRESENT from AVR-
crypto-lib using our modified version of SimAVR. For both
implementations of AES, for the parameters we examined,

AES (DPA) | AES (avrlib) | PRESENT
t-test # —log p > threshold 19836 285 1236
t-test post-blink 342 0 141
Y"1z (Alg. 1) post-blink 0.033 0.083 0.104
1-FRMI g post-blink 0.012 0.011 0.140

TABLE I: Information leakage after blinking for three differ-
ent cryptographic programs. The metrics are the number of
—log(p-values) above the TVLA threshold (i.e., the number
of vulnerable points for univariate attacks), the sum of the
residuals of our leakage ranking z, and 1-FRMI 2 (Eqn. 6).
Traces for the avrlib AES and PRESENT programs were
collected via simulation using a Hamming distance power
model (Eqn. 4), while DPA is from power traces from the
DPA Contest v4.2 [13]. The last two allow comparison as a
fraction of total leakage, where 1 -FRMI 4 is univariate, and
Y, z; is multivariate. That is, the “pre-blink” results of both
are equal to 1. The z-test result shows that even in the worst-
case, blinking provides an order of magnitude reduction in
attack vectors.

there is not an optimal point with regard to both security and
performance, leaving the space open to designers to choose
the most appropriate configuration.

Each algorithm, for certain capacitance, voltage, and clock
combinations, tends to have a few near-perfect outliers with
respect to security, with varying degrees of slowdown. These
points likely had an available window size that aligned well
with the program’s phase behavior, blocking out leaky portions
such that critical instructions are not missed in the recharge
period after the blinks. In most cases, small capacitors and
shorter blink lengths give these best results, allowing fine-
grained control of which instructions are covered. Shorter but
more frequent blinks, however, incur more switching over; for
both AES implementations, these optimal points are around
2x the stock execution time. In addition, provisioning the
chip with a smaller storage capacitance may preclude optimal
parameter selection for other algorithms.

C. Security Evaluation

To evaluate the security of blink-enabled hardware, we
collect a set of 2! traces from the leakage model described in
Section V-A Eqn. 4 for experimental plaintext and key vectors,
m and §, respectively from the AES-128 and PRESENT
ciphers from AVR-Crypto-Lib. We also evaluated our metrics
on the physical power measurements provided for the DPA
Contest v4.2 [13]. Then we compute three metrics of security
on these traces before and after blinking. We use blinking
patterns chosen by our scoring and scheduling pipeline from
Section III. We allow the scheduler to choose between using
blinks with three, data independent, lengths—one large, and
one of half and a quarter that size. Note that these differing
blinkTimes are placed statically according to the results of
Algorithm 2, and are not data dependent. Additionally, as
mentioned in Section V-B, while different blink lengths do
not drain the capacitor equally, the shunt always ensures that
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Fig. 5: a) The same as Figure 2, —log(p-values) of the
t-statistic of the DPAv4.2 traces prior to blinking. b) The
—log(p-values) from (a) after undergoing computational
blinking according to our scoring and selection criteria. Note
that not all of the leaky area at the front of the trace can
be blocked—the cooldown period after each blink means that
lengthy leaky areas cannot be completely covered (unless one
stalls for recharge).

the voltage reaches the same level at the end of a blink. This
means that an attacker would measure uniform power draw
during blink intervals.

Our evaluation metrics are our multivariate vulnerability
metric z from Algorithm 1, the TVLA #-test, and fractional
reduction in mutual information (FRMI). We have discussed
z and TVLA t-test previously. The mutual information is
suggested in [46] as DPA security metric, and computed as

I(S;L) = H(S)— H(S|L) (5)

where H(S) and H(S|L) are the entropy and conditional
entropy® of random variables S and L, with s and f(t;,m,s)
being their respective realizations. Intuitively, this says that
I(S;L) is the expected reduction in our uncertainty about
secrets given knowledge of leakage at a single point in time
i. As noted by [21], this metric corresponds directly to the
success rate of a univariate template attack—the strongest form
of attack in the information theoretic sense [10].

In order to form a composite score, we compute the FRMI
given blinking. That is,

;l:l I(f(tiamvs);s)

which gives us the relative decrease in mutual information
after we blink. We also compute a comparable composite
score, i, z;, from our own metric.

Figure 5 shows the results before and after applying the
blinking procedure on the same trace from Figure 2. This
visually shows that blinking eliminates the vast majority of the
vulnerable points as specified by the z-test. Note that it cannot
eliminate all of the blinking regions due to constraints on when

(6)

3Entropy in this sense is H(S) = 7):l.illp(S,-)logbp(Si), the expected
number of symbols, from an alphabet with b total symbols, that need to be
used to represent the random variable S.

we can blink (e.g., we must recharge). This improvement is
quantified in Table L.

Table I shows our composite score, t-test vulnerability
counts, and 1—-FRMIg4 scores for the encryptions using
Masked AES-128 from the DPA contest v4.2, AES-128, and
PRESENT ciphers. Both Y ;z; and 1-FRMIy are equal to
one prior to blinking. The Table I values show the remainder
afterward. We can see that with a good choice of blinkTimes
our scheduling approach eliminates nearly all of the leakage
under the mutual information metric, and reduces attack vec-
tors found by the #-test by an order of magnitude in the worst
case. The PRESENT cipher implementation is consistently
leaky throughout, but we still achieve a large improvement.
These results should scale for any algorithm with intermittent,
non-uniform leakage of secret information.

VI. RELATED WORK

The overriding goal of power analysis countermeasures is
to make the energy consumption independent of the secret
bits. The vast majority of proposed countermeasures attempt
to reduce the power trace signal and/or increase the noise in
the system, i.e., they attempt to lower the SNR. An ideal
system would have a SNR of zero, which would make the
system obey Eqn. 1, but this is difficult to achieve in practice.
There are many mitigation techniques that we broadly classify
into masking, hiding, and electronic countermeasures. Most of
these works are complementary to ours, e.g., you could use
masking and hiding techniques in addition to computational
blinking. The most closely related work is electronic counter-
measures.

Masking conceals intermediate values by the secret key
though an XOR with random values—a “mask” that is as-
sumed to be unknown to an attacker—that changes each
time the algorithm is executed. This enables security proofs
against first order attacks [5], [39]. Masking modifies the
cryptographic algorithm, and therefore cannot be directly
applied to existing implementations; it requires a redesign
that is costly or infeasible in many cases. If the mask can be
determined (possibly through power analysis) then the security
of the design reduces to that of an unprotected implementation.
DPAv4.2 traces come from a masked AES implementation.
This has not proved particularly effective, and many successful
attacks exist.

Hiding defenses include randomly inserting dummy opera-
tions or cycles [3], shuffling the operations of the algorithm,
changing the behavior of the clock and power signal [53],
using multiple clock domains, and redundant logic styles to
equalize transition probabilities [41], [47], [48]. While all of
these techniques may cause the attacker to work harder, they
do not eliminate the threat. Hiding defenses only moderately
increases the number of measurements to disclosure (MTD)
[12], [42]. The signal still exists and formal lower bounds on
the number of traces can be determined [9], [29].

Electronic Countermeasures aim to modify the power supply
during the computation. For example, adding a filter between
the internal power supply and the output pin reduces the
bandwidth of the signal making it more difficult to attack.



However, this was shown to be ineffective and in fact made
the attack easier by further differentiating the time at which
the tested hypothesis occurs [14]. Another approach is to insert
active equalization circuitry to ensure that the power supply
signal stays constant. Ratanpal et al. [43] describe a suppres-
sion circuit that reduces low frequency current fluctuations
and a low-pass filter to remove high frequency variations.
Corsonello et al. [15] propose a charge-pump circuit using
on-chip capacitors. Muresan et al. [36], [51] propose a current
flattening technique which maintains a constant current draw
from the power supply. Active equalization is difficult in
practice as computation can rapidly draw current requiring
fast compensation to mitigate any visible power spikes [45].
Tokunaga and Blaauw [50] use a switched capacitor current
equalizer block to isolate an AES encryption core from the
power supply line This core had a 25% area overhead, a
33% power overhead and 2x decrease in performance. This
normalization technique is effective for the AES core where
activity factors are highly stable at 50%. Performing this same
technique on programmable devices will introduce signifi-
cantly more overhead as the swing is much larger. Regardless,
even if the specifics of the protection circuitry are changed, the
ability to apply those countermeasures intermittently and under
control of software opens up new possibilities for optimization
and trade-offs as we have discussed.

Side channel leakage metrics aim to quantify the vul-
nerability of the hardware against an attack. Side-channel
vulnerability factor [17] provides a metric to quantify the
difficulty of exploiting a side-channel by correlating between
ground truth patterns and attacker observed patterns. While
they state that their techniques are more broadly applicable,
they only perform evaluation on cache timing channels. CC-
Hunter [11] detects timing channels by dynamic tracking
conflict patterns, e.g., bus locks and functional unit contention.
SAVAT [8] is a fine-grained side channel leakage metric that
considers differences instruction variations due to branching
or cache misses. However, all of these metrics focus on
timing channels while our metric (Section III-B) focuses on
power consumption. As we discuss in Section III-B, many
other power side-channel security metrics exist for selecting
vulnerable points, but like the TVLA test, they are univariate
or require time points to be chosen a priori.

VII. CONCLUSION

Power side channels are notoriously easy to exploit, yet
difficult to mitigate. Electronic countermeasures attempt to
eliminate the leakage through the power consumption and have
shown to be successful in application-specific instances. Our
work takes these one step further, by providing a software-
controlled technique to disconnect and reconnect critical com-
putation from the power supply. Our computational blinking
technique enables the software to schedule brief moments of
isolation in order to mitigate the power side channel. We show
that our proposed system of computational blinking is general
enough to apply to multiple different software systems and
robust enough to achieve near-optimal information reduction.
By giving the application explicit control of the trade-offs

between security and performance, the architecture opens a
useful new continuum of design points between fully-hidden
and fully-exposed.
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